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Abstract. We provide sharp upper and lower bounds on the bias
of trimmed means of progressively censored type II order statistics from
general distributions in various scale units. The results are illustrated with
numerical examples. We also discuss this problem for distributions with
decreasing density or failure rate, as well as for generalized order statistics.
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1. INTRODUCTION

Progressive censoring type II scheme is a life-testing experiment in which
units are removed at various stages of the experiment. More precisely, we consider
N identical units with independent lifetimes X1, . . . , XN described by common
distribution function (cdf) F , and after the i-th failure a prescribed number Ri of
surviving units are randomly removed from the experiment. We observe also a
prescribed number n ¬ N of failures, so that N = n+ R1 + . . .+ Rn. The time
of the i-th failure is denoted in the literature by XR

i:n:N , where R = (R1, . . . , Rn)
means the censoring scheme, and XR

1:n:N ¬ . . . ¬ XR
n:n:N are called progressively

(type II) censored order statistics. For exhaustive treatment of the subject the reader
is referred to the monographs [2] and [3]. Since N is determined by n and R, for
brevity we denote the time of the i-th failure by XR

i:n. Note that if Ri = 0 for
1 ¬ i ¬ n, i.e. there are no withdrawals, then N = n, and we get ordinary order
statistics X1:n ¬ . . . ¬ Xn:n of the sample (X1, . . . , Xn).

For any cdf F we denote by F−1 its quantile function:
F−1(u) = sup {x : F (x) ¬ u} , 0 ¬ u ¬ 1.

We study the class of distribution functions F with finite mean

µ =
1∫
0

F−1(u)du
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and finite absolute central moment σp of order p ∈ [1,∞], where

σp =
( 1∫

0

|F−1(u)− µ|pdu
)1/p

, 1 ¬ p <∞,

and
σ∞ = max{F−1(1−)− µ, µ− F−1(0)}.

In this paper we address ourselves to the following problem: assume that we
are given not the whole sample, not even the order statistics but only progressively
censored order statistics and we want to estimate the unknown value of the pop-
ulation mean µ assuming known standard deviation σ2 (or, more generally, p-th
central absolute moment σp for some 1 ¬ p ¬ ∞). If we knew order statistics,
then we might approximate µ by the sample mean

T1,n:n =
1

n

n∑
i=1

Xi:n =
1

n

n∑
i=1

Xi

or by the trimmed mean of the form

Tr,s:n =
1

s− r + 1

s∑
i=r

Xi:n,

where 1 ¬ r ¬ s ¬ n. However, if we have only progressively censored data, we
can approximate µ, for example, by the trimmed mean of progressively censored
order statistics

TR
r,n =

1

n− r + 1

n∑
i=r

XR
i:n,

where 1 ¬ r ¬ n. Note that without loss of generality we can restrict ourselves
to the left-sided trimming procedures only. While for the ordinary order statistics
two-sided trimming makes sense, the right censoring for the progressively censored
order statistics can be formally replaced by a simple change of sampling scheme.
Indeed, by Result 1 of [1], the distribution of (XR

1:n, . . . , X
R
s:n) for some 1 ¬ s < n

does not depend on Rs, . . . , Rn and is identical with that of (XRs
1:n:N , . . . , XRs

s:n:N )
for the modified censoring scheme (R1, . . . , Rs−1, N − s−R1 − . . .−Rs−1).

Several questions arise immediately here. Namely, what is the error of this
approximation and how does it depend on the censoring scheme R? Is it better
to withdraw units at earlier or later stages of the experiment? We answer these
questions by providing sharp upper and lower bounds on the bias of TR

r,n expressed
in σp units, i.e. on

ETR
r,n − µ

σp
, 1 ¬ r ¬ n.

Note that for order statistics we have E (T1,n:n) = µ, but for progressive censoring
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scheme this is not necessarily the case. However, as a special case of our results
we show that

E
(
TR
1,n

)
= E

(
1

n

n∑
i=1

XR
i:n

)
¬ µ,

which is not a trivial bound.
In the setup of order statistics there is a lot of papers devoted to studying

bounds on expectations of various functions of order statistics based on distribu-
tions coming from either general or restricted families of distributions. In partic-
ular, Danielak and Rychlik [9] studied bounds on expectations of trimmed means
of order statistics Tr,s:n expressed in σp units, and Danielak [8] strengthened these
bounds for distributions with decreasing density (DD) or decreasing failure rate
(DFR).

