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Abstract. Let {S,},"=, denote the partial sums of i.i.d. random 
variables with mean 0. The present paper investigates the quantity 

lim sup snjJI1, log log n,, 
k-m 

where { n , ] z ,  is a strictly increasing subsequence of the positive 
integers. The first results are that if E X ;  < co, then the limit superior 
equals a& a.s. for subsequences which increase "at most 
geo~~etrically", and m*, where 

E* = inf { E  > 0; (log nfi)-"/2 < GO}, 
k 

for subsequences which increase "at least geometrically". We also 
perform a refined analysis for the latter case and finally present 
criteria for the finiteness o f ,  

in both cases. 

1. Introduction Let (X,),"=, be i.i.d. random variables and let {S,)g , 
denote their partial sums. The purpose of this paper is to study the law of 
the iterated logarithm (LIL) for subsequences. Thus, let in,)& be a strictly 
increasing subsequence of the positive integers. Then, what can be said about 

If EX, =.O and EX: = aZ < CQ, then, clearly, the limit superior is at 
mst equal to  n$. But, is it always equal to a$? Can it be smaller? 

If {n,) is not increasing "too rapidly", one would guess that the answer is 
r ad 2, for example if nk = k2. On the other hand, if nk increases "very rapidly", 
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it is conceivable that the answer could be something strictly smaller than 
bJ. 

Huggins [12], Lemma 1, proves that if the ratio nk+ ,/nk has a finite limit 
as k -r m, then the limit superior equals o@ a.s. Strictly speaking, the result 
is proved as a functional LIL for Brownian motion (as a first step in proving 
a functional LIL for time changed Brownian motion and for randomly 
indexed partial sums) but, by combining this with webknown strong 
approximation results, the result is valid also for partial sums. 

Our first result, Theorem 2.1, states that the limit superior equals a$ 
a.s. for sequences such that 

lim inf nk/nk + > 0, 
k -'a3 

i s .  for sequences which increase at most geometrically. 
The second result, Theorem 2.2, states that the limit superior equals UE* 

as., where 

for sequences such that 

lim sup nJn,,, < 1, 
k-rm 

i.e. for sequences which increase at least geometrically. An easy estimate 
shows that 0 < E* 4 $. In particular (see below), for "very rapidly" 

k increasing sequences, like for example when n, = 22 one has &* = 0. After a 
section with some technical results, proofs of these results are given in 
Sections 4 and 5. 

In proving necessities, i.e. that a finite limit superior implies EX: < co 
and E X ,  = 0, it turns out that such a result is true when 

lim inf + > 0 and lim sup nJn,+, < 1 
k -roo k-'m 

with E* > 0 (see Section 6). When E* = 0, however, one can obtain a positive 
result without the variance being finite. This situation is dealt with in 
Sections 7 and 8. 

In Sections 9 and 10 we state and prove a dominated ergodic theorem, 
i.e. a result on the finiteness of 

E sup (S,,JJ=)'. 
k 

For the case nk = k, see 1141. 
The necessary and sufficient integrability condition is the same as that of 



Siegmund [14) when 

lim inf nk/nk+, > 0, 
k + m  

i.e. the same as when nk = k, and weaker when 

For "very rapidly" increasing sequences E X ;  < rn is necessary and 
sufficient. 

Throughout, very irregular sequences in,),", , are excluded, where "very 
irregular" means sequences such that 

liminfnjnk+l=O and limsupnk/nk+, = l .  
* -cm k -tm 

Some examples, however, are given. 
The last section contains some further remarks and results. Some 

comments on the convergence/divergence of 

f P ( ] S d  > E j-) and f P(IS.J > E J&G) 
k =  3 , n = 3  

are given. Also, the number of boundary Crossings, i.e. 

is investigated. Contrary to the case n, = k, where this quantity has no 
moments of positive order, see [I51 (only a logarithmic moment for E > 2a if 
a little more than finite variance is assumed; see [8], Corollary 8.3), it turns 
out that the expected number of boundary crossings is always finite for 
E > 0.9 when 

limsupnJnk+, < 1 
k -'a 

(provided, of course, that E X 1  = 0 and EX: = a2 < co) and "sometimes" 
finite when lim inf n,/n,+, > 0. 

k +m 

The final result in Section 11 deals with the case 

lim sup nJn,+, < 1, 
t -ral 

but a slightly different normalization wiU be used. For example, when E* = 0, 
Theorem 2.3 tells us that the fluctuations of the sequence {S,,) are of a 

smaller order of magnitude than ,/=, and in Theorem 11.1 we 
show that 

lim sup s , , J , , / ~  = n,,b as., 
k4w 

provided EX, = 0 and EX: = a2 < co. 
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2. U k  - resub and examples. Our starting point is (a) the classical 
Hartman-Wintner-Strassen LIL (see e.g. [16j, Chapter 5) and (b) Lemma 
1 of Huggins [12], which is used as a first step for proving a functional LIL 
for time-changed Brownian motion and thus, by using strong approximation 
results, also for randomly indexed summation processes. In [12], Lemma 1, 
increasing subsequences {n,jP= are used for which the ratio n,,,/n, has a 
finite limit as k 4 LO. 

