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JUMPS OF STOCHASTIC PROCESSES
WITH VALUES IN A TOPOLOGICAL GROUP

BY

EBERHARD SIEBERT (TURINGEN)

Abstract. We consider a stochastic process X taking its values ina
Polish group G and having independent increments. First we investigate
the jump measures v, on G associated with the process X. Then we
identify the measures v, with the Lévy measures of certain convolution
semigroups on G closely connected with X. Finally we show that for a
submuitiplicative function ¢ on G the integrability with respect to the
process X is essentially equivalent with the integrability of @ with respect
to the jump measures v, of X.

Introduction. Let (X,),>, be a stochastic process without discontinuities of
the second kind taking its values in a Polish group G. Then the jumps of the
process on the time interval [0, r] define a measure v, on the Borel sets in G not
containing the identity. In the present paper we investigate some properties of
these jump measures. In Section 1 we are concerned with the definition
(Theorem 1) and the approximation (Theorem 2) of jump measures. Essentially
we follow here the classical approach. In Section 2 we specialize our
considerations to processes with independent increments taking their valuesina
locally compact group. We prove that the jump measures coincide with the Levy
measures of certain convolution semigroups connected with the process
(Theorem 3). Finally in Section 3 we show that for a submultiplicative function ¢
on the Polish group'G the variables sup {@(X): 0 <s <1}, t = 0,arcintegrable
if the process (X)), » o has independent increments and if its jumps are uniformly
bounded (Theorem 4). Moreover, for a homogeneous process (X,),», the
integrability of the wvariables ¢(X;) (and even of the wvariables
sup {@(Xy): 0 <s < 1)} is equivalent to the integrability of ¢ with respect to the
jump measure v; outside some neighbourhood of the identity of G (Theorem 5).

Measures constructed from the jumps of a process with independent
increments have always played an important role in the investigation of these




198 E. Siebert

processes: If the process takes its values in a Euclidean space or, more generally,
in a Banach space (see for example [5] and [6]); if the.process takes its valuesina
locally compact group we recommend [9], R 4.6, R 5.6, and [10] for rather
complete lists of relevant references. The integrability of submultiplicative
functions with respect to infinitely divisible probability measures has also been
investigated in various papers [1, 11,12, 14,15, 16]. In fact on (non-
commutative) locally compact groups the existing results for these topics were
not so satisfactory as on Banach spaces. In the present paper we have tried to
handle these two classes of groups simultaneously. Therefore as far as possible we
have considered processes with values in a Polish group.

The author would like to thank Professor J. Kisynski of the University
at Warsaw for several stimulating discussions.

Preliminaries. Let IV and R denote the sets of positive integers and of real
numbers, respectively. We put R, = {reR: r 2 0} and RY = [reR: r > 0]. A
decomposition 4 = {cq, ¢4, ..., ¢,} of a real interval [s, ] is a subset of R such
that s =¢o <€y < ... <c¢, =1 We put |4 =max|c;_y: j=1,...,n}.

Let T be aset and S a subset of T Then by 15 we denote the indicator function
of S. If Tis a topological space we denote by §. S, 7S the closure, interior, and
‘boundary of S, respectively. Moreover, by %°(T) we denote the space of real
valued bounded continuoys functions on T: supp () is the support of f € *(T).
B(T) is the o-algebra of Borel subsets of T ie. the c-algebra generated
by the open subsets of T. Measures on T are always understood as abstract
measures on B(T). Weak convergence of finite measures on T means
pointwise convergence on %°(T). By &, we denote the unit mass in xe'T.

By G we always denote a Polish group, ie. G is a topological group with a
countable basis of its topology and with a complete left invariant metric ¢ which
induces the topology. For xeG and e R let K(x, &) = [yeG: o(x, y) <¢&j.
(G) denotes the system of neighbourhoods U of the identity e of G such that
Ue B(G). For abbreviation we put K(c) = K(e, ¢) and G* = G\{e}. .#"(G)
denotes the convolution semigroup of probability measures on G. A (continuous)
convolution semigroup (i), » o in #* (G) is a family of probability measures y, on
G such that pg =&, i * l = P4, for all s, te Ry, and limig i = Yo weakly.

Let I be a subinterval of R,. A stochastic process (2, U, P,(X,),;) with
values in G consists of a probability space (Q, 2, P) and of a family (X)), of
measurable mappings X, of (2, %) into (G, B(G)). Usually we shall denote the
process by (X,),; only.

