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Abstract. Let D be a smooth domain in RN , N ­ 3, and let f be
a positive continuous function on ∂D. Under some assumptions on φ, it
is shown that the problem ∆u = 2φ(u) in D and u = f on ∂D admits a
unique solution which will be denoted by Hφ

Df . Given two functions φ and
ψ, our main goal in this paper is to investigate the existence of a constant
c > 0 such that

1

c
H
φ
Df ¬ H

ψ
Df ¬ cH

φ
Df.
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1. INTRODUCTION

LetD be a bounded smooth domain in RN , N ­ 3.We consider the following
semilinear problem:

(1.1)

{
∆u = 2φ(u) in D,
u = f on ∂D,

where f is a positive continuous function on ∂D. Under some conditions on φ, it
will be shown that problem (1.1) admits a unique solution which will be denoted
byHφ

Df. In the particular case where φ ≡ 0, (1.1) reduces to the classical Dirichlet
problem whose unique solution will be denoted by HDf.

Given two functions φ and ψ, we say that Hφ
Df and Hψ

Df are proportional
and we write Hφ

Df ≈ H
ψ
Df if there exists c > 0 such that, for every x ∈ D,

1

c
Hψ
Df(x) ¬ H

φ
Df(x) ¬ cH

ψ
Df(x).
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The operators Hφ
D and Hψ

D are said to be proportional (we write Hφ
D ≈ H

ψ
D) if

Hφ
Df and Hψ

Df are proportional for every positive continuous function f on ∂D.
The main goal of this paper is to study the proportionality between Hφ

D and
Hψ
D. To this end, we shall rather compare Hφ

D to HD. Since f is positive on ∂D,
it is very simple to observe that Hφ

Df ¬ HDf . However, the question whether
Hφ
Df ­ cHDf for some constant c > 0 seems to be more difficult.

There are several papers dealing with the existence of solutions to semilinear
problems which are bounded below by a harmonic function (see [3], [4], [9], [14],
and their references). The second-named author studied in [14] the problem

(1.2)

∆u+ ξ(x)Ψ(u) = 0 in D,
u > h in D,

u− h = 0 on ∂D,

where h ­ 0 is harmonic in D, ξ ­ 0 is locally bounded, and Ψ > 0 is a non-
increasing continuous function on ]0,∞[. He proved that (1.2) admits a unique
solution provided the function

x 7→
∫
D

GD(x, y)ξ(y) dy

is continuous onD and vanishes on the boundary ofD, whereGD(·, ·) denotes the
Green function of ∆ on D (see (2.3) below).

Athreya [4] considered the problem (1.1) where φ : ]0,∞[ → ]0,∞[ is a lo-
cally Hölder continuous function such that φ(t) tends to ∞ as t tends to 0 at the
rate t−p with p ∈ ]0, 1[. Given a function h0 which is continuous on D and har-
monic in D, under some additional conditions he showed that problem (1.1) has a
unique solution which is bounded below by h0. By probabilistic techniques, Chen
et al. investigated in [9] the same problem where −t ¬ φ(t) ¬ t, t ∈ ]0, b[, for
some b > 0. They proved the existence of a solution bounded below by a positive
harmonic function provided the nontrivial function f admits a sufficiently small
norm (see Theorem 1.2 in [9] and its proof).

The problem (1.1), with φ(t) = φp(t) = tp, was already studied by Atar et
al. in [3] where they showed that the proportionality of Hφp

D and HD holds true
for every p ­ 1. In this paper we shall prove that Hφ

D ≈ HD for a large class of
functions φ containing φp, p ­ 1. Furthermore, we shall prove a conjecture stated
in [3] and claiming that Hφp

D and HD are not proportional for 0 ¬ p < 1. More
precisely, we give sufficient conditions on φ under which the operators Hφ

D and
HD are not proportional.

We briefly recall in Section 2 some basic facts on Brownian motion and then
establish in Section 3 the existence of a unique solution to problem (1.1) where
φ : R+ → R+ is continuous and nondecreasing, and φ(0) = 0. In Section 4, we
are concerned with the proportionality between Hφ

D and the harmonic kernel HD.
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We prove that the proportionality holds true provided

(1.3) lim sup
t→0

φ(t)

t
<∞,

and does not hold if, for some ε > 0,

(1.4)
ε∫
0

( t∫
0

φ(s)ds
)−1/2

dt <∞.