Our first result is an extension of the validity of (the one-dimensional 
version of) this result to more general subsequences of partial sums of i.i.d. 
random variables. 

THEOREM 2.1. Let fnk}p=, be a strictly increasing .subsequence of the 
positive integers such that 

It 

Further, ler {X,j,"=, be i.i.d. random variables, set S ,  = Xk and 
k =  1 

suppose that EX, = 0 land EX:  = a2 < a. Then 

(2.2) lim sup (lim in0 
s, - + a$ as. 

k-+m k-+m JZ~ -(-I 

Conuersely, if 

then E X :  < co and E X ,  = 0. 
Wow, suppose that (2.1) does not hold. What kind of results are then 

possible? 

Consider an example; let n, = 2 ~ ~ .  Then n,/nk+, = 2-zk  -0, in 
particular, (2.1) does not hold. It follows from the proofs below ((3.6) and 
Lemma 3.3) that 

w 

P(lS.,t>~J=))<rn for d l  e > O  
k =  3 

and thus, from the Borel-Canteili lemma, that 

Note that the limsup (being 0) is strictly smaller than af i  
This example also raises the question whether it is possible to select the 



subsequence in such a way that one obtains a lirnsup which is strictly 
between 0 and a&. The next theorem (together with Example 4 below) 
gives an answer to this question. 

THEOREM 2.2. Let {nk)km_, be a strictly increasing subsequence of r h ~  
positive integers such that 

n k  lim sup- < 1 
k+m nk+l 

and let 

n 

Further, let {X,)F= =, be i.i.d. raiadolpz variables. Set S, = C X, and 
k.= 1 

suppose t h t  E X ,  = 0 and EX: = g2 < a. Then 

(2.5) lim sup(1im inf) 
s, + PE' as. ,+, k+m ,/==(-) 

I n  particular, if E* = 0, then 

! 
For the converse, suppose that E* > 0. If I 

then EX:  < cc and EX, = 0. 
Remark 2.1. Condition (2.3) implies that there exists a A > 1 such that 

n k + ,  2 ink, from which it easily follows that E* < $; in particular, E* does 
always exist, finite. 

Note that there is no converse in Theorem 2.2 when E* = 0. It turns out 
that, in fact, one can do with a little less than finite variance. We shall return 
to this case in Section 7. 

Examples. The fist observation (cf. [7]) is that a sequence such as 
nk = 2' satisfies (2.1) as well as (2.3). Since e* = $, in that case there is no 
contradiction. I 

1. nk = 2k. Then ndnk+ = f, i.e. both theorems apply and, since 
E* = 4 they yield the same result. , 

2. nk = kd, where d = 1, 2,. .. Then n J n k + ,  = (k /k+  ly -, 1, i.e. Theorem I 
I 

2.1 applies. i 
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k 3. % = 22 . Then nk/nk+l ,= 2-2k  + 0, i.e. Theorem 2.2 applies and, since 
E* = 0, we have an example where (2.6) holds (cf. also above). 

4. n, = [2"'], where f l  > I .  This is the "typical" example which yields 

a lirnsup strictly between 0 and ovh. We have nJn,+, - 2-ak'-1 + 0 as 
k -  s, i.e. Theorem 2.2 applies and it is easy to see that r* = ,,k@. ~ h u r  

For f l =  1 we have a geometric increase and for f l  < 1 Theorem 2.1 
applies. 

5.  n, = k!. Theorem 2.2 applies with E* = fi. 
6. n, = kk. The same. 
Just like in [7], sequences for which 

nk nk lim inf- = 0 and Ern sup- = 1 
k+m nk+l k- lo  nk+l 

both hold have been excluded and, just like there, we shall mention two 
examples of this kind, such that Theorem 2.2 can be applied to one of them 
with E* = 0 and such that the limit superior equals crfi and there is no 
finite E* in the other one. 

7a. k t  n,, = 2~~ and n,,, , = 22k+ 1 ( k  = 1, 2,. . .). Since {n,,],"=, and 
( n z k + , ) ~ =  , both satisfy (2.3) with E* = 0, it follows by applying Theorem 2.2 
twice that snk/J= + 0 a.s. as k - m. Also, 

x(log n,)-'3' < m for all E > 0, 
k 

i.e. E* = 0. 

7b. Let I, = ~ 2 ' ~ + l ,  22k+2  ?..., 22k+1], k = 1 ,  2 ,..., and set 

m m 
B 1 =  U and B , =  U I , , , , .  

A= 1 k =  0 

Then 

1 n ) e z 2  and (log n)-"I' 
1 '=Bz 

are both infinite. Furthermore, since P(Sn > E,/= i.0-) = 1 when 
e < rJ?i it follows that at least one (in fact, both) of 

P(S.  > E\/- Lo. n s B , )  and P(Sn  > cJ- i.0. noB2)  



are 1 for e < u$, i.e. if {n,)  is the (one of the) sequence(s) such that the 
probability equals 1 we have 

S ,  li::tn_smupJ- = ~3 as. 
nk log log nk 

and no finite E*. 