1. JUMP MEASURES OF STOCHASTIC ?RGCESS»ES

Let(Q, A, P, (X)) be a stochastic process with values in the Polish group G
where either I = [0, 1]Jor I = R, . We assume that the paths of the process are
right continuous and admit left-hand limits. Thus for every tel, t > 0, there
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exists X, = limg, X,;and X! X, is the jump of the process at time ¢. Let X (s, 1)
= X, ! X, denote the left increment of the process on the time interval [s, t] and
let u(s, t) denote the distribution of X (s, 1) (0 < s < tel). For every Be B(G*¥)
and for every t e I the number of discontinuities of the process up to time r whose
jumps lie in B is given by
Y (X X).
0 <5<y

If e¢ B, then it is well known that Z? is finite everywhere. If (B(n)),s, is
a pairwise disjoint sequence in B(G*) with union B, we obviously have

‘ t ZP=Y ZP, '

nz1
For some fixed te I, t > 0, let now (4,),», be a sequence of decompositions

4, = {Cuos Ca1s -5 Cgqm) OF the interval [E} t] such that lim |4,] = 0. For every
Be B(G*) we put

SE= Y 15(X(cn 1, )
1€ jskin

Tueorem 1. (i) For every Be B(G*) with e¢ B we have

78 < lim 8% < lim S < Z8 = 78 4+ 25,
(i) For every Be B(G*) the function Z? of Q into [0, co] is measurable.
Proof. (i) We fix some weQ. Let se]0, t] such that

X, (o) X, (w)eB.

But ZP (w) < co. Hence for ne N sufficiently large there exists je {1, ..., k(n)!
such that s is the only discontinuity of (X, (@))o<,<, 00 Jcy i1, o] and such
that X(c,;-, ,U) (w)e B. Consequently,

lim 82 (w) = Z8(w).

Let us now assume 5% (w) = Z?(w)+ 1 for infinitely many ne N. After passing
to an appropriate subsequence we may assume without loss of generality that for
every ne N there exists some j(n)e {1, ..., k(n)] with the following properties:

() X(Cajm-1: Cajm) (@) € B;

(2)  on le,jm-1> Cupm] there is no discontinuity ﬂf (X, (@))o<r<, Whose
jump lies in B;

(3) the sequences (C,jum-1)nz1 @04 (Cojm)nz1 CONVErge to s.

Now ¢y < s for infinitely many ne N would imply (in view of (1))

=X, (@) ' X,_ (@) = im X (C,, juy~ 1, Cujm) (@) B, hence a contradiction.
Thus $ < Cyym for almost all ne N and analogously ¢, .-, <s for almost
all ne N. Thus (by (1) and (3)), X, (@)™ ! X, () = im X (¢, jn- 1, Caen) (@) € B.
But this contradicts (2). Hence (i) is proved.

(ii) 1. Let 0 < 6 < & Then there exists some ye 13, &[ such that Z#*® =,
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(Since ZEK@ is finite there exist finite subsets F, of 16, &[ such that ZXX" jg
zero on [2’“‘5' klifyels, a[‘\Fk(allkeN) Everyye s, e{notinF, uF,u
satisfies Z7KW = 0)

2. Let some 7 as in 1 be fixed and let £ = {BeB(G): B <« CK(y)},
& = |Be 2: Z? = (). Then & is closed with respect to finite intersections and a
generator for the a-algebra 2 in CK(y).

(As in 1 one shows that for every xeG and for every seRY with
K(x,8)nK(y)= O there exist 6e]0, ¢[ arbitrarily close to & such that
ZK=9 = (, Hence K (x, 8)e & such that & is a generator of £. Moreover, if B,
Ce& then dBNC)cdBudC implies ZMBO < ZP+2€=0; hence
BN Ceé&)

3. Let D denote the system of sets Be @ such that Z7 is . measurable. Then Dis
a Dynkin system in CK(y) that contains &.

(Let Be &. Then in view of (i) we have Z8 = lim S2, hence Be D. In particular,
we have CK(p)e D since 8(CK(y)) = oK (y) and Z{*? =0. The remaining
assertions are now obvious).