In the setup of progressively censored order statistics Balakrishnan et al. [4]
considered upper mean-variance bounds on EXR

r:n, and their results were extended
by Raqab [14] to general p-norm bounds. In his review paper Balakrishnan [1]
posed an open problem whether other types of bounds could be generalized to
progressive censoring. In many cases the answer is positive since progressive cen-
soring scheme is a special case of generalized order statistics (GOS) which were
considered in this context by Bieniek [6], [7] – see also references therein, where
the bounds of expectation of GOS or spacings of GOS for DD and DFR classes,
as well as p-norm bounds on the differences of GOS were studied. However, to the
best of our knowledge, the bounds on expectations of trimmed means of GOS have
not been considered yet. We have tried to derive them but this causes some diffi-
culties which made restriction to progressively censored order statistics necessary
(see Section 6 for details).

The bounds obtained in this paper are derived by the combination of the
Moriguti inequality and the Hölder inequality. The key step is to determine the
shape of linear combinations of densities of UR

i:n based on uniform distribution.
This is done with the aid of the variation diminishing property of densities for GOS
proved in [5]. In Section 2 we describe the essence of our constructions. In Sec-
tion 3 we derive the forms of desired projections, and in Section 4 we present main
results on upper and lower bounds on TR

r,n. In Section 5 some numerical example
is given, and Section 6 contains some concluding remarks on further research in
this direction.

2. AUXILIARY RESULTS

In this section we recall briefly the results on the method used in this paper.
For its full explanation as well as numerous applications the reader is referred to
the monograph [15]. First we recall a simplified version of Theorem 1 in [13].

LEMMA 2.1. Let g : [0, 1] → R be any integrable function, and let G(x) =∫ x

0
g(u)du, 0 ¬ x ¬ 1, be its antiderivative. Let G denote the greatest convex
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minorant of G, and let g stand for the right-hand derivative of G. Then

1∫
0

f(u)g(u)du ¬
1∫
0

f(u)g(u)du

for all nondecreasing functions f such that both integrals exist. The equality holds
iff f is constant on every open interval on which G < G.

Let UR
i:n, 1 ¬ i ¬ n, denote progressively censored order statistics based on

uniform U(0, 1) distribution, and let fR
i:n denote the density of UR

i:n. Using Result 7
of [1] we have

E(XR
i:n) =

1∫
0

F−1(u)fR
i:n(u)du,

which easily gives

E(TR
r,n − µ) =

1∫
0

(
F−1(u)− µ

)
φR
r,n(u)du,

where

φR
r,n(u) =

1

n− r + 1

n∑
i=r

fR
i:n(u).

Since F−1 − µ integrates to zero on [0, 1], we get

E(TR
r,n − µ) =

1∫
0

(
F−1(u)− µ

)
ℓRr,n(u)du,

where ℓRr,n(u) = φR
r,n(u)− 1. Let

LR
r,n(x) =

x∫
0

ℓRr,n(u)du, 0 ¬ x ¬ 1,

denote the antiderivative of ℓRr,n, and let LR
r,n stand for the greatest convex minorant

of LR
r,n. Note that for all 1 ¬ r ¬ n we have LR

r,n(0) = LR
r,n(1) = 0.

Suppose first that LR
r,n(u

∗) < 0 for some u∗ ∈ (0, 1). Then, by Lemma 2.1,

E(TR
r,n − µ) ¬

1∫
0

(
F−1(u)− µ

)
ℓ
R
r,n(u)du

=
1∫
0

(
F−1(u)− µ

) (
ℓ
R
r,n(u)− c

)
du,
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where ℓ
R
r,n is the non-constant right-hand derivative of LR

r,n, and c ∈ R is any con-
stant. Therefore, applying Hölder’s inequality, we have

(2.1)
E(TR

r,n − µ)

σp
¬ ∥ℓRr,n − c∗∥q,

where c∗ minimizes the norm ∥ℓRr,n − c∥q over c ∈ R. The equality is attained if

F−1(u)− µ

σp
=

( |ℓRr,n(u)− c∗|

∥ℓRr,n − c∗∥q

)q/p

sgn
(
ℓ
R
r,n(u)− c∗

)
.