In particular, the fact that condition (1.4) is valid for φ = φp with 0 ¬ p < 1 yields
an immediate proof of the conjecture mentioned above. The last section will be
devoted to investigating the problem (1.1) in the case where the function φ is non-
increasing.

2. PRELIMINARIES

For every subset F of RN , let B(F ) be the set of all Borel measurable func-
tions on F and let C(F ) be the set of all continuous real-valued functions on F. If
G is a set of numerical functions, then G+ (respectively, Gb) will denote the class
of all functions in G which are nonnegative (respectively, bounded). The uniform
convergence norm will be denoted by ∥·∥.

Let (Ω,F ,Ft, Xt, P
x) be the canonical Brownian motion on the Euclidean

space RN , N ­ 3. Here Ω is the set of all continuous functions from [0,∞[
to RNendowed with its Borel σ-algebra F . For every t ­ 0 and ω ∈ Ω,

Xt(ω) = ω(t) and Ft := σ(Xs; 0 ¬ s ¬ t).

For every x ∈ RN , P x is the probability measure on (Ω,F) under which the Brow-
nian motion starts at x (i.e., P x(X0 = x) = 1) andEx[·] denotes the corresponding
expectation. LetD be a bounded domain in RNand let τD be the first exit time from
D by X, i.e.,

τD = inf {t > 0;Xt /∈ D}.

We denote by (XD
t ) the Brownian motion killed upon exiting D. It is well known

that its transition density is given by

pD(t, x, y) = p(t, x, y)− rD(t, x, y), t > 0, x, y ∈ D,

where

p(t, x, y) =
1

(2πt)N/2
exp

(
−|x− y|

2

2t

)
,

and
rD(t, x, y) = Ex [p(t− τD, XτD , y), τD < t].
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The corresponding semigroup is then defined by

PDt f(x) = Ex [f(Xt), t < τD] =
∫
D

pD(t, x, y)f(y)dy, x ∈ D,

for every Borel measurable function f for which this integral makes sense.
Let h be a positive harmonic function in D and define for x, y ∈ D, t > 0,

pDh (t, x, y) = pD(t, x, y)
h(y)

h(x)
.

Then there exists a Markov process, called the h-conditioned Brownian motion,
with state space D and having pDh as transition density (see [6], [10], [11]). The
corresponding probability measures are denoted by (P xh )x∈D : for every Borel sub-
set B of D we have

P xh (Xt ∈ B) =
1

h(x)

∫
B

pD(t, x, y)h(y) dy

=
1

h(x)
Ex[h(Xt), Xt ∈ B, t < τD].

Besides, using the monotone class theorem, it is easily seen that, for every t > 0
and every Ft-measurable random variable Z ­ 0,

(2.1) Exh [Z, t < τD] =
1

h(x)
Ex [Z h(Xt), t < τD].

The open bounded subset D is called regular (for ∆) if each function f ∈
C(∂D) admits a continuous extension HDf on D such that HDf is harmonic
in D. In other words, the function h = HDf is the unique solution to the clas-
sical Dirichlet problem {

∆h = 0 in D,
h = f on ∂D.

For every x ∈ D, the mapping f 7→ HDf(x) defines a probability measure on ∂D
which will be denoted by HD(x, ·) and called the harmonic measure relative to x
and D.

In the sequel, let x0 ∈ D be a fixed point and assume that D is a bounded Lip-
schitz domain of RN (in fact, we impose that the Martin boundary of D coincides
with its Euclidean one; see [2], Section 8.7). Hence, there exists a unique function
KD : D × ∂D → R+ satisfying:

For every z ∈ ∂D, KD(x0, z) = 1.
For every x ∈ D, KD(x, ·) is continuous in ∂D.
For every z ∈ ∂D, KD(·, z) is a positive harmonic function in D.
For every z, w ∈ ∂D such that z ̸= w, limx→wKD(x, z) = 0.
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We extend the functionKD(·, z) toD\ {z} by lettingKD(w, z) = 0 for every
w ∈ ∂D\ {z} . The functionKD is called the Martin kernel onD. It is well known
that the formula

(2.2) h(x) =
∫
∂D

KD(x, z) dν(z)

realizes a one-to-one correspondence between nonnegative harmonic functions on
D and (positive) Radon measures on ∂D.