4. In view of 2. and 3. we have D = £. This proves the measurability of Z} if
B K(e) =@ for some ge RE . If, finally, Be £(G*) is arbitrary, the assertion
follows from ZP = lim ZPrckO/m

Definition. Let tel. For every BeB(G*) we put v(B) = E(ZB}
(where E denotes the mathematical expectation with respect to P). Obviously v, is
a measure on B(G*). We call v, the jump measure of the process (Xg)o< <

Example. Let G bethe locally compact group of complex d x d - matrices M
with |det M] =1 and let 4 be the (normed) Haar measure on the compact
subgroup of unitary matrices in G. Let (U,),», be a sequence of independent
random variables with values in G such that every U, is distributed according to
4. Moreover, let (N,),» o be 2 homogeneous Poisson process with intensity o e R
starting in 0 and independent of (U )},>,. Weput Ty = 0and T, = inf [re R%: N,
= pn} for all ne N. Finally, let H be a Hermitian d xd - matrix with trace 0.

We put

X, = [H exp{(T,—T;-;)H} U;]exp! (thM)H}

for all te R, . Then (X}),», is a process with values in G that has all the desired
properties. Obviously we have X'X,=U, if =T, and
= identity matrix in G if ¢ > Ty. Hence Z”—— 13(U1)+ - +15(Uy) for
Be B(G*). Thus Wald’s identity yields: '

v(B) = E(Zf) = E(N) E(13(U,)) = atA(B).

Thus v, is the restriction of ard to G*.
The process (X,),»o has been considered in connection thh a problem in
atomic physics [7]. - :
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Let now (2, A, P,(X,),.;) be a separable stochastic process with values in G.
By 9, we denote the sub-o -algebra of U generated by [ X; 0 <s<t}.Forall
tel and 8, ec Rt we define

(e, 6) = infsup [P(o(X,, X)) 2 ¢| % )(w): weQ, 0<r<s<r+d<1t
where the infimum is taken over all Q'e W with P(2) = 1.

The following facts are well known (cf. [5], IV.4):
If the condition

(©) lima, (s, 6) =0 for all ec R%

d-»0

1
J

1s fulfilled, then the process (X )y <<, has no discontinuities of the second kind
and is stochastically continuous. Moreover, the process can be modified insuch a
way that its paths are right continuous and admit left - hand limits. We shall
therefore tacitely assume that a process satisfying (C) already enjoys these
properties. Finally, if (X,),.; is a separable stochastically continuous process with
independent left increments, then it obviously has property (C) for all rel.

Tueorem 2. Let the process (X)), have the property (C) for all te I. For some
fixed tel, t > 0, let the sequences (4,),5, and (SD),5 1, Be B(G*), be defined as
before Theorem 1 and let v, be the jump measure of (X Jo<s<i-

Then for Be B(G*) such that e¢ B and v,(¢B) =0 we have

kimy
1i>m N ulenj-1, ) (BY=v(B) and v(B)< 0.
nE1 j=1
Proof. First of all let ec % such that BnK(e) = Q. In view of (C) we
may then choose te]0, 1[ such that § = 2u, (¢/4, 1) < 1. Now for every ke N
we denote by A*(e, 4,) the event in U that the process (X,),, has at least k
g-oscillations on 4, (i.e. there exist integers j(1),...,f(k} with 1 <j(1)
< ... < j(k) < k(n) such that ¢(X (¢, i1, Cojy)» €) > & for i=1,..., k) (all
neN). Then we have P(4*(, 4,)) < B* ([5), IV. 4, Lemma 3).
Obviously, [S2 > k] < A*(e, 4,), hence P(SE > k) < f* and consequently
E(SE)< ¥ PSRz lk+1y < ), frk+1) <o
‘ k=0

kZ0
for all n, reN. Thus we have
() sup {E((S5)Y): neN} <o for all reN.

If now t e I is arbitrary, we decompose [0, 1] in a finite number of sufficiently
small intervals and apply the conclusions above to each of them. Hence (x) holds
generally. - '

Finally, E(Z®) = v,(0B) = Oyields Z{® = 0 almost everywhere. Hence taking
Theorem 1 (i) into account we conclude limS? = ZF almost everywhere.
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Consequently, with the aid of (») we obtain lim E(S%) = E(Z®) < co. Hence the
assertion.

Cororrary 1. Let U e B(G) such that v,(6U) = 0. (By the proof of Theorem 1
(ii), these neighbourhoods U constitute a basis of B(G).) Then the sequence

{ Z- ﬁ(("n,]“ | auj)}n? 1

1€ i< kin

converges weakly to v, on G\U.
Proof. This follows readily from the characterization of weak convergence
in terms of sets of continuity (cf. [5], IX. 1).