On the other hand, if LR
r,n(u) ­ 0 for all u ∈ (0, 1), then ℓ

R
r,n = 0 and the

above approach gives zero upper bound which need not be sharp. However, pro-
ceeding as in the proofs of Theorems 2.3, 2.4 and 2.5 of [10] we obtain sharp
bounds:

(2.2)
E(TR

r,n − µ)

σp
¬

{
0 if 1 < p ¬ ∞,
− inf

0<u<1
V R
r,n(u) if p = 1,

where

V R
r,n(u) =

LR
r,n(u)

2u(1− u)
, 0 < u < 1.

These bounds are attained (possibly in the limit) by appropriate two-point distribu-
tions. Note that the function V R

r,n can be defined at zero and one by continuity as

(2.3) V R
r,n(0) =

1

2

(
φR
r,n(0)− 1

)
, V R

r,n(1) =
1

2

(
1− φR

r,n(1)
)
,

and the values φR
r,n(0) and φR

r,n(1) are described in (3.3) and (3.4) below. Since
these values are finite, the infimum over (0, 1) in (2.2) can be replaced by the
minimum over [0, 1].

To derive lower bounds, Danielak and Rychlik [9] used the symmetry of dis-
tributions of ordinary order statistics Yi:n − µ = µ −Xn+1−i:n, where X has cdf
F , and Y has cdf F−(x) = 1−F (−x). For progressively censored order statistics
no symmetry of this kind holds as can be seen, e.g., from the form of marginal den-
sity of UR

r:n (see (3.2) below). Therefore, we derive lower bounds performing the
whole procedure of the greatest convex minorant. See, e.g., the paper of Goroncy
and Rychlik [11] where this approach has been applied to derive the lower sharp
bounds for the expectations of record values. It follows that

−E(TR
r,n − µ) ¬

∥∥−ℓRr,n − c∗
∥∥
q
σp,(2.4)
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where −ℓRr,n denotes the right-hand derivative of −LR
r,n, which is the greatest

convex minorant of −LR
r,n, and c∗ minimizes the norm ∥ℓRr,n − c∥q. However,

−ℓRr,n ̸= −ℓ
R
r,n, so −ℓRr,n has to be determined separately.

Summarizing, we need to determine convexity regions of LR
r,n, so in fact we

need to study monotonicity properties of φR
r,n. Since the function and its deriva-

tive are quite complicated functions, this is done in the next section by utilizing
distribution theory of generalized order statistics.

3. SHAPES OF PROJECTED FUNCTIONS

In this section we determine the shapes of φR
r,n and those of ℓ

R
r,n and −ℓRr,n.

By (2.1) and (2.4) this is useful for evaluation of upper and lower bounds.
The joint density of (UR

1:n, . . . , U
R
n:n) is given by

fUR
1:n,...,U

R
n:n

(u1, . . . , un) = cn−1
n∏

i=1

(1− ui)
Ri , 0 ¬ u1 ¬ . . . ¬ un ¬ 1,

where
cr−1 =

r∏
j=1

γj , 1 ¬ r ¬ n,

and

(3.1) γj = N − j + 1−
j−1∑
i=1

Ri, 1 ¬ j ¬ n

(see, e.g., [1] or [2]). Therefore, as it is noted in [4], progressively censored or-
der statistics based on uniform U(0, 1) distribution are uniform generalized or-
der statistics with parameters mi = Ri, 1 ¬ i ¬ n − 1, k = Rn + 1. Note that
γ1 > . . . > γn ­ 1 (and, in particular, γi ̸= γj for i ̸= j), so to derive the shape of
φR
r,n we can use distribution theory of generalized order statistics presented in [12].

Let
ai,r =

r∏
j=1,j ̸=i

1

γj − γi
, 1 ¬ i ¬ r ¬ n.

Then the density of UR
r:n, 1 ¬ r ¬ n, is

(3.2) fR
r:n(u) = cr−1

r∑
i=1

ai,r(1− u)γi−1, u ∈ (0, 1).

First we study the values of φR
r,n at zero and one. From the above representation of

fR
r:n it is easy to derive that

(3.3) φR
r,n(0) =

{
N/n if r = 1,
0 if 2 ¬ r ¬ n,
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and

(3.4) φR
r,n(1) =

{
0 if Rn ­ 1,

1
n−r+1An if Rn = 0,

with An = cn−1an,n =
∏n−1

i=1 γi/(γi − 1). We shall need the following auxiliary
lemma.