The Green function GD(·, ·) is defined on D ×D by

(2.3) GD(x, y) =
∞∫
0

pD(t, x, y)dt.

It follows that GD is continuous (in the extended sense) on D ×D,

GD(x, y) ¬ GRN (x, y) =
Γ(N/2 + 1)

2πN/2|x− y|N−2
,

and limx→z GD(x, y) = 0 for every z ∈ ∂D (see [15], Chapter 4). Moreover,

(2.4) KD(x, z) =
dHD(x, ·)
dHD(x0, ·)

(z) = lim
y∈D,y→z

GD(x, y)

GD(x0, y)
, x ∈ D, z ∈ ∂D.

For h = KD(·, z), where z ∈ ∂D, the h-conditioned Brownian motion will be
simply called the z-Brownian motion and its transition density is given by

pDz (t, x, y) =
1

KD(x, z)
pD(t, x, y)KD(y, z), t > 0, x, y ∈ D.

The corresponding family of probability measures will be denoted by (P xz )x∈D.

3. SEMILINEAR PROBLEM

We assume that φ : R+ → R+ is a continuous nondecreasing function such
that φ(0) = 0. The following comparison principle will be useful to prove not only
the uniqueness but also the existence of a solution to problem (1.1). A more general
comparison principle can be found in [14].

LEMMA 3.1. Let Ψ ∈ B(R) be a nondecreasing function and let u, v ∈ C(D)
such that ∆u ¬ Ψ(u), ∆v ­ Ψ(v) in the distributional sense in D, and u(z) ­
v(z) for every z ∈ ∂D. Then u(x) ­ v(x) for every x ∈ D.

P r o o f. Define w = u− v and suppose that the open set

Ω = {x ∈ D;w(x) < 0}
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is not empty. Since Ψ is nondecreasing, it is obvious that ∆w ¬ Ψ(u)−Ψ(v) ¬ 0
in Ω, which means that w is superharmonic in Ω. Moreover, for every z ∈ ∂Ω ∩D
we have w(z) = 0 (because w is continuous in D), and for every z ∈ ∂Ω ∩ ∂D
we have limx∈Ω,x→z w(x) ­ 0 (by assumption). Then w ­ 0 in Ω by the classical
minimum principle for superharmonic functions. This yields a contradiction, and
therefore Ω is empty. Hence u ­ v in D. �

The Green operator in D is defined by

(3.1) GDf(x) =
∫
D

GD(x, y)f(y)dy, x ∈ D,

for every Borel measurable function f for which the integral exists. In other words,

GDf(x) = Ex
[ τD∫

0

f(Xt)dt
]
=
∞∫
0

PDt f(x)dt, x ∈ D.

We recall that, for every f ∈ Bb(D), GDf is a bounded continuous function on D
satisfying limx→z GDf(x) = 0 for every z ∈ ∂D. Moreover, it is simple to check
that

∆GDf = −2f

in the distributional sense (see [10], [11]).

LEMMA 3.2. For every M > 0, the family {GDu; ∥u∥ ¬M} is relatively
compact with respect to the uniform convergence norm.

P r o o f. Since the family {GDu; ∥u∥ ¬M} is uniformly bounded, it suffices
in virtue of the Arzelà–Ascoli theorem to show that the family is equicontinuous.
We first claim that the family {GD(x, ·);x ∈ D} is uniformly integrable. Indeed,
let ε > 0 and η0 > 0. There exist c1 > 0 and c2 > 0 such that, for every Borel
subset A of D,∫

A

GD(x, y)dy ¬ c1
∫
A

dy

|x− y|N−2

¬ c1
∫

B(x,η0)

dy

|x− y|N−2
+ c1

∫
A\B(x,η0)

dy

ηN−20

¬ c2η20 + c2
m(A)

ηN−20

.

Here and in all the following, m denotes the Lebesgue measure in RN . Take η0 =√
ε/(2c2) and η = εηN−20 /(2c2). Then for every Borel subset A of D such that

m(A) < η we have ∫
A

GD(x, y) dy ¬ ε.



