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STOPPING GAMES FOR SYMMETRIC MARKOV PROCESSES

BY

J. ZABCZYK (WARSZAWA)

Abstract. Let & be a Dirichlet form corresponding to a sym-
metric Markov process M = {Q, #, x,, P*} acting on a state space
X. Let g and h, g < h, be quasi-continuous elements of the cor-
responding Dirichlet space &, and v a quasi-continuous solution of
the variational inequality

Ev,u—v)=20 dorall ueZF, g<su<h,
where a > 0 and &,(u, v) =&, v)+au,v) for all u,veF. It is
shown in the paper that if J,(z, 6) is defined for all xe X and all
stopping times t and ¢ by

Jo(3,0) = (e (La, h(x) + L0 g (%,),
then for quasi-every xe X we have

v(x) = inf sup J_(z, a)‘= sup inf J (1, 0).

Moreover, for quasi-every xeX the pair (7, &) such that
t=inf{t>0; h(x) =o(x)}, &=inf{t>0; g(x)=v(x)}
is the saddle point of the game '
 JL(E 0) < J(F, 8) < Tu(r, )

for all stopping times 7, ¢ and quasi-every xeX.

1. Introduction. Since early seventies it is known that the value of a
stopping game associated with a diffusion process can be identified as a
solution of a certain variational inequality. Papers [9], [10] and [6], [2]
were the first containing general results in this direction. _

In the present paper we take up a general symmetric Markov process and
we assume that the obstacles, which define the cost functional, are arbitrary
elements of the associated Dirichlet space (%, &) (see [7]). This assumption
means, when specialized to the diffusion case, that obstacles are merely of H*
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and not of H? class. In the setting of Dirichlet spaces one can hope to extend
known results to irregular diffusion processes with drift and diffusion coeffici-
ents being only measurable functions. Moreover, some Markov processes
with non-local generators can be treated in this way. It is also of independent
interest to find whether the interplay between variational inequalities and
stopping games takes place if it can be reasonably formulated. The main aim
of the paper is to show that this is really the case.

For one obstacle and an optimal stopping problem, analogous results
were obtained by Nagai [13], and our paper can be considered as an
extension of Nagai’s results to the game situation. Let us notice, however,
that the method used in [13] cannot be generalized to cover the present case.
The main reason for this is that the value of a stopping game cannot be, in
general, represented as a difference of a-potentials and, therefore, saddle
stopping times cannot be defined by the corresponding additive functionals.

Main tools used in the paper are potentlal theory and the penalty method
developed in [3].

The basic theorem is formulated in Section 2. In Section 3 we give a
complete proof of the theorem under the so-called separability condition. We
use here the Bismut-Nakoulim’s method (see [4] and [14]) which consists in
reducing the game problem to a system of quasi-variational inequalities. The
proof of the first part of the theorem, in the general case, is given in Section
4. Results on penalizations, among which Theorem 3 being of independent
interest, are gathered in the next section. The proof is completed in the final
Section 6. As far as basic concepts and notation related to Dirichlet forms.
Dirichlet spaces, and symmetric Markov processes, we refer to Nagai’s paper
[13] and to  Fukushima’s monograph [7].

The literature devoted to stopping games is quite extensive. Besides of the
mentioned papers [9], [10] and [6], different aspects of such games were
studied in [3]-[5], [14], [8], [16]-[18], and [11]. In particular, in some
places, we follow papers [16]-[18].

The present paper is a rewritten version of the report [20].

I would like to thank my Italian colleagues 1. Dolcetta and M. Matzeu
for discussions on the topic of the paper we had during my stay in Istxtuto
Guido Castelnuovo in June 1981. .

2. Formulation of the main result. We assume throughout the paper that
the Dirichlet space (£, &,), a > 0, is Co(X)-regular and the Markov ‘process
- M= 1Q, .#, x,, P*} is a Hunt process. The basic reference measure on X
will be denoted by m. Thus, in particular, & is densely embedded in the
Hilbert space H = I*(X, m) (see [7]). It is known that for an arbitrary
element ge # there exists its quasi-continuous version denoted by g (see [7],
p- 65).-

Let g and h be quasi-continuous versions of arbitrary elements from %
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satisfying the inequality

1) g < h quasi-everywhere (g.e.).

For any pair of stopping times (z, ) the cost functional J, is defined by
@ T, 0) = E¥ (e (Lg h(x) + Los g (5,)),

and K Stands for the following closed and convex subset of %

(3) K={ue#; g<u<h mael.