As a final remark we point out the fact that Theorem 2.1 provides a 
proof of the LPL for random variables with index set Zd,, d 2 2, i.e. the 
positive integer d-dimensional lattice points and c, the d-dimensional sector 
in Zd,, for the case where the summation index tends to infinity along a ray 
(see [17], Theorem 1, and 191, Section 4). Note also that Theorem 2.1 covers 
the case where the index tends to infinity, not only along a ray but also 
along any increasing path. 

3. Some preparatory lemmas. In this section we collect some results. of 
technical character which will be used later. 

LEMMA 3.1. Let {nk}km, be a strictly increasing subsequence of the positive 
integers, let 

and let Jr be the inuerse of the subsequence, i.e. $(x) = Card ( k ;  nk $ x]. Then, 
for any random varilabZe X ,  

Furthermore, if (2.3) holds, i.e. 

(3.2) 

then 

nk lirn sup - < 1, 
k4m 

Proof .  Since (1x1 3 nk] = {$(/XI) 2 k),  (3.1) follows by partial 
summation. 

As for (3.3), (3.2) implies that there exists a R > 1 such that 

(3.4) 
Now, set 

3 - Probability ... 
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Then, by (3.41, 
m 

= C (nk - l+ (nk - f l k - l ) ) p ( l~I  3 nk) 
k =  1 

G R - ~ c + E ( x [ ,  
which proves (3.3); in fact, this, together with (3.1) shows that 

Remark 3.1. If there exists a C, O < C < c o ,  such that M ( $ ( x ) ) 2 C x  
(for large x), then, clearly, EM ($ ((XI)) < co = E 1x1 < m, and if, in addition, 
(3.2) holds, then ,EM($ ((XI)) < ~o - E  1x1 < a. 

Next some tail probabilities are estimated. Set 

with 0 < 8 < 1/3, and define, for k < n, 

and set 
n n n 

s:, = 1 xin ,  s; = 1 x;c ,,x, X' = C x;:,. 
k =  1 k =  1 k =  1 

LEMMA 3.2. Suppose that (X,}ff=, are i.i.d. with EX, = 0 and EX:  
= cr2 c: m. Then, ,for large n, 

LEMMA 3.2. Suppos~ that (X,),"=, are i.i.d. with E X 1  = O  and EX4 
= u2 < m. Then, for lmge n, 

Proof. Following the lines of [8] we first note that (ESAI = 

= o(J-) as n  - m. Next, by using the exponential bound as 
formulated in [a], Lemma 2.2, with t = 26b i1 ,  we obtain, for large n, 

P ( I S ; ~  > E J-) 4 P(IS;  - E X (  > E ( I  - 6)  J-) 

which proves (3.6). 



To prove (3.7) we use the bwer exponential bound (see [16], p.' 262). 
However, first Var(S3 is estimated. Trivially, 

Also, 

and i t  follows that 

(3.8) 
for all n, 

s: = Var (Si) 

The lower exponential bound thus yields 

which is the same as (3.7). 
LEMMA 3.3. Let {X,)$, be as in Lemma 3.2 and let (n,],"=, be a strictly 

I 

increasing subsequence of the positive integers satisfying (3.2). Then, for a11 
PI > 0, 

PK o of. Since P(JS;J > V J ~ ]  < nk P(IX, J > &, an applica- 
tion of (3.3) yields (3.9). 

To prove (3.10) we argue like in [3], p. 635. Since 

if follows that (ESJ = o(J-) as n + m and hence that, for large k, 

4 Var (SiJ 4E (x;:,)' 
< < 

q2 nk log log nk . q2 log log n, ' 
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Thus, by changing the order of integration and summation, 

where A(k ,  x) = { k ;  +blk < 1x1 < &j. 
By inverting these inequalities we find that, for large k (and /XI), 

which, keeping (3.4) in mind, yields 

C 
1 1 log log log 1x1 

d Card (A* ( k ,  x)) = 0 
,(k,x) log log nk log log (xZ) log log I Xi 

as 1x1 -. rn 
and so 

(3.12) f P (ISEkl > ll JZ) < Const - E X :  < a 
k = k g  

! and the proof is complete. 
I 

4. Proof of the upper class results. Since 

the upper class result for Theorem 2.1 is immediate. For Theorem 2.2 this 
I 

estimate is too crude and we need the following 
LEMMA 4.1. Assume that (2.3) holds and let E* be defined by (2.4). Then, 

for all E > (TE*, 
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Remark  4.1. If E* = 0, then, 

and the sufficiency has been proved for that case. Recall that e.g. the exaeple 
preceding Theorem 2.2 was such a case. 

Proof .  It is clear that once (4.1) is proved, the other conclusions are 
immediate. 

By (3.6) it follows that 

if E > a* (1 - 36)- I f2 .  Thus, given 6 > a&*, let q > 0 and 6 > 0 be so small 
that ( E  - q ) 2  (1 - 36) > c2 (&*I2. The fact that 

{JS,I > E$ log log n ) c {ISkl > (E - q)  ,/n log log n ] u 

> ; , / ' '  

together with (4.7) and Lemma 3.3 now implies that 

f P(IS,I > E JZGGKI < a 
k =  k,, 

and, since q and S may be chosen arbitrarily small, (4.1) follows. 