Comparison of harmonic kernels 35

Hence, the uniform integrability of the family {GD(x, ·);x ∈ D} is shown. There-
fore, in virtue of Vitali’s convergence theorem (see, e.g., [16]), we conclude that,
for every z ∈ D,

lim
x→z

sup
∥u∥¬M

∣∣ ∫
D

GD(x, y)u(y)dy −
∫
D

GD(z, y)u(y)dy
∣∣

¬M lim
x→z

∫
D

|GD(x, y)−GD(z, y)| dy = 0.

This means that the family {GDu; ∥u∥ ¬M} is equicontinuous, which completes
the proof of the lemma. �

The existence of solutions to semilinear Dirichlet problems of kind (1.1) was
widely studied in the literature with various assumptions on the function φ (see,
e.g., [5], [12]–[14]). In our setting, we get the following:

THEOREM 3.1. For every f ∈ C+(∂D), there exits one and only one function
u ∈ C+(D) satisfying the problem (1.1). Furthermore, a bounded Borel function u
on D is a solution to (1.1) if and only if u+GDφ(u) = HDf.

P r o o f. By a classical computation, it is not hard to establish the second part
of the theorem. We also observe that, by the comparison principle (Lemma 3.1),
problem (1.1) has at most one solution. So, it remains to prove the existence of a
solution to (1.1). Take

f ∈ C+(∂D), a = ∥f∥ , M = a+ φ(a) sup
x∈D

Ex[τD]

and define Λ = {u ∈ C(D); ∥u∥ ¬ M}. Let h = HDf and consider the operator
T : Λ→ C(D) defined by

Tu(x) = h(x)− Ex
[ τD∫

0

g
(
u(Xs)

)
ds
]
, x ∈ D,

where g is a real-valued odd function given by g(t) = inf
(
φ(t), φ(a)

)
for every

t ­ 0. Since |g(t)| ¬ φ(a) for every t ∈ R, we get

|Tu(x)| ¬M

for every x ∈ D and every u ∈ Λ. This implies that T (Λ) ⊂ Λ. Now, let (un)n­0
be a sequence in Λ converging uniformly to u ∈ Λ. Let ε > 0. Since g is uniformly
continuous in [−M,M ], we deduce that there exists n0 ∈ N such that for every
n ­ n0 and s ∈ [0, τD] ∣∣g(un(Xs)

)
− g

(
u(Xs)

)∣∣ < ε.
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It follows that, for every n ­ n0 and x ∈ D,

|Tun(x)− Tu(x)| =
∣∣Ex[ τD∫

0

g
(
un(Xs)

)
ds
]
− Ex

[ τD∫
0

g
(
u(Xs)

)
ds
]∣∣

¬ Ex
[ τD∫

0

∣∣g(un(Xs)
)
− g

(
u(Xs)

)∣∣ds]
¬ ε sup

x∈D
Ex[τD].

This shows that (Tun)n­0 converges uniformly to Tu. We then conclude that T
is a continuous operator. On the other hand, Λ is a closed bounded convex subset
of C(D). Moreover, in virtue of Lemma 3.2, T (Λ) is relatively compact. Thus, the
Schauder’s fixed point theorem ensures the existence of a function u ∈ Λ such that
u = h − GDg(u). Applying the comparison principle, we obtain 0 ¬ u ¬ a, and
so g(u) = φ(u). Hence, the proof is completed. �

The unique solution to problem (1.1) will always be denoted by Hφ
Df. How-

ever, in the particular case where φ = φp we may write Hp
Df instead of Hφ

Df.

4. PROPORTIONALITY OF H
φ
Df AND HDf

The Feynman–Kac theorem (see [10], Theorem 4.7) states that, for every f ∈
C+(∂D) and q ∈ B+b (D), the function v ∈ C(D) given by

(4.1) v(x) = Ex
[
f(XτD) exp

(
−
τD∫
0

q(Xs) ds
)]
, x ∈ D,

is the unique solution of the problem{
∆v = 2qv in D,
v = f on ∂D.

Let us notice that v given by (4.1) satisfies the integral equation:

v(x) = h(x)−
∫
D

GD(x, y)q(y)v(y)dy, x ∈ D.