The following theorem is the main result of the paper:

TueoreMm 1. There exist a quasi-continuous function ve K which solves the
variational inequality

4) v S v, u—v) =20 for all uek
and a properly exceptional set N such that, for all xe X \N,

v(x) = sup inf J (7, ¢) = inf sup J (1, o).

a T T T

Moreover, the pair (T, 6) such that
®) CE=inf{r > 05 p(x) = A(x),
©) G =inf{t > 0; v(x) = g(x))
is the saddle point of the game

| JolE, 0) <Jo(E, ) < J,(x, 6)

for all stopping times v and o and xe X\N.

For completeness and later references we formulate a slightly generalized
version of Nagai’s result [13].

TueoreMm 2 (Nagai [13]). There exist a quasi-continuous function we F
which solves the variational inequality

) w2g, &Ew,u—w)yz0 forued, uzyg,
and a properly exceptional set N such that, for all xe X \N,
w(x) = sup E*(e”* g(x,)) = E*(e""g(x;)),
where & is defined by (6) with v replaced by w. Moreover, w is the smallest
a-potential majorizing the function g m-a.e.

3. The case of separable obstacles. In this section we prove Theorem 1’
under the following separability condition (see [4] and [14]):
There exist a-potentials w;, w,e# such that

(8) gd< Wi —W, < h m-ae.

5 — Prob. Math, Statist. 4 (2)
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ProrosiTion 1. Let g and h be arbztrary elements from F such that g < h
m-a.e. There exists a pair (U,v)eF xF satisfying the quasi-variational
problem '

(%) i=v4+g and &0, u— +g, ueF,

) =0 =0
(19 v=i—h and &,w,u—v)=0 for uzv—h,

if and only if the separability condition (8) holds. Moreover, if there exists a
solution io the problem (9)-(10), then it is unique if and only if the contact set

(11) ‘ {x; h(x) = §(x)},

defined in terms of some quasi-continuous modifications h, § of elements h, g, is
of capacity zero.

Proof. If there exists a solution (7, vy) of the problem (9)10), then the
functions 7 and p are a-potentials (see Theorem 2 or Theorem 3.2.1 in [7])
and they clearly separate obstacles & and g. On the other hand, if the
separability condition (8) holds, then for each n we have w, > 7, and w, > v,
m-a.e., where the functions 7, and v, (n =1, 2,...) are defined by induction
as follows. If n = 0, then 7, = vy, = 0 and, for general n, 7,,, and v,,, are
unigue solutions of the following variational inequalities, respectively:

(12) 17'!_‘_16,'7]': En+1 >yn+ga
Ey(Ops1, 1—T1) 20 for ue#F, uzu,+g,
(13) Qn+legl7’ Dnvy = 5n“h9

Ey(Uny 1, U—0,+1) =0 for ueF, uzv,—h.

Consequently, 7, and p, are a-potentials. Moreover, a simple induction shows
that both sequences (7,) and (v,) are increasing and bounded from above by
o~ potenuals w, and w,, respectively. Therefore, (7,) and (v,) converge in
(#, &,) to some a-potentials 7 and v which solve the initial problem (9)<(10).
The uniqueness can be proved in a similar way as in [14].
CoRroLLARY. If the pair (T, v} is a solution of the problem (9){10), then the.
difference v = T—v is the unique solution of the problem (4).

The proof is immediate.
Now we are in a position to prove the following partial resuit:
ProrosiTiON 2. Under the separability condition (8), Theorem 1 holds true.

Proof. Without loss of generality we can assume that the functions 7, v,
and v are quasi-continuous. Consequently, the functions ¥ and v are so-
futions, in the sense specified in Theorem 2, of stopping time problems with
gain functions v+g and v—h, respectively. Using the same argument as in
[13] one can find a properly exceptional set N such that, for all xe X\N
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and moments 6, T,

¢ =inf{r > 0; 7(x) = v(x)+g}
=inf {r = 0; v(x) = g(x)},

& =inf{t > 0; p(x) = B(x)—h)}
=inf {t > 0; v(x) = h(x)},

we have
=E*(e"*#(x,)) forall ¢ <3,
g(x) =E*(e "p(x)) forall 1<7
Moreover, one can assume that ‘f()r all initial states xe X \N the processes

(e"*(x)) and (e”*v(x,)) are non-negative P*-supermartingales. Thus, for
arbitrary stopping times t, ¢ we obtain

7(x) > E*(e*°5(x,), v(x)>E*(e "p(x)), xeX\N.
Consequently, '
(14 v(x) =7(x)~2(x) < Ex(e"“'?At(17~E)(xaAt)) < E*(e7* " 0(x500))
SE* e ;<. g(x5)+e * Lesh(x) < J,(t, 8).