5. Proof of the lower class results. Since the lower class result in 
Theorem 2.1 can be deduced from the corresponding result in Theorem 2.2, 
we begin by considering the latter. As mentioned above, there is nothing to 
prove when E* = 0. 

LEMMA 5.1. Suppose that (2.3) holds. Let E* be defined by (2.4) and 
suppose also that E* > 0. Then 

m 

(5.1) P ( S ,  > EJ-) = + m for ail E < DE*. 

k =  3 

Remark  5.1. Just like in the classical proof, the events contained in (5.1) 
are not independent, i.e. there are no immediate further conclusions to be 
made at this point. 

Proof .  By (3.7) it follows, for k ,  large, that 
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I Now, let E < GE* be given and choose q, y and S so small that 
(E + pl)2 (1 + y)(1 -a)-' < a2 (E*)'. Since 

I 

I it follows from (5.2) and Lemma 3.3 that 

I f P ( S ,  > E J ~ ) =  +m, 
k = k o  

which proves the lemma. 
I 

Like in the classical proof (see e.g. [16], p. 2711, we now pass to 
increments in order to apply the converse of the Borel-Cantelli lemma and 
we shall consider the subsequence {n,,),", ,, where v is an integer to be 
chosen later. 

The first step is to show that (5.1) holds for this subsequence. Let E: be 
the E* corresponding. to this subsequence, that is, 

I 

I Now, let 0 < r < s*. Then, since Z(lognt)-'% = m, at least one af the 
series 

I 

must diverge. Since {n,) is strictly increasing we must, in particular, have 

(5.4) 1 (log nVk)-"" = + m for o < e < e*, 
k 

that is, E: 2 E*. However, since trivially E: < E*, it follows that E: = E*. 

Finally, since, by (3.4), n,Jnv(k+,, < I-' c 1, it fol~ows from Lemma 5.1, 
applied to the subsequence (nvk),"=, , that 

03 

(5.5) 1 P(S.,>E,/-)= +m for,all &<a*. 
k =  3 

Next we note that 

where 0 < 6 ,  < 1/3, but otherwise 6, is arbitrary. 



Moreover, recalIing (3.4) and (4.11, we have 

if v is chosen so large that &a1 AVIZ > m*, which, in view of (5.13 and 15-51, 
yields, for E < a ~ *  < dl A''', 

and thus, by independence and Borel-Cantelli, that 

(5.91 (S*vk - ' " ~ ( k  - 1) > E(I-S~)  J '  1.0.) = 1 

for E < QE* < 

I By (5.7) we know, in particular, that 

which, together with (5.9), yields 

(5.11) P(s,,, > E ( 1  - 36 , )  Jm i.o.)= 1 

for E < tw* < AVl2. 
Thus, 

Snk > limsup S"vk 2 UE* (1 - 36,), 
JS- k + a  Jm 

which, in view of the arbitrariness of 61, proves the lower class result for 
Theorem 2.2. 

As for Theorem 2.1 we define, like in the proof of the classical case (see 
[16], p. 271, also 1121, Lemma I), 

(5.12) m, = min {k;  nk > M j ) ,  

where j = 1, 2,. . . and M is an integer 2 2. 
Now, (2.1) implies that 

f'lk inf- > 0; 
k n k f l  

in particular, there exists an integer L > 1 such that 
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which, together with (5.12), implies that 

(5.14) M'G nm. I 4 L M ~  and ~LM)- '<%< L M - I  (j = 1, 2, ...I. 
n Y 

' The sequence (ny)$, thus satisfies formula (2.3). Further, it follows that 
E* = a and, therefore, by what has already been shown, we conclude that 

and we are done. 
Remark  5.2. The subsequences satisfying (2.1) are "at most 

geometrically increasing" and the sequence considered in (5.12) is, in view of 
(5.14), "approximately geometrically increasing". The subsequences satisfying 
(2.3) are "at least geometrically increasing". 

6. The necessity. We thus suppose that 

First we assume that ('2.3) holds and that E* > 0. By using Feller's proof 
for the classical case (see e.g. [16], p. 297) applied to symmetric random 
variables, with E* playing the r6le of in the classical case, it follows that 
E X :  < co, after which we desymmetrize and conclude that EX, = 0 by the 
Kolmogorov strong law of large numbers. This concludes the proof of ' 

Theorem 2.2 (with E* > 0). 
Concerning Theorem 2.1 we observe that (6.1) in particular implies that 

which, together with the fact that {nm.)$,  satisfies (2.3), proves the 
conclusion. Alternatively, one may proceed like in [9], Section 3, and first 
conclude that 

m 

(6.3) P(IS, j -SnmjlI  > ~4-j < m ..  for some E > 0 
j= 1 

and then, recalling (5.141, that 

f P (  sup IS J J-( > E , )  < m for some E ,  > 0, 
j =  1 k j -  l6n6kj 

where may be chosen as 2cM , / L / ( M - L )  and where k j  = M ~ - L M ~ - ' ,  



j = 1, 2, . . . (and M > L). This implies that 

(6.4) P(JS,I z gl  d'nlog log n i.0.) = 0 for some E ,  > 0, 

from which it follows that E X :  < w and E X 1  0 by the converse of the 
classical law of the iterated logarithm. 