Our first result in this section is the following:

THEOREM 4.1. Assume that

(4.2) lim sup
t→0

φ(t)

t
<∞.

Then Hφ
Df ≈ HDf for every function f ∈ C+(∂D).
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P r o o f. Let f ∈ C+(∂D) be nontrivial, that is, h = HDf > 0 in D. Let u =
Hφ
Df and define

q :=
φ(u)

u
1{u>0}.

Then q is a positive bounded function in D by (4.2), and u satisfies the problem

(4.3)
{
∆u = 2qu in D,
u = f on ∂D.

We define

w(x, z) = Ex
z

[
exp

(
−
τD∫
0

q(Xt)dt
)]
, x ∈ D, z ∈ ∂D.

By the Feynman–Kac theorem and Proposition 5.12 in [10], we have

u(x) = Ex
[
f(XτD) exp

(
−
τD∫
0

q(Xs) ds
)]

(4.4)

=
∫
∂D

w(x, z)f(z)HD(x, dz).

Since for every x ∈ D

Ex
[
exp

(
−
τD∫
0

q(Xs) ds
)]
<∞,

by Theorem 7.6 in [10] there exists c > 0 such that

(4.5)
1

c
¬ w(x, z) ¬ c, x ∈ D, z ∈ ∂D.

Combining (4.4) and (4.5) we conclude that, for every x ∈ D,

1

c
HDf(x) =

1

c

∫
∂D

f(z)HD (x, dz)

¬ u(x)
¬ c

∫
∂D

f(z)HD (x, dz) = cHDf(x).

Hence HDf ≈ Hφ
Df. �

Let us notice that the assumption mentioned in the previous theorem will be
trivially satisfied provided the function t 7→ φ(t)/t is nondecreasing or if it is
bounded and nonincreasing on ]0,∞[. In particular, it follows that Hφ

Df ≈ HDf
for every function f ∈ C+(∂D) if the function φ is given by

φ(t) = tp with p ­ 1 or φ(t) = log(1 + t).
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We shall write Hφ
D ≈ HD if Hφ

Df ≈ HDf for every function f ∈ C+(∂D).
Hence, by Theorem 4.1, Hp

D ≈ HD for every p ­ 1. This was established by Atar
et al. in [3]. In the same paper, the authors conjectured that Hp

D ̸≈ HD for every
0 < p < 1. In the following, we shall prove this conjecture. More precisely, we
give a sufficient condition on φ under which Hφ

D ̸≈ HD.
From now on,D is a boundedC1,1-domain of RN , N ­ 3. As usual, the diam-

eter of D is diam(D) = supx,y∈D |x− y| and δD(x) = infz ̸∈D |x− z| denotes the
Euclidean distance from x ∈ D to the complement of D. The following property
of Green function GD is established by Zhao [17]:

(4.6) GD(x, y) ≈ min

{
1

|x− y|N−2
,
δD(x)δD(y)

|x− y|N

}
, x, y ∈ D.

THEOREM 4.2. Assume that there exists ε > 0 such that

(4.7)
ε∫
0

( s∫
0

φ(r) dr
)−1/2

ds <∞.

Then there exists f ∈ C+(∂D) such that Hφ
Df ̸≈ HDf.

P r o o f. It is well known (see Lemma 2.2 in [1]) that D satisfies the ball
condition with some radius r > 0, which in turn means that D is C1,1 at scale
r in the sense of Bogdan–Jakubowski [7]. Let z ∈ ∂D be a fixed point. Apply-
ing Lemma 1 of [7] for the complement of D, we find a bounded C1,1-domain F
such that F ∩D = ∅ and

F ∩B(z, r/4) = B(z, r/4) \D.

Let d = diam(D ∪ F ), R > 0, and x0 ∈ RN such that 2d < |x0 − z| < R. It is
easily verified that U = B(z,R) \ F is a C1,1-open set, D ⊂ U, and

B(z, r/4) ∩ ∂D ⊂ ∂U.

The function g = GU (·, x0) is positive harmonic in V := U \ {x0} and vanishes
on B(z, r/4) ∩ ∂D. By arguments similar to those used in [8], Lemma 3.2, there
exists a constant c1 > 0 such that, for every x ∈ V ,

|∇g(x)| ¬ c1
g(x)

δV (x)
.