In (14) we used the property that the processes (v(x,)), (g(x)), (h(x)) are P*-
a.e. right-continuous and that P, (h(x,) > v(x,), t = 0) = 1 for all xeX\N In
the same way one proves that v(x) = J, (%, o) qe.

4. Proof of the first part of Theorem 1. We need the following purely
analytical results.

Prorosition 3. Let (g,) and (h,,) converge in (F, <§’a) to g and h, respecti-

vely, and Iet gn<h, mae. (n=1,2,...). If o,, veF (n= ...) and
(15) E, (v, w—v,)=20 forall ue%F, g,,éush,,,
(16) E,(v,w—0)20 forallueF, g<u<h,

then v,—v in (F, &,).

The main tool in proving this proposition is the following lemma due to
Ancona [17]:

LemMma 1. If v, —v in (F, &), then also v} —v* in (F, &).

Proof of Proposition 3. Since &,(v,, v,) < €,(gp, g for n=1,2,...,
the sequence (v,) is (%, &,)-bounded. Let § be a weak limit in (&, &,) of a,
subsequence (v,). If ue# and g<u<h then by Lemma 1 we have w,
={g,vVu)yAh,—u in (#,8,), and g,<w,<h, for n=1,2,... Since
& (Unys W =) = 0, we get

7 Ex(Ongs Wa) = Eu(0ns 01).
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Putting k — oo in (17), we obtain
80, 4) > B 6, (0, 1) > 6,6, )
Therefore, © is a solution of (16) and the uniqueness gives ¥ = v. Since

hmé” (v W S 6o (0, D),

'lka
v, - v in (F, &,).

ProrosiTioN 4. For arbitrary obstacles g, he &, g < h m-a.e., there exists
a sequence of separable obstacles (g,, h,) convergent in (¥, &,) to (g, h).

Proof. Let R,, y > 0, be the resolvent operator associated with (&, &,).
Then for any y > 0 we have yR,g < 7R, h and yR,g —» g, yR,h—~h in (,/f é,)
(see [7], p. 20). From the resolvent identity we obtain

YR, g = R, (y(@—7) R,9—79) = R, (/)= R,(f2)

for some non-negative functions f;, f, € I?(X, m). Therefore, for every y > 0,
obstacles yR,g and yR,h are separable.

We proceed now to proving the first part of Theorem 1. Let g, and h, be
separable, quasi-continuous obstacles such that g, < h, qe. for n=1, 2,...
and g, and h, are convergent in (F, &,) to g and h, respectively. Moreover,
let J%(t, o) be the corresponding cost functionals:

Jaz, 0) = E* (e (Lo by (x)+ 1, < 9a(%,))),  x€X.
Then
(18) |73z, 0)=J,(z, o)

< E¥ (e |(hy— ) (x))+ E* (e~ [(ga— 9)] (%,)) < Gy (x)+ H, (%),
where

G, (x) = supE*(e~* [(gu— ) (x).

H,(x) = supE* (e~ |(h,~ h)] ().

From Theorem 2 and the fact that the solution of a variational problem )]
has minimal energy it follows that

éﬂa(Gm Gn) < ”a('gn_“g|7 |gn—g“ < ga(gu—ga gn—"g)a
ga(Hm Hn) < é)a(lhn‘-hla ihn—hl) < ga(hn_h5 hn_h)’

and therefore sequences (G,) and (H,) converge to 0 in the sense of (#, &,).
Consequently, we can assume that G,(x) -0 and H,(x) -0 as n— oo for
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ge. xeX. Let

u,(x) = inf sup J3(z, 0), u(x)=inf sup J (7, o).
By (18), |u,—u| -0 q.e. But Proposition 2 implies that the functions u,
can be identified as solutions of variational inequalities (15) and, by
Proposition 3, u, converge to v. Therefore, » = u outside of a set of capacity
zero. This proves the required result.

5. A comvergence theorem. After some preparatory results on penalization
we prove Theorem 3 needed for the identification of the pair (Z, &) as the
saddle point of the game (see formulae (5) and (6)). We omit proofs of
Propositions 5 and 6 below because of their similarity to those contained in
[37 and [16] (see also [20]).