CoROLLARY 2. The process (X)g<s<: has continuous paths with probability 1
if and only if for all Ue B(G):

im 3 plen-1. cn)(CU) = 0.

nZl 15j<kim .

2. JUMPS OF PROCESSES WITH INDEPENDENT INCREMENTS

By I we either denote the interval [0, 17] or the interval R, and, accordingly,
by S either the set |(s, )e R*: 0 <s <t < 1] ortheset {(s, )eR* 0<s<1).
Let X = (Q, ¥, P, (X)) be a separable stochastically continuous process with
values in the Polish group G such that X, = e. Let us assume that the process X
has independent left increments: for every finite sequence 0 <1, <t, < ... <t,
in I the random variables X (0, 1), X(t,, 13), ..., X (.-, t,) are independent.
Let us call the process X additive if in addition its paths are right continuous and
admit left - hand limits. (As mentioned in Section 1 the process X can always be
modified as to fulfill this last condition.) As usual let us call the additive process X
homogeneous if for every (s, 1)e S the distribution of X (s, 1) only depends on the
difference. t —s. J

The distributions u(s, 1) of the increments X (s, £}, (s, )& S, of an additive
process (X),.; with values in G form a (continuous) convolution hemigroup in
M (G) (cf. [9, 10, 13]). Conversely, with every continuous convolution hemi-
group (u(s, 1))gnes in #" (G) there is associated an additive process (X,),.; with
values in G such that u(s, r) is the distribution of X, ' X,. (This follows from
general results in the theory of stochastic processes. Cf. [3])

Remark. Let (u),», be a continuous convolution semigroup in .#"(G).
Then by u(s, t) = p—,, 0 <5<, there is given a continuous convolution
hemigroup in #*(G). Let (X,),»o be the (homogeneous) additive process
associated with this hemigroup. Finally, let v, denote the jump measure of the
process (X,)o <. <. Taking into account Corollary 1 of Theorem 2 we observe v,
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=tv, for all te R, and

jfdvl hm fdu,

sio §

for all fe%"(G) with e¢supp(f).

If G is a locally compact group having a countable basis of its topology or a
separable Fréchet space, then with (), there is associated a so called Lévy
measure 5 (via the Lévy - Khinchine formula; cf. [9] resp. [2]); and it holds

jfdn = im~ ffd,us

510

for allf € ¢°(G) with e¢ supp(f). Thus y and v, coincide: If Be B(G*)then y(B)is
just the expected number of discontinuities of (X )g<,<; Whose jumps lie in B.

We are now going to extend this observation to hemigroups on locally
compact groups. Thus let G be a locally compact group having a countable basis
of its topology. By %(G) we denote the space of real-valued infinitely
differentiable functions with compact Sﬂpport on G(cf. [9],44.2) (i)zpis a
continuous convolution qemlgmup in .#'(G), its generating functional 4 is
defined by

A(f) =1§£1; {(fwf(e))d,u,, for all fe Z(G).

The Lévy measure of A (or of (1), o} is the unique measure n on G* such that
{fdn = A(f)for allf'e Z(G) with e¢supp(f) (cf. [9], 44). By 4(G) let us denote
the set of generating functionals of convolution semigroups in .#(G).

A continuous convolution hemigroup (u(s, t))nes in -#" (G) is said to be of
bounded variation (cf. [13]) if there exists a mapping B(-)of I into 4 (G) with B(0)
=0 and B(t)— B(s)e A(G), (s, )& S, and a continuous isotone mapping v of {
into itself such that the following holds:

For every fe % (G) there exists a ¢(f)e R%¥ such that for all (s, t)e§

(E) [{[fdu(s, —f (@}~ (BO)—~BEUN} < c(Np @) —v(s).

If (1), > 0 is a continuous convolution semigroup in 4" (G) with generating
functional A, then the associated hemigroup is of bounded variation: one only
has to define B(t) = tA and v(t) = tfor allt e R, . In general not every hemigroup
(1(5, D)sues 18 of bounded variation. But if G is a Lie group, then, according to
[4], there always exists a continuous mapping x(-) of I into G such that

(Exw) & ﬁ(sw t) # EM"“ 1)(3,!,‘;»93

is a hemigroup of bounded variation.
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THEOREM 3. Let (1(s, ))s,nes be a continuous convolution hemigroup of bounded
variation in .#*(G). Let B(-) be the mapping of I into A(G) associated with the
hemigroup by (E) and let 1, denote the Lévy measure of B(t), te 1. Finally, let (X),
denote the additive process associated with the hemigroup, and let v, denote the jump
measure of the process (XJogs<y t€l

Then for every tel the measures u, and v, coincide.