On the other hand, by (4.6) there exists c2 > 0 such that g(x) ¬ c2δU (x) for every
x ∈ V . Since δV (x) = δU (x) for every x ∈ D, it follows that

M := sup
x∈D
|∇g(x)| ¬ c1c2.
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In virtue of condition (4.7), we easily observe that the function

Q : t 7→ 1

2

t∫
0

( s∫
0

φ(r) dr
)−1/2

ds

is increasing and continuous on [0,∞[, twice differentiable on ]0,∞[, and invert-
ible from [0,∞[ to [0, ρ̄[, where ρ̄ := limt→∞Q(t) (notice that ρ̄ may be infinite).
Let R denote the inverse function of Q and let 0 < λ < min(1/M, ρ̄/M ′), where
M ′ = supD g and define

v = R(λg), f = v|∂D, h = HDf, and u = Hφ
Df.

Then, it is obvious that v ∈ C(D) ∩ C2(D). Moreover, by an elementary calculus
it follows that, for every x ∈ D,

∆v(x) ¬ 2φ
(
v(x)

)
.

Therefore, u ¬ v in D by the comparison principle (Lemma 3.1). Since

lim
x→z

v(x)

g(x)
= lim

t→0

t

Q(t)
= 0,

we get
inf
D

u

g
¬ inf

D

v

g
= 0.

On the other hand, from the boundary Harnack principle it follows that there exists
an open neighborhood W of z such that

g ≈ h in W ∩D.

This yields that infD(u/h) = 0, and consequently u ̸≈ h. �

Since the function φ : t 7→ tp satisfies (4.7) for 0 < p < 1, we deduce from
the previous theorem that, for small p, Hp

D ̸≈ HD, which proves the conjecture
given in [3].

In the remainder of this section, we shall proceed to answer the following
question: In the case where (4.2) fails, for which function f ∈ C+(∂D) does the
proportionality of HDf and Hφ

Df hold?
First, the following proposition is easily obtained.

PROPOSITION 4.1. Let f ∈ C+(∂D), h = HDf, and u = Hφ
Df. If

(4.8) sup
x∈D

1

h(x)

∫
D

GD(x, y)φ
(
h(y)

)
dy < 1,

then u ≈ h.
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P r o o f. It is an immediate consequence of the formula h = u+GDφ(u) and
the fact that φ is nondecreasing. �

Hence, one direction in solving the question above is to investigate functions f
for which condition (4.8) is fulfilled. Let us notice that “< 1” in (4.8) cannot be
replaced by “<∞”. In fact, as will be shown below, for a smooth domain D we
always have

(4.9) sup
x∈D

1

h(x)

∫
D

GD(x, y)φ
(
h(y)

)
dy <∞.

However, for φ(t) = tp with 0 < p < 1, Theorem 4.2 proves that there exists a
function f ∈ C+(∂D) such that u and h are not proportional.

LEMMA 4.1. For every positive harmonic function h in D, there exists a pos-
itive constant c such that, for every x ∈ D,∫

D

GD(x, y) dy ¬ c h(x).

P r o o f. Let h be a positive harmonic function in D and let ν be the positive
Radon measure on ∂D satisfying

(4.10) h =
∫
∂D

KD(·, z) dν(z).

We claim that there exists C > 0 such that, for every x ∈ D and z ∈ ∂D,

(4.11) h(x) ­ CδD(x).

Indeed, let x ∈ D and z ∈ ∂D. Then, it is simple to observe that δD(x)δD(y) ¬
|x− y|2 for every y ∈ D such that 8|y − z| < δD(x). Hence, by (4.6) there exists
a constant c1 > 0 such that, for every y ∈ D ∩B

(
z, δD(x)/8

)
,

GD(x, y) ­ c1
δD(x)δD(y)

|x− y|N
.

Again by (4.6) there exists c2 > 0 such that

GD(x0, y) ¬ c2
δD(x0)δD(y)

|x0 − y|N
,

where x0 denotes, as was mentioned in Section 2, a reference point. Therefore, for
every y ∈ D ∩B

(
z, δD(x)/8

)
,

GD(x, y)

GD(x0, y)
­ c1 |x0 − y|N δD(x)δD(y)
c2δD(x0)δD(y) |x− y|N

.
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Hence, letting y tend to z we obtain

KD(x, z) ­ c3
δD(x)

|x− z|N
,

where c3 is a positive constant not depending on x and z. This and formula (4.10)
yield (4.11). On the other hand, in [17] it is shown that there exists c4 > 0 such
that, for every x, y ∈ D,

GD(x, y) ¬ c4
δD(x)

|x− y|N−1
.