This leaves the case E* = 0 without a converse at present. The next 
section treats t h s  case in more detail. 

7. The ease E* = 0. Since Feller's proof for the necessity does not work 
when E* = 0, one may be tempted to guess that for such sequences one can 
obtain positive results also when the variance does not exist. We begin this 

I section by finding necessary moment conditions and then proceed to prove 
. . (  

that the above guess is correct. 
Suppose that E* = 0 and that 

Like in Section 6, we obtain (cf. (6.3)) that 

m 

(7.1) P (JS, - S,- ,I > zd'nk log log nk) < m for some c f 0. 
k =  3 

Now assume that the variables have a symmetric distribution. Since 

it follows from the i.i.d. assumption, Levy's inequality and (3.4) that 

In view of (7.1) it now follows that 

and hence that 
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By Taylor expansion this implies that, for large k, 

I 
-(1 -a-l)nkP(IX,l > 2~,,=1 
2 

I from which we conclude that 

m 

(7.3) n, P(IX,I > ~EJ-1 < s, for some E > O, 
k =  3 

and, hence, by (3.11, that 

(7.4) EM ($ (CX:/logi logf IX,()) < co for some C < co . 

If, in addition, M ( $  (x)) >, C, x as x -, co for some C , ,  0 c C1 < m, 
then ~X:/log+ logf IX,( < m (recall Remark 3.1). 

If the random variables are non-symmetric, one symmetrizes and 
concludes that the moment condition must hold for the symmetrized 
variables after which one desyrnmetrizes and, for the case M($(x)I)) C1 x, 
uses the law of large numbers to conclude that EX, = 0 [5, 81. 

We have thus proved that (7.4) is necessary and that if, in addition, 
M ( $ ( x ) ) > C , x  as x-,m for some C ,  (O<C,  < m), then 

(7.5) EX,Z/log+ log+ ]XI]  < KJ and EX, = 0 

is a necessary condition. 
Now, suppose that EX;/(~O~+ log+]~,I) ' - '  < KJ for some (small) 6 > 0. 

Truncation and Chebyshev's inequality yield 

E X t I  {JX,I $ ,,/-I 
P(IS,,J > e  J ' )  6 nP((X,I > ,/-I+ 

8' log log n 

< nP (tx1 1 > 4-1 + ~ ~ ; / ( l o g +  logf )xi[)'-' 
- 0  as n - c o ,  

(log log n)' 

i.e. s JJ- -t 0 in probability as n -. m and thus there exists a 
subsequence Converging to 0 as .  

This indicates ihat positive results are possible even if there is no finite 
I 

variance. In fact, the following result can be obtained: 
I 

THEOREM 7.1. Let (n,),",, be a strictly increasing subsequence of the 
positive integers such that 

lim sup nk/nk + < 1 
k +m 
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and E* = 0. Suppose, in cadilition, that 

log k 
(7.6) / O  as k + m .  log log n, 

Let (X,),"=, be i.i.d, random variables with EX, = 0 and suppose rhof 

EX? 
log + rl, (X: log+ Iog " [XI 1) 

< CO. 
log+ log+ 1X,( 

Then 

(7.8) as k-, oo. 

Conversely, if 

then EM (@ [~X:/log+ log' lXl()) < cc f i r  s o w  C < cn. If ,  in addition, 
M-($(XI) 2 C ,  x (0 < C1 < m) for large x, then ~ X f / l o g +  log+ (X,I < a, and 
EX1 = 0. 

An elementary computation shows that 

log k 
(7+9) E* = 0 - - - rO as k - m -  1% $ (k)  + O  as k + m ,  

log log n, log Iog k 

i.e. the theorem captures those subsequences with e* = O where the 
convergences in (7.9) are monotone. Further, (7.9) implies that 
log $ (x2 log log x) = o (log log x) as x -t m, i.e. requirement (7.7) is always 
strictly weaker than the assumption that EX4 < a. Note also that for all 
"reasonably well-behaved" sequences ink ) ,  (7.7) is equivalent to 

R emar k 7.1. If, e.g. {n,} is such that log $ (x2)/log $ (x) < Cl for all 
large x or if $(x2)/1Jlfx) < C2 for all large x, then (7.7) and (7.10) aQe 
equivalent. 

If n, = 2'' (k  = 1, 2,. . .), then $ (x) - log log x as x -+ co and conditions 
(7.7) and (7.10) amount to requiring 

.2k 

Furthermore, if nk = 2''' with m2:s, the inverse behaves like 
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Iog,(x), the m times iterated logarithm, and (7.7) and (7.10) become 

By choosing m large, it follows that one can reach arbitrarily close 
to EX:/log+ logf (XIJ < m by requiring sufficiently rapidly increasing 
sequences. Jt is appropriate at this point to mention that we have not been 
able to provide a condition which is both necessary and sufficient for the 
case E* = 0. 