LEMMA 3.1. Fix n ­ 2 and integers R1, . . . , Rn−1 ­ 0 and let Rn = 0. Then
for γ1, . . . , γn−1 defined by (3.1) we have

1 <
n−1∏
i=1

γi
γi − 1

¬ n,

and the equality on the right-hand side holds iff R1 = . . . = Rn−1 = 0.

P r o o f. The left-hand side inequality is obvious since γi > 1 for 1 ¬ i ¬
n − 1, so it suffices to prove the right-hand side. Note that for 1 ¬ i ¬ n − 1 we
have γi ­ n− i+ 1, and the equality holds for all i = 1, . . . , n− 1 iff R1 = . . . =
Rn−1 = 0. Therefore,

γi
γi − 1

¬ n− i+ 1

n− i
,

and
n−1∏
i=1

γi
γi − 1

¬
n−1∏
i=1

n− i+ 1

n− i
= n,

which completes the proof of the lemma. �

The above lemma says that if Rn = 0, then the value of φR
1,n at one is less than

one, but the values of φR
r,n(1) for 2 ¬ r < n may be greater than one.

Now we study the derivative of φR
r,n. If we plug (3.2) to φR

r,n, then direct
computation of the derivative is easy but analyzing its sign changes is very hard,
and therefore some more subtle considerations are necessary. Namely, we have

(fR
i:n)
′(u) =

1

1− u

(
γif

R
i−1:n(u)− (γi − 1)fR

i:n(u)
)

(see, e.g., [5]). Therefore, by using the relations γi+1 − γi + 1 = −Ri and γn =
Rn + 1, the derivative of φR

r,n can be written as the following linear combination:

(3.5) (φR
r,n)
′(u) =

1

(n− r + 1)(1− u)

n∑
i=r−1

aif
R
i:n(u),

where ar−1 = γr and ai = −Ri for r ¬ i ¬ n. Here we adopt the convention
γ0 = 0. To analyze the sign changes of (φR

r,n)
′ we use the variation diminishing

property of densities of generalized order statistics proved in [5].
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For any function f : [0, 1] 7→ R let Z(f) denote the number of zeroes of f in
(0, 1). Moreover, for an arbitrary sequence a = (a1, . . . , an) ∈ Rn let

Ha(x) =
n∑

j=1

aj f
R
j:n(x), x ∈ (0, 1),

and let S−(a) denote the number of sign changes in the sequence (a1, . . . , an)
after deletion of zeroes. Recall that for progressive censoring scheme we have γ1 >
. . . > γn ­ 1.

THEOREM 3.1 (Bieniek [5]). For any a ̸= 0 we have:
(i) Z(Ha) ¬ S−(a).
(ii) The first and the last sign of Ha are the same as the signs of the first and

the last nonzero element of a, respectively.

Now we can study monotonicity properties of φR
r,n, 1 ¬ r ¬ n. By assumption

we have Ri ­ 0, and therefore the coefficients ai, r ¬ i ¬ n, in the expansion (3.5)
are all non-positive. First we consider some special cases.

The case when r = n corresponds to a single progressively censored order
statistic XR

n:n and it was studied in [4] for p = 2 and in [14] for arbitrary p ∈ [1,∞].
So we assume r < n.

Now let r = 1. If R1 = . . . = Rn = 0, then ETR
1,n = ET1,n:n = µ. So we

assume that Ri > 0 for some 1 ¬ i ¬ n. Then, by (3.5) and Theorem 3.1, it is easy
to deduce that (φR

1,n)
′ is negative. So φR

1,n is strictly decreasing from φR
1,n(0) > 1

by (3.3). By (3.4) and Lemma 3.1, the value φR
1,n(1) is less than one, regardless

of the value of Rn. Therefore, ℓR1,n is positive–negative, and LR
1,n is increasing–

decreasing on (0, 1). Taking into account that LR
1,n(0) = LR

1,n(1) = 0 we infer that

LR
1,n is positive on (0, 1), and ℓ

R
1,n = 0. On the other hand, since ℓR1,n is decreasing,

it follows that LR
1,n is concave. So −LR

1,n is convex and −ℓR1,n = −ℓR1,n.
Now we let 2 ¬ r < n. If Rr = . . . = Rn = 0, then (φR

r,n)
′ is positive, and

φR
r,n is increasing on (0, 1). Moreover, φR

r,n(0) = 0 and

φR
r,n(1) =

r−1∏
i=1

γi
γi − 1

> 1.