Hence, using (4.11) we get

sup
x∈D

1

h(x)

∫
D

GD(x, y)dy =
c4
C

sup
x∈D

∫
D

dy

|x− y|N−1
<∞,

which completes the proof. �

THEOREM 4.3. Assume that

(4.12) lim
t→∞

φ(t)

t
= 0.

Then for every f ∈ C+(∂D) there exists a positive constant αf such that Hφ
D(αf)

≈ HD(αf) for every α ­ αf .

P r o o f. Let f ∈ C+(∂D) be nontrivial and let h = HDf . By the previous
lemma, there exists c > 0 (depending on h) such that, for every α > 0 and every
x ∈ D,

GDφ(αh)(x) ¬ φ(α∥h∥)GD1(x) ¬ cφ(α∥h∥)h(x).

Therefore

sup
x∈D

GDφ(αh) (x)

αh (x)
¬ cφ(α∥h∥)

α
.

On the other hand, by (4.12) there exists A > 0 such that, for every t ­ A,

φ(t)

t
<

1

c∥h∥
.

Take αf := A/∥h∥. Then for every α ­ αf we have

sup
x∈D

GDφ(αh) (x)

αh (x)
< 1,

which implies, by Proposition 4.1, that Hφ
D(αf) ≈ HD(αf). �
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5. MORE ABOUT PROBLEM (1.1)

This last section is devoted to investigate the problem (1.1) in the case where
φ is nonincreasing. Let us notice that, in this setting, we do not guarantee neither
the existence nor the uniqueness of the solution to problem (1.1), and hence the
operator Hφ

D is no longer defined. As above, we assume that D is a bounded C1,1-
domain of RN , N ­ 3.

THEOREM 5.1. Let φ : R+ → R+ be a continuous nonincreasing function,
f ∈ C+(∂D), and let h = HDf such that

(5.1) sup
x∈D

Ex
h

[ τD∫
0

1

h(Xs)
ds

]
¬ 1

eφ(0)
.

Then the problem (1.1) has a solution u ∈ C+(D) satisfying u ≈ h.

P r o o f. Of course, we assume that φ(0) > 0 and f is nontrivial. By assump-
tion,

c := sup
x∈D

1

h(x)

∫
D

GD(x, y) dy ¬
1

eφ(0)
.

It is easily seen that there exists b > 0 such that ebφ(0)c = b. Let us observe that
the set

Λ = {u ∈ C(D); e−bh ¬ u ¬ h}

is closed, bounded, and convex in C(D). Consider T : Λ→ C(D) defined by

Tu(x) = Ex
[
h(XτD) exp

(
−
τD∫
0

φ
(
u(Xs)

)
u(Xs)

ds

)]
, x ∈ D.

Then, it is clear that Tu ¬ h for every u ∈ Λ. Furthermore, for every x ∈ D,

Tu(x)

h(x)
= Ex

h

[
exp

(
−
τD∫
0

φ
(
u(Xs)

)
u(Xs)

ds

)]
­ Ex

h

[
exp

(
− ebφ(0)

τD∫
0

1

h(Xs)
ds

)]
­ exp

(
− ebφ(0)Exh

[ τD∫
0

1

h(Xs)
ds

])
­ exp

(
− ebφ(0)c

)
= exp(−b).

This yields T (Λ) ⊂ Λ. On the other hand, for every u ∈ Λ we have

e−b
φ(u)

u
Tu ¬ φ(0).
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So, in virtue of Lemma 3.2, we deduce that the family{ ∫
D

GD(·, y)
φ
(
u(y)

)
u(y)

Tu(y)dy;u ∈ Λ

}
is relatively compact in C(D). Since

Tu(x) +
∫
D

GD(x, y)
φ
(
u(y)

)
u(y)

Tu(y)dy = h(x), x ∈ D,

it follows that T (Λ) is relatively compact in C(D), and consequently T is continu-
ous. Then, by Schauder’s fixed point theorem, there exists u ∈ Λ such that

u(x) +
∫
D

GD(x, y)φ
(
u(y)

)
dy = h(x), x ∈ D.