The following is a kind of boundary case when M ( $ ( x ) )  2 Cx. Let 
(Xnj2= be i.id. random variables with EX, = 0 and Ex?/logogi logi (XI/  
< co. Then there exists a strictly increasing function G(x) r co as x 4 m, 
such that 

E X :  G(IX,I) < m  
log' log+ (XI( 

(see e.g. [13], p. 38). Thus, by choosing in,)  in such a way that its inverse $ 
satisfies log $ (x2 log log x) $ G(x) as x +. co, it follows from Theorem 7.1 that 
the conclusion of the theorem holds for this very distribution and this choice 
of subsequence. 

Finally, we mention [4], where a law of the iterated logarithm is proved 
for variables without finite variance. For a complement to Theorem 7.1 we 
also refer to Section 11.5 below. 

8. Roof of Theorem 7.1. The proof of the sufficiency consists of a 
suitable modification of the proof of Theorem 2.2 (cf. also [8]). Since E* = 0, 
however, only the upper class result is needed. Define, for n = 1, 2,. . . and 
0 < S < 1/3, 

26'J- 
(8.1) b =-- 

log" $ (4 

and, set, for k = 1, 2,. . ., n, X;,, = X ,  I (IXkI < 3b,], XC, = Xki (IXkI > c.1, 
n 

Xi: = X ,  - XL,, - Xi,, and let S; = XL,, etc. Also, set 
k =  1 

, log + $ (x2 log+ log+ x) 
and h ( x ) = x 2  logt$(x2) x , O .  B ( 4  = * log + log + x log+bg+ x' 

Thus, E g ( ( X , ( )  < co and Eh( lX, [ )  < co. 
First, we shall give estimates for EX;,,, and Var(X;,,). It follows from 

(7.9) that b, 2 26'~-'J- for large n and thus, by a repeated 
application of (7.9), that 

bi  log log 6,B n for large n. 



Furthermore, log b, $ bg n for large n. Since EX:, = 0 'and g (x)/x is 
monotone for large x, we obtain 

(8 -2) JEShJ = o (JX} as k - cc . 
Since 

log log x log log n, 
SUP 6 2 for large i, 2, - , a 1x1 s2ni 106 $ (x2  log log x) log i 

a similar computation, together with (7.6), yields 

J Var(X; ,nk)<E(X; , ,k )2=  x 2 d F ( x ) +  [ G ~ F ( x )  
Irl S A  A <  1x1 ~ 2 , ~  

.log log ?Ik 
4 A Z + 2  

log k J ~ ( l ~ l ) d ~ ( ~ j .  
1x1 3 A 

By choosing A fixed, large, it thus foIIows (since E g ( J X , / )  < m) that 

Var(x;,,J = ) as k - a ,  

In particuIar, for k large, 

log log n, 
(8.4) IES:,k] G ~ 6 , -  and var (x;.,J -< 6 

logk ' 

Remark  8.1. If we compare with b, as chosen in Section 3, it would 
have been natural to choose b, here comparable to 

However, by (8.3) it follows that this quantity is close to the same as b, as 
chosen in (8.1). 

By proceeding exactly like in the proof of (3.6) with t = 26b i z ,  we 
obtain, recalling (8.41, that, for large k,  

P(JS&I > ~ J z j  4 2 exp 
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Turning over to S, we find, in view of (7.9), that 

{IX,l > cnk) c (log' J, (Xf) > log k )  for large k .  
Thus, . 

P(JS;I > v J l a Z G )  4 %P(IXll> c 3  
I 

< nk P (1 X, I J '  > J ' )  for large k 

and, consequently, by (3.3), we obtain 

f ~(1s:~ > p,,/=) < f S P ( I X ~ I J ~  > d s )  
k = A. k = k g  

4 EX: logt $(X:)/logt log' ( I X , ~  Jm) 4 const +Eh(/X,I). 

which proves that 

(8.6) f P(IS;I > < m for all q z 0. 
k =  3 

As for the third sum, we fist note, recalling (8.2), that 

1x1 b 2 n k  

and that, by (7.9), e: 3 n for large n, from which it follows that 

for large k .  
By proceeding like in the proof of (3.10) we now obtain 

where B(k,  x) = { k ;  +bmk < 1x1 < cnk)-  
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By inverting the inequalities we find that, for large k (and /XI), 

which, together with (7.9), yields 

( x2'0g '(IX"))- Card {B*(k ,  x)) C (1% $ (a)- ' < log fb - 
B(k,*) 2 log log 1x1 

G (log $ (Ixl1)- ' - O(log log $ (1x1)) as x -+ LO 

and, finally, 

(8.9) 2 P(JS;] > vJ'm) 6 Const. Eh((XIJ)  < m for all 1 > 0. 
k= 3 

By combining (8.51, (8.6) and (8.9) (cf. Section 4) we conclude that 

and, since 6 and may be arbitrarily small, it follows that 

The conclusion now follows by the Borel-Cantelli lemma. 
For the nedessity we refer to (7.4) and (7.5). 

9. A dominated ergodic theorem. In [7] a dominated ergodic theorem 
related to the law of large numbers for subsequences was proved. In this 
section, a corresponding result related to the LIL will be given. 

THEOREM 9.1. Ler {n,],"=, be a strictly increasing subsequence of the 
positive integers, let tfi be the inverse and suppose that (X,),"=, are i.i.d. 
random variables with E X ,  = 0. 