ProrosiTioN 5. For . arbitrary elements g, he H = I*(X, m) there exist
unique solutions w?, v* € H and (?*, v’ye H x H of the following equations:

(19) w? = BR,(g—wh)",

(20) o = BR,((g—v")" —(F - h)*),
@y P = PR~ h—h)*,

(22) o = BR, (" +g—%)*, B>0.
Moreover, :

(23) F =k, B>0.

‘In the next proposition, M*? stands for the set of all progressively
measurable processes (u,) satisfying 0 < u, < B for all t > 0. If u, u?, u?e M?#,
xe X, then

¢4}

J0) = E*(] exp[— [ (a+up)dsTu g (x)de),
0

(4]
Jul, u?) = E"(}u exp[——‘tf (a+ul +u?) ds]‘(u,1 g(x)+ul g (x,))dt).
) 0 ~

ProrosiTiON 6. Let g and h be quasi-continuous functions belonging to & .
Then there exists a properly exceptional set N such that, for quasi-continuous
solutions wk, v# e F of equations (19) and (20) and for all xe X \N,

w#(x) = sup J§(x),
: ueMb

B — i Bl 2y : B 1 2
(x)= inf sup JE@u', u*)= sup inf JE(u', u®).
- ulemB u2emb * u2eMB ylemb ¥ ’

Moreover,
| wh(x) < supE*(e""g(x)), xeX\N.




192 ' J. Zabczyk

Tueorem 3. If h,ge #, h<g, and the separability condition (8) holds,
then v - v in (7, &,) as pT+o0.

For the proof we need two lemmas.

LemMMa 2. An increasing sequence of a-potentials bounded from above by
an o-potential is convergent in the norm &, to an a-potential.

The lemma follows from Lemma 3.3.2 of [7].

Lemma 3. Assume that g,1g in (#,8,) and that w, (n=1,2,...) are
solutions of the equations

w, = ﬁnRa(gll”wrl)+'
- If BT+ o, then w,Tw in (F, &,) where w is the solution of (7).

Proof. Without loss of generality we can assume that the functions w,,
gn, and w are quasi-continuous and that outside of a set N given in

Proposition 6 we have g"1g. It follows from Theorem 2 and Proposition 6
that the sequence (w,) is increasing and that for xe X\N

w(x) = W(x) = limw, (x) > g(x).

Lemma 2 implies that (w,) converges in (¥, &,) to an a-potential w. On the
other hand, w is the smallest a-potential majorizing g (see Theorem 2), so
w2z w and, finally, w =w.

Proof of Theorem 3. We show that families (7%) and (v) are increasing
with respect to f > 0 and bounded by a-potentials 7 and v introduced in
Proposition 1. Then Lemma 2 will imply that #* 1% and ¢* {v in (%, &,) and
Proposition 2 together with formula (23) will give the desired result. Let us

define a-potentials # and 14, >0, n=0, 1,..., inductively:
% =6 =0,
(24 By = R +g— ),
(29) | ey = PR —h—thi )" |
One can easily show by induction (cf. the proof of Lemma 3) that
26 >, >
and , o ]
27 B2 h, >

m-ae, n=0, 1, 2,... Functions 7, and v, in (27) are exactly those introduced
in the proof of Proposition 1. Since & > 7, > 7 and v > v, > v for all >0
and n=20, 1,..., passing in (24) and (25) to the limit with ntco, and using
Proposition 5 and Lemma 2 we obtain 7 1% < 7 and ¥4 1¢* <p in (F, &,).
Moreover, for fixed n, both families (7¥) and (vf) are increasing with respect
to B, and so the same is true for (5*) and (vf).’
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6. Identification of the saddle point. To prove the second part of Theorem 1
we start with some lemmas. _

LEMMA 4. Let v and %, B > 0, be quasi-continuous solutions of (4) and (20),
respectively. There exist an increasing sequence of closed sets (X,). and an
increasing sequence of positive numbers B,1 oo such that on every X, the

. By . Bn ‘ :
functions h, g, v, v'" are bounded and continuous and v'" — v uniformly as n
— 00, Moreover, Cap(X\X,) =0 as k — co.

Proof. Let g,, h,, and v, be the functions given in Proposition 3 and let
v§ be the solution of the penalized problem with obstacles g, and h,. It
follows from Theorem 3 that v - v, as }?T o in (£, &,). Therefore, one can
find a sequence f,1co such that v"—v,"— 0 also (#, &,). Using Proposi-
tion 6 and reasoning as in (18) but with the penalized functionals J# instead
of J,, we obtain

f f
'U"”—'U nl < H2n+GZN q.e.