Hence, u is a solution to the problem (1.1). Moreover, u ≈ h since u ∈ Λ. �

COROLLARY 5.1. Let φ : R+ → R+ be a continuous nonincreasing func-
tion. For every f ∈ C+(∂D), there exists αf > 0 such that for every α ­ αf the
problem {

∆u = 2φ(u) in D,
u = αf on ∂D,

admits a solution u ∈ C+(D) satisfying u ≈ HDf.

P r o o f. Let f ∈ C+(∂D) be nontrivial and let h = HDf . It suffices to con-
sider

αf = eφ(0) sup
x∈D

1

h(x)

∫
D

GD(x, y) dy

and to apply the previous theorem for αf , α ­ αf . �

REFERENCES

[1] H. Aikawa, T. Kilpeläinen, N. Shanmugal ingam, and X. Zhong, Boundary Har-
nack principle for p-harmonic functions in smooth Euclidean domains, Potential Anal. 26 (3)
(2007), pp. 281–301.

[2] D. H. Armitage and S. J . Gardiner, Classical Potential Theory, Springer, Berlin 2000.
[3] R. Atar, S. Athreya, and Z. Q. Chen, Exit time, Green function and semilinear elliptic

equations, Electron. J. Probab. 14 (3) (2009), pp. 50–71.
[4] S. Athreya, On a singular semilinear elliptic boundary value problem and the boundary

Harnack principle, Potential Anal. 17 (3) (2002), pp. 293–301.
[5] A. Baalal and W. Hansen, Nonlinear perturbation of balayage spaces, Ann. Acad. Sci.

Fenn. Math. 27 (1) (2002), pp. 163–172.
[6] R. F. Bass, Probabilistic Techniques in Analysis, Springer, New York 1995.
[7] K. Bogdan and T. Jakubowski, Estimates of the Green function for the fractional Lapla-

cian perturbed by gradient, Potential Anal. 36 (3) (2012), pp. 455–481.



44 M. Ben Fredj and K. El Mabrouk

[8] K. Bogdan, T. Kulczycki , and A. Nowak, Gradient estimates for harmonic and q-
harmonic functions of symmetric stable processes, Illinois J. Math. 46 (2) (2002), pp. 541–556.

[9] Z. Q. Chen, R. J . Wil l iams, and Z. Zhao, On the existence of positive solutions of
semilinear elliptic equations with Dirichlet boundary conditions, Math. Ann. 298 (3) (1994),
pp. 543–556.

[10] K. L. Chung and Z. Zhao, From Brownian Motion to Schrödinger’s Equation, Springer,
Berlin 2001.

[11] J . L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, Springer, New York
1984.

[12] E. B. Dynkin, Solutions of semilinear differential equations related to harmonic functions,
J. Funct. Anal. 170 (2) (2000), pp. 464–474.

[13] K. El Mabrouk, Semilinear perturbations of harmonic spaces, Liouville property and a
boundary value problem, Potential Anal. 19 (1) (2003), pp. 35–50.

[14] K. El Mabrouk, Positive solutions to singular semilinear elliptic problems, Positivity 10 (4)
(2006), pp. 665–580.

[15] S. C. Port and C. J . Stone, Brownian Motion and Classical Potential Theory, Academic
Press, New York–London 1978.

[16] W. Rudin, Real and Complex Analysis, second edition, McGraw-Hill Book Co., New York–
Düsseldorf–Johannesburg 1974.

[17] Z. Zhao, Green function for Schrödinger operator and conditioned Feynman–Kac gauge,
J. Math. Anal. Appl. 116 (2) (1986), pp. 309–334.

University of Monastir
Department of Mathematics
Faculty of Sciences of Monastir
5019 Monastir, Tunisia
E-mail: mahmoudbenfredj@yahoo.fr

University of Sousse
Department of Mathematics

High School of Sciences and Technology
4011 Hammam Sousse, Tunisia

E-mail: khalifa.elmabrouk@fsm.rnu.tn

Received on 29.11.2012;
revised version on 20.1.2013