(a) Suppose that 
lim inf nJn,+, > 0. 

k-m 
Then 

(9.1) E sup 
s:k < ao - E X :  log+ 1x11 < *. 

a ~ ln log logn~  log+ log+ IX,I 

(b) Suppose that 
lim sup nJn, + , < I 

k d m  
and dejne 
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if H(m) < KO, then 

E SUP Sk < m o E X f  <a. 
k nkloglog nk 

I f  H(m) = a, then 

(9.4) E sup S'k < m - EX: ($ (. . .)) (+ (x;/log' log+ IX, I)) < m . 
k nk log log nk 

Just like in Sectron 7, we have, for all reasonably well-behaved sequences 
(n,}, simpler moment conditions (cf. Remark 7.1). For example, if H(m) = m 

I and ( J , ( x ) ) - ~ - $ ( x ~ )  6 C as X--. mi then 
of 

E sup O' < ~ - E X : H ( ) ( I X , ~ ) ) < ~ .  
k nkloglog nk 

! Also, if H(m) = m and k~ ' l og lognk+O as k-. m, then 

I 
i For very rapidly increasing sequences $ (x) = o (log log x) as x -+ m 

and for "slow$" increasing sequences (such that lim sup d n k  + , c 1), 
k -m 

I 
Jr (x)/log log x - m as x 4 m. The boundary point is where (9.6) 

begins/ceases to hold, i.e. typically when q = [2'*'], a = 1. 
When 0 < a < 1, the relevant assumption is ~X:(log+ ~ o ~ + I X , I ) ' ~ - ~  

< m, for a > 1 it is EX: < m, but when a = 1 it is EXilogt log' logi IX,I 
< 00. 

Zklogk 
Another boundary case is n, = [ 2  3, which requires 

Exf log+ logf logf logf [XI[ < m. 

We also remark that pa, = 2k yields 

(in both (a) and (b)) and that the condition in (a) is the same as that of 
Siegmund [14], where the case nk = k is treated. 

By using examples like those of Section 2 and of Gut [7], Section 2, 
different cases with 

lim sup nk/n, +< = 1 and lim inf nk/nk+ , = 0 
k +m k -'cz 

cibn be constructed. 
The proof is a mixture of the proofs in [14], [6]  and 171 and will only 

be hinted at whenever the resemblance is very strong. 
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PO. haof  of Theorem 9.1. For n = 1, 2, .. . set b, = &log+ log+ n and 
en = \/'slog+ log' pa (b ,  = c, = 0) and 

(i.e. pb + p: + p t f  = EX, = 0). 

For n = 1, 2,. . . we now define 

Further, 
n 

s:= EX;, G = S ~ ~ - S ~ ~ - , ,  W' = sup 1 c/ Jnk log+ logC n, 1, 
k =  1 k 

V' = sup (sAJJ~, log + logt q 1 
k 

and similarly for S:, & ' I , .  . . and Si', &'", ... Finally, 

W = sup 1 YJJ+ logt log + nk I and V = sup l~,/Jn, log+ log + 4 1 . 
k k 

Proof of the  sufficiencies. Since 

v G sup 1s JJ-1, 
n 

the sufficiency in (a) follows from [14j. 
' To prove the sufficiency in (b) we first note that 

EX: < m - E sup(sd J-1' < m 
n 

by [14]; in particular it follows that 

Next, by proceeding like. in [3] (cf. also Lemma 3.3 above) it follows 
that 

m 

C 
1 

, = 3  nloglogn 
E ( X 3 2  < o~ 

and thus, by Kronecker's lemma, that 

4 - Probability . .. 



which together with the fact that I X : ' / , / ~ I  4 1 and Corollary 3.4 
of Hoffmann-J6rgensen [ll], proves that 

E X :  < o - B sup(~:y Jn log log nI2 < m ; 
n 

in particular it follows that 

(1 0.2) EX:  < rn ~ - E ( w " ' ) ~  < 4E(V"')2 < m. 

As for E(W")I we proceed iike in [7] to obtain 

Q (log' log' &)-I E X : l  ( c j - ,  < (Xll < c j )  
k =  1 j = k  3 

o, j 

G C ( C  (log' log+ nk>-')E?:I {ci-l < 1x11 G ~ j )  
j= l  k = 1  

If H(m)  < a, the sum in (10.3) is dominated by 

and, if H(m) = co, the sum is dominated by EX: H ($ (Xf/log+ logf IX,I)). 
We thus conclude that E ( W 2  < co, which, together with (10.1) and (10.2), 
proves that E W2 < a. 

Finally, by Theorem 2.2 we know that P(V < co) = 1. An application of 
[ I l l ,  Corollary 3.4, therefore yields EV* < m. 