Proof. Wefixsometel,t > 0. Let(4,),>, be a sequence of decompositions
A, = {Chos Cuts -+-s Coggnyy OF [0, 1] such that lim|4,| = 0. Now let f € (G) with
e¢supp(f). Then there exists a Ue B(G) such that U nsupp(f) =0 and
v, (68U} = 0. Thus in view of Corollary 1 of Theorem 2 we have

i % dicng -1 ) = 1

On the other hand, in view of (E) we have the following chéin of inequalities:

12 fdrlens-1s enp= [fdn = 3. [fdplcas—1, co) =B
=3 [fdulen-15 co) =) (B (N = Blcaj- ) (N}
< Y fdulen- 15 ey =1 (@} — (Blea) ()~ Blcnj- ) (N}
< e [oley)—vlen;-1))?
< e(f) o(t) sup {vlc,) —vlen;-1): 1<j < k(”);

(The summation is aiways to be extended over j=1,..., k{n))
In view of lim |4,] =0 and of the continuity of v, this yields
limz jfd#(cn.j« 15 Cuf) = Ifdﬂv
LD
Consequently, {fdv, = [fdn, for all fe %(G) with e¢supp(f). This yields
v, = #, since the system of these functions is sufficiently rich.
CoroLLARY. Let (p(s, 1))ses be a continuous convolution hemigroup in 4" (G)
and (X ,),.; the associated additive process. Let us consider the following assertions:

1
(i) lim w—y(eﬁ H(CU) =0 for every UeB(G), (s, 1)e8.
t=x~0 L™
(ii) The paths of the process (X}, are continuous with probability 1.
Then (i) implies (ii).
If the hemigroup (u(s, 1)),nes is of bounded variation with respect to v(t) = x,

tel, then (i) and (ii) are equivalent.
Proof. (i)==(ii). Let ee R% and Ue B(G) be given. Then there exists a d e RE

1
such that — u(s {CU) < g for all (s, t)e S with 0 < t—s < §. Consequently,
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for every decomposition 4 = (¢, ..., ¢,} of [0, r], rel, with |4| < §, we have

Y ule-g, c)(CU) <6
1<j€n
Hence the assertion by Corollary 2 of Theorem 2.

(ii) = (i). Let the hemigroup (u(s, ))snes be of bounded variation with
respect to B(-), and v(t) =, te l. In view of Theorem 3 the Lévy measure 5, of
B(t) is 0. Given UeB(G) there exist Ve B(G) and fe ¥(G) such that
Iy £f<f(e) =1 and f(e)—f = Icy. Consequently, B(£)(f) = O for all te ] (cf.
[9], 4.5.9). Hence, in view of (E), we have, for all (s, t)eS,

(s, D(CU) < |{fduls, —f ()] < c(f)t—9).

Hence the assertion. ,

Remark. Let (X,),, be an additive process taking its values in a separable
Banach space. Then the distribution of X, is infinitely divisible, hence admits a
Lévy - Khinchine representation with Lévy measure #, (te ). It is well known
that #, coincides with the jump measure v, of (X )<<, (cf. [5], Chapter 6; [6],
Chapter 4).

3. JUMP MEASURES AND SUBMULTIPLICATIVE FUNCTIONS

Let G be a Polish group and ¢ a continuous submultiplicative function on G,
i.e. @ is a continuous function of G into R% such that ¢(xy)} < ¢(x) @(y) for all x,
yeG (cf. [14]).

Now let X =(Q, %, P, (X,),»0) be an additive process with values in G.
Again let 2, denote the sub - ¢ - algebra of % generated by { X, ;s < t}. A function
Tof @ into [0, oo] is said to be a Markov timefor X if [T< t]e U, forallteR. .
As usual we define

Uy = [AeW: AN[T<1]e, for all teR,}.