Therefore, ℓRr,n is increasing and negative–positive on (0, 1). This implies that LR
r,n

is negative and convex, so ℓ
R
r,n = ℓRr,n. Moreover, −LR

r,n is positive on (0, 1) and

−ℓRr,n = 0. On the other hand, if Ri > 0 for some r ¬ i ¬ n, then by (3.5) and
Theorem 3.1 we infer that there exists a unique θ = θRr,n ∈ (0, 1) such that φR

r,n is
increasing from 0 to φR

r,n(θ) > 1 and then strictly decreasing.
If Rn > 0 or Rn = 0 and r < n + 1 − An, then φR

r,n(1) < 1, and ℓRr,n is
negative–positive–negative. Therefore, LR

r,n is decreasing–increasing–decreasing
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and convex on (0, θ), and concave on (θ, 1). Thus, there exists a unique α∗ =
α∗Rr,n ∈ (0, θ) such that the greatest convex minorant of LR

r,n is

L
R
r,n(u) =

{
LR
r,n(u) for 0 ¬ u ¬ α∗,

ℓRr,n(α
∗)(u− 1) for α∗ ¬ u ¬ 1.

Indeed, α∗ is determined by the equation

LR
r,n(α

∗) = −(1− α∗)ℓRr,n(α
∗).

Therefore, the derivative of LR
r,n is

(3.6) ℓ
R
r,n(u) =

{
ℓRr,n(u) for 0 ¬ u ¬ α∗,
ℓRr,n(α

∗) for α∗ ¬ u ¬ 1.

The last formula holds even if Rr = . . . = Rn = 0 if we put α∗ = 1. Proceeding
analogously we infer that if either Rn > 0 and 2 ¬ r < n, or Rn = 0 and 2 ¬ r <
n+ 1−An, we have

(3.7) −ℓRr,n(u) =

{
−ℓRr,n(α∗) for 0 ¬ u ¬ α∗,
−ℓRr,n(u) for α∗ ¬ u ¬ 1

for a unique α∗ = αR
∗,r,n ∈ (θ, 1) determined by the equation

LR
r,n(α∗) = α∗ℓ

R
r,n(α∗).

The formula (3.7) holds for r = 1 as well if we put α∗ = 0.
Finally, if Rn = 0 and r ­ n+1−An, then φR

r,n(1) ­ 1, and ℓRr,n is negative–
positive. Therefore, LR

r,n is decreasing–increasing, so it is negative on (0, 1). How-

ever, ℓ
R
r,n has the same form as in (3.6). On the other hand, −LR

r,n is positive on

(0, 1), and again −ℓRr,n = 0.

4. MAIN RESULTS

In this section we present the values of upper and lower sharp bounds

−B(p)
r,n ¬

E(TR
r,n − µ)

σp
¬ B

(p)
r,n

for 1 ¬ p ¬ ∞. Obviously, the bounds depend on the censoring scheme R, but
since R is fixed throughout the paper, we supress it from the notation of bounds.

In the next theorems we consider three cases: 1 < p <∞, p =∞ and p = 1.
Since shapes of projected functions are the same as in [9] and [11], the proofs of
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our theorems follow the ideas there, and therefore we only sketch them briefly.
Also the forms of the distributions attaining the bounds are analogous to the ones
obtained by [9] and [11] with obvious changes, so we do not specify them here.

Note that in most of the cases the bounds are expressed in terms of the function
φR
r,n instead of ℓ

R
r,n. The function φR

r,n is just the right derivative of the greatest
convex minorant of the antiderivative of φR

r,n defined by

ΦR
r,n(x) =

x∫
0

φR
r,n(u)du, 0 ¬ x ¬ 1.

But LR
r,n(u) = ΦR

r,n(u)− u, so φR
r,n = ℓ

R
r,n + 1 and −φR

r,n = −ℓRr,n − 1.

THEOREM 4.1. Fix p ∈ (1,∞) and let 1/p + 1/q = 1. For any cdf F with
finite σp we have

B
(p)
r,n =

{
0 if r = 1,

∥φR
r,n − φR

r,n(η
∗)∥q if 2 ¬ r ¬ n,

where η∗ ∈ (0, α∗) is the unique solution to the equation
η∗∫
0

(
φR
r,n(η

∗)− φR
r,n(t)

)q−1
dt =

α∗∫
η∗

(
φR
r,n(t)− φR

r,n(η
∗)
)q−1

dt

+ (1− α∗)
(
φR
r,n(α

∗)− φR
r,n(η

∗)
)q−1

.