But

(28) 00" < [o—v,) +]v,— ob +|ofm— o

and the right-hand side of (28) converges also in (%, &,). Reasoning in the
same way as in the proof of Theorem 3.1.4 of [7] we can show that there
exists an increasing sequence of closed sets X, such that the right-hand sides
of (28) are bounded on each X, and an appropriately chosen subsequence
converges to 0 uniformly. Moreover, the sequence (X;) can be selected 'in
such a way that Cap(X\X,)— 0 and that the functions A, g, v, o™ have the
required properties (see the proofs of Theorems 3.1.3 and 3.1.2 in [7]).

LemMmA 5. Let a function ue % be quasi-continuous and o > O a positive
constant. Then for q.e. xe X the family of random variables {e™*T u(xy); T any
stopping time} is P*-uniformly integrable.

Proof. Since there always exists a quasi-continuous a-potential majoriz-
ing the function u q.e. (see Theorem 2), we can assume that u itself is an o-
potential. In the same way as in the proof of Lemma 4.4.1 in [7] one can
show that there exists a properly exceptional set N such that for all xe X\ N
the process Z, =e “u(x), t >0, is a right-continuous non-negative P*-
supermartingale with the property

lim Z, = 0.

t]oo

. To prove the required uniform integrability it is enough to show (see [12], p.
102) that, for any increasing family of stopping timesT, T oo, E*(Z;) »0as n
— oco0. From the representation Theorem 5.11 in [7] it follows that there exist
a positive continuous additive functional 4, and a properly exceptional set
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N, > N such that
(29) u(x)=E*(| e"®dA;) for xeX\N;.
0

By the strong Markov property we have

T, Ty

(30) u(x) =E*({ e"""dAsake“"T"u(xTn)) = Ex(ZT")-l»E"’(j e ™ dAy).
. 0 0
Since T,t oo P*-ae., from (29) and (30) we obtain E*(Z)—0.

We proceed now to the proof of the second part of Theorem 1, which is a
modification of the proof of a similar property for optimal stopping given in
[15] (see also [16]). Let us introduce the following stopping times:

o =inf{t > 0; v/ (x) = h(x)}, o =inf{t>0; " (x) <g(x)},
=inf{t > 0; v(x)+y 2 h(x)}, o, =inf{t>0; v(x)—y <g(x)j,
T, = inf {t > 0; x, € X\ X},

where >0, y >0, and k =1, 2,... One can always assume that P*(T, T o)
=1 for all xeX\N, where the set N has also properties specified in
Proposition 6. The proof will be completed if we show that for arbitrary
stopping times 7 and o such that ¢ <7 and 7 <& P*ae. the relations

3y v(x) < E*(e” ™ v(xy)),
(32) v(x) = EX(e " v(x,))
hold for xe X\N. To see this notice that (31) and (32) imply
u(x):Ex( —arAaU(xtAa) Jx(f’ é).
Moreover,
J.(%, 0) = B* (e v(x) Lrs, +e~* g (x,) I, <)
SE*(ev(x) Lrco+e ™" 0(Xp) [5<o)
Ex( ‘“"""v(x~w))< (
The last inequality follows from (32) because 7 A ¢ < 7. In the same way one
can show that J (7, ) = v(x).

We prove now, for instance, (32). Assume that ¢ <t* P*-ae. for some
B > 0. Then from (20) and the strong Markov property we obtain

(33) ‘ vP(x) = E*(e"* vP (x,)), xe X \N.

Letting 81 oo and applying the Lebesgue domination principle to the right-
hand side of (33) (cf. the estimate in Proposition 6), we obtain

(34) v(x) = E*(e"*v(x,)), xeX\N.
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Exactly as in [15] we get

limt, =%, limo,=6 P*ae
yl0 yi0

Let us fix now k and y. Since v* — v uniformly on X,, we can find p such
that [vPn(x)—v(x)| <y for n>p and xeX,. If t <7, then v(x)+y < h(x).
Therefore, for t <1, A T, A 0 we obtain

o"(x) < 0(x)+7 < h(x).
Consequently, 7, A T, Ao < " and, by (34),
(35) v(x) = E*(exp[—a(t, A T, A cr)]u(x,yATkM)), xeX\N.

Lemma 5 and the quasi-left continuity of the Markov process allow us to
pass in (35) to the limit first with y | 0, and then with k T co to obtain (32) for
arbitrary o < 1.
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