The process X possesses the strong Markov property in the following sense:
For every product measurable subset B of G"* the random variable

w1 x,](ﬂ’) P((XTtm] (w) ! X:}raoéﬂ)
is a version of the conditional probability

P([T< 0] n[{X;+1)=0€B]| ﬂfr}»

Tueorem 4. Let ¢ be a continuous submultiplicative function on G and
put t©=In@. Moreover, let there exist some acR% such that
sup {1(X;2' X,): te R, } < a with probability 1.
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have lim,;, P(A") = 0. Hence there exist § > 1 and t > Osuch that §P(4") < 1and
¢ < —In(6P(A4"). Thus, for all re[0, aJ,

Jup{p (X, X, 0<s <t})dP
= [(exp(sup {z(Y(s)): 0<s <t}))dP
< Y (P =<0,

nz0
Moreover, by the stochastic independence of increments, we have:
[(sup {o(X,+y): 0< s <t})dP
<(fe(X)dP)f(sup {@(X; ' X,.): 0<s <t})dP
< B(Jo(X,)dP) for all re[0, a].

Hence the assertion by covering [0, #] with finitely many intervals of
length /2.

Remarks.

1. The proof of this theorem has been strongly influenced by the proof of a
related (but weaker) result due to Tortrat [16]. In fact, the basic idea already
appears in Skorohod [15].

2. Let v, denote the jump measure of the process (X,)o< <> t€ Ry, and let
B(t, a) = {xeG: 7(x) < a}. In view of the definition of jump measures the
assumption

sup {X,' X)): teR,} <a with probability 1

(of Theorem 4) is equivalent with v,(CB(z, @) =0 for all teR..

THeOREM 5. Let G be a locally compact group having a countable basis of its
topology or a separable Fréchet space. Let (i), o be a continuous convolution
semigroup in #*(G) with Iévy measure w. Finally, let @ be a continuous
submultiplicative function on G. Then the following assertions are equivalent:

] jwdu, < oo for some te RY%.
(ii) [lcy@dn < oo for all UeB(G).

Proof. Let UeB{G). Without loss of generality we may assume U
= [7 < q] for some ae R (since n(CV) < o for all Ve B(G)). Let % denote the
restriction of  to CU. Now x is finite. Hence for every te R.. there exists e(x)
=g +tu+(t*/2)u+x+ ..., and (e(tx))», is a continuous convolution semi-
group in .4 (G){Poisson semigroup with exponent x). By the Lévy - Khinchine
formula (which in both cases is available; cf. [9] resp. [2]) there exists a
continuous convolution semigroup (v),»o 1n .#*(G) such that the generating
functional of (y),5, is the sum of the generating functionals of (v,),», and
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(e(t)),»0. Moreover, every u, can be represented by a norm convergent
perturbation series ([8], p. 11, p. 61I):
pe = exp { —1(G)} 3. w (1),

k>0
uo(t) =v,,  w(t) = [voeuru_ (t—r)dr (keN).
Q

(i) = (ii) From
¥
ty = exp{—tx(G)} [v, %3¢ xv,_ dr
o

we have [@dx < o (cf. [14], Proof of Theorem 1).

(ii) == (i) Let(Y,),», denote the additive process associated with (v,),» . Since
the Lévy measure of (v,)» is the restriction of 5 to U\{e}, in view of the first
remark in Section 2 we have:

supit¥,~'Y): teR,} <a with probability 1.

Hence Theorem 4 yields a(t) = sup {{pdv;: 0 <s <t} <ooforeveryteR,.
Now with the aid of the perturbation series we obtain:

Jodu, < a(t)exp {t {a(z”md% ~-%(G))} < c0.

Remarks. :

1. For a locally compact group(not necessarily having a countable basis of its
topology) Theorem 5 has been proved in [14] by purely analytical methods.
Let us mention that in [14] the result has been established for a slightly larger
class of submultiplicative functions.

For a separable Hilbert space Theorem 5 has been proved in [12]. For a
separable Banach space proofs for this result have been given in [1] and [11].

Our proof has the advantage that it works in both cases and, more generally,
on every Polish group where one has a Lévy-Khinchine tormula for the
continuous convolution semigroups.

2. Let G be a Polish group and let (X)), be the homogeneous additive
process associated with the continuous convolution semigroup (i), » o in . (G).
If @ is a continuous submultiplicative function on G, then [e@dy, < o for some
te R% is equivalent with

fsup{o(X): 0<s<t}dP <
for all te R% ([14], Theorem 2).
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