Moreover,
B(p)

r,n =
∥∥−φR

r,n + φR
r,n(η∗)

∥∥
q
, 1 ¬ r ¬ n,

where η∗ ∈ (α∗, 1) is the unique solution to the equation

α∗
(
φR
r,n(α∗)− φR

r,n(η∗)
)q−1

+
η∗∫
α∗

(
φR
r,n(t)− φR

r,n(η∗)
)q−1

dt

=
1∫
η∗

(
φR
r,n(η∗)− φR

r,n(t)
)q−1

dt.

The fact that B(p)
r,n = 0 is implied by (2.2). The form of upper bound for 2 ¬

r ¬ n follows from (2.1), and the form of lower bound follows from (2.4).
For p = q = 2 we easily get c∗ = 1 and c∗ = −1, which leads to the following

corollary presenting the bounds in standard deviation units.

COROLLARY 4.1. Fix F with finite variance σ2. Then B
(2)
1,n = 0, and we have

for 2 ¬ r ¬ n

B
(2)
r,n = (∥φR

r,n∥22 − 1)1/2

=
( α∗∫

0

(
φR
r,n(t)

)2
dt+ (1− α∗)

(
φR
r,n(α∗)

)2 − 1
)1/2

,
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and for 1 ¬ r ¬ n

B(2)
r,n =

(∥∥−φR
r,n

∥∥2
2
− 1

)1/2
=

(
α∗

(
φR
r,n(α∗)

)2
+

1∫
α∗

(
φR
r,n(t)

)2
dt− 1

)1/2
.

For p =∞ we have the following theorem, whose proof is analogous to the
proof of Theorem 4.1.

THEOREM 4.2. Fix cdf F with support on the interval [µ − σ∞, µ + σ∞].
Then B

(∞)
1,n = 0, and we have for 2 ¬ r ¬ n

B
(∞)
r,n =

{
1− 2ΦR

r,n

(
1
2

)
if α∗ > 1

2 ,

φR
r,n(α

∗)− 1 if α∗ ¬ 1
2 ,

and for 1 ¬ r ¬ n

B(∞)
r,n =

{
φR
r,n(α∗)− 1 if α∗ ­ 1

2 ,

2ΦR
r,n

(
1
2

)
− 1 if α∗ < 1

2 .

For p = 1 the result is more complicated due to the fact that LR
1,n and −LR

r,n

with Rn = 0 and r ­ n+ 1− An are positive on (0, 1) (see Section 3). Then the
Moriguti approach does not yield sharp bounds and we have to apply (2.2).

THEOREM 4.3. Fix cdf F with finite σ1. Then we have

(4.1) B
(1)
r,n =

{
− min

0¬u¬1
V R
1,n(u) for r = 1,

1
2φ

R
r,n(α

∗) for 2 ¬ r ¬ n

and

B(1)
r,n =

{
max
0¬u¬1

V R
r,n(u) if Rn = 0 and n+ 1−An ¬ r ¬ n,

1
2φ

R
r,n(α∗) otherwise.

Note that V R
1,n is positive on [0, 1], so the upper bound B

(1)
1,n is negative. More-

over, if Rn = 0 and n+ 1−An ¬ r ¬ n, the function V R
r,n is negative, so then the

lower bound −B(1)
r,n is positive. Obviously, it is of interest to know a more specific

analytical form of the bounds in these cases. At first glance, one could note that, for
instance, the minimum in (4.1) does not exceed the smallest of the values V R

1,n(0),
V R
1,n(1) (given by (2.3)) and V R

1,n

(
1
2

)
= 2ΦR

1,n

(
1
2

)
− 1. This gives some rough es-

timate of B(1)
1,n, and a similar statement can be made about the lower bounds. How-

ever, numerical computations exhibit very complicated dependence of the shape of
V R
r,n on the censoring scheme R. Therefore, it seems that no more specific general

statements can be made about the value of the bounds in these cases, or even about
the point at which respective minimum or maximum is achieved.
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5. NUMERICAL EXAMPLE

Our results admit immediate numerical implementation. In this section we
present and analyze an example of calculations of upper and lower bounds on
trimmed means of progressively censored order statistics expressed in standard
deviation σ2 units.

Table 1. Comparison of upper and lower bounds for different censoring schemes.
N = 35, n = 7, R1 = (1, 2, 3, 4, 5, 6, 7), R2 = (4, 4, 4, 4, 4, 4, 4), R3 = (7, 6, 5, 4, 3, 2, 1)

−B(2)
r,7:7 B

(2)
r,7:7

r R1 R2 R3 R1 R2 R3

1 −1.512 −1.333 −1.106 0 0 0

2 −1.404 −1.195 −0.9006 0.0427 0.045 0.0477

3 −1.319 −1.094 −0.7508 0.1028 0.1114 0.1229

4 −1.238 −1.003 −0.6185 0.156 0.1736 0.2005

5 −1.157 −0.9133 −0.4942 0.2068 0.2361 0.2880

6 −1.067 −0.8174 −0.371 0.2592 0.304 0.3981

7 −0.9546 −0.7012 −0.283 0.3191 0.3858 0.5601

We want to compare three different censoring schemes:

R1 = (1, 2, 3, 4, 5, 6, 7), R2 = (4, 4, 4, 4, 4, 4, 4), R3 = (7, 6, 5, 4, 3, 2, 1)

for the same values of N = 35 and n = 7. The results are presented in Table 1.
Looking only at upper bounds one might think that the smallest error committed
while estimating µ by TR

r,n is obtained if r = 1, and that it is better to use R1

scheme than R2 or R3. This would agree with our intuition that we should use as
much information as possible (small r) and as long as possible (less withdrawals
at early stages of the experiment). But a quick look at the lower bound shows
that if we want to minimize lower and upper bounds simultaneously, we should
use R3 scheme and rather large values of r (i.e. close to n). Indeed, it turns out
that E(TR3

5,7:7 − µ)/σ2 has the smallest range according to the results presented in
Table 1. Similar comparisons are possible for other σp units as well as other values
of N , n and censoring schemes.

6. DISCUSSION OF FURTHER RESEARCH

One might expect that the results of the paper can easily be extended to other
generalized order statistics with arbitrary positive parameters γ1, . . . , γn. However,
then nonnegative integers R1, . . . , Rn−1 are replaced with reals m1, . . . ,mn−1,
where mi = γi − γi+1 − 1, and Rn is replaced with k = γn. Therefore, the signs
of mi’s can be arbitrary and we cannot infer that the corresponding function φr,n is
increasing–decreasing, just based on (3.5) and the variation diminishing property.
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The problem is very complicated in view of the dependence of the shape of φr,n

on the parameters of generalized order statistics. For instance, numerical computa-
tions with Mathematica 9.0 software show that for the parameter vector

(γ1, . . . , γ7) = (13.1, 13, 12.9, 2.3, 2.2, 2.1, 2)

the function φ3,7 is increasing–decreasing–increasing–decreasing. Although there
is a general algorithm for calculating the bounds for each fixed generalized
L-statistic, a common final formula for bounds valid for various L-statistics is
lacking.

Coming back to progressive censoring scheme, one might also suppose that
the results of this paper could be strengthened in restricted families of distributions
like DD or DFR. This requires analyzing of convexity and concavity regions of φR

r,n

or, equivalently, sign changes of the second derivative (φR
r,n)
′′. Using the formula

(fR
i:n)
′′(u) =

1

(1− u)2
{γiγi−1fR

i−2:n(u)− γi(γi + γi−1 − 3)fR
i−1:n(u)

+ (γi − 1)(γi − 2)fR
i:n(u)}

of [5], we easily infer that for 3 ¬ r ¬ n− 2

(φR
r,n)
′′(u) =

1

(n− r + 1)(1− u)2

n∑
i=r−2

bif
R
i:n(u),

where

br−2 = γrγr−1,

br−1 = γr(γr+1 − γr − γr−1 + 3),

bi = γi+1(γi+2 − γi+1 − γi + 3) + (γi − 1)(γi − 2), r ¬ i ¬ n− 2,

bn−1 = −γn(γn + γn−1 − 3) + (γn−1 − 1)(γn−1 − 2),

bn = (γn − 1)(γn − 2).

This leads to the same problem: since the sings of bi’s can be arbitrary, the ar-
guments based on VDP do not suffice to claim that (φR

r,n)
′′ is + − + on (0, 1).

Numerical computations provide examples where (φR
3,6)
′′ is +−+−, which may

mean that φR
3,6 itself is convex–concave–convex–concave increasing, and then con-

cave decreasing. In this case the problem is that there are not known tools for deter-
mining projections of functions onto the family of nondecreasing convex functions
unless the projected function has a specific simple form.
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