Proof  of t h e  necessities. Like in [6] and [7] we assume without 
restriction that 0 < P(IX,[ < 1) < 1. Since EX: < co is trivially necessary, it 
follows from the LIL and (7.1) that 

(10.4) f P(IY,I > E J ~ )  < m for some E > 0 
k =  3 

(in fact, the sum is convergent at least for all E > 2c~$). 
Set 

k =  1 

In view of (10.4) we have (cf. [7], formula (4.1)) 

(10.5) EX:<m*A(x)>O for x>some  x,. 
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To prcjve the necessity in (a) one now proceeds exactly like in [7], 
(2.3) *(2.4a). We thus begin by assuming that the distribution is symmclric. 
First, we observe that 

Eva < e = E W 2  < x. 
Next, 

s: m @ n - S n k -  J2  

(10.6) E sup G 2 E sup +2EV2 
nInonloglogn k = k O  n k - 1 ~ n s 4 n k - 1 1 0 g l ~ g ~ z ~ - L  

after which one needs to show that 

(10.7) 2 P (  sup ( S n - S , - , ) 2 z n m ~ - , l o g 1 0 g ~ - , ) < m .  
k = k O " = m O  n k .  I S n Q n k  

if f i  > xo and, finally, (10.7) follows, i.e. 

EV2 < m +-Esup s; 
nloglog n < m, 

from which we conclude that 

by C141. 
A desyrnmetrization concludes the proof. We omit further details. 
To prove the necessity in (b) we proceed like in 171, (2.3) a(2.4.b). Thus, 

omitting details, 

where now fi, > x, (cf. (10.5)) and e l ,  c, and c, are numerical constants. 
By rescaling { X , )  we can and do assume that c, = 1. 
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By inversion we find that, for large i ,  

i I - i (log' log' n,)-l 
log + log + nk q i i l lng lag i 

I = i C' (logt log+ nk)- = iH ($ (i/log log i)). 
I k < S(i11og lag i) 

The sum in (10.8) (with c, = 1) thus majorizes 

- EX: H(+(XTPogf logf IXlI)), 
which completes the proof. 

11. Miscellstiia. In this final section we collect some additional results 
and remarks. 

1 
11.1. In the process of proving Theorem 2.2 we found that 

for E > GE* (E < m*) when 

Ern sup nJnk + , < 1 
k +a, 

(see (4.1) and (5.1)). By choosing the particular sequence n, = [ck], where 
c > 1, and by performing computations like those in 151 and 181 we obtain 

COROLLARY 11.1. Let (X,),"= =, be i.i.d. random variables with mean 0 and 
,finite variance c2. Then 

f ~ P ( ~ s ~ (  > 6 JZ) < m for & > c f i ,  
n = 3 n  

41 

(1 1.2) P ( I S ~ ~ ~ I  > eJcnlog+ log+ cn) < m for e > G$, 
n= 3  

(1 1.3) P (1s.l > E J ' )  = m for E c c$, . 
n= 3 

m 

(1 1.4) P ( ( s ~ ~ ~ I  > cJen logf log+ en) = m for E < a$. 
n= 3 

Conversely, if one of the sums is finite for some E, then so are the others, 
EX: < co and EX1 = 0. 

As for the suffi'ciency, (11.1) and (11.3) were proved in [2], Theorem 4, 
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by normal approximation. For (11.1) and (11.2), see [S], 191, and for the 
converse, see [a), Theorem 6.2. 

11.2 Closely connected with the sums studied above is the number of 
boundary crossings, i.e. 

m 

N (€1 = I { ~ S . ~ J  > E J ~ ~  log + log+ n, ), E > 0. 
k= 1 

In particular, 

For nk = k it was shown in [15] that ENr(&) = + m for all r and E > 0 
and, in 181, Corollary 8.3, that Elog' N(&j E)< m for E > 2a provided 
E X ; ( ~ O ~ +  log+ I X , I ) - ~  log+ (X,J .= GG. 

By combining the results obtained earlier we get 
COROLLARY 11.2. Let ink) be as in Theorelm 2.2, i.e. such that 

lim sup nJnk + < 1 
k +ai 

and suppose that fX,);= are i.i.d. random variables with E X ,  .= 0 and 
E X :  = a2 < XI. Then 

< a~ f ir  E > GE*, 

= CO for & < 6&*. 

Remark 11.1. For the case E* = 0 it follows, in view of Theorem 7.1, 
that EN(E) < oo for all E > 0 provided (7.6) and (7.7) hold. 

11.3. For the case 

we did not consider 

1 PW,I > ~JkGGK), 
k 

but 

1 p (IS,) > E J ~ ) ,  
j 

with (ny},"=, as defined in (5.12). Nevertheless, one can ask whether the 
former sum converges. Clearly, E X :  < m (and EX, = 0) is a necessary 
moment condition. Moreover, by using computations like those leading to 
(7.3), we find that 

m 

1 P(IS,I > EJX) < m for some E > 0, 
k =  3 
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then necessarily we must have 

By add'ng further points lo the subsequence we increase the sum in 
( 1 1.7), i.e. its "largest" value is 

m 

1 WX,I > a, Jz), 
n- 3 

the finiteness of which is equivalent to EX;/(log+ 10g+,lX,1)~ < m. Thus, if 
we only assume finite variance (and zero mean) the sum of interest may be 
divergent for all c: > 0. 

But, even more is true; namely, even if the necessary moment conditions 
are satisfied we need not have convergence for any E > 0. In fact, suppose 
that the summands are uniformly bounded and that the sum converges for 
some E. It then follows from (3.7) that we must have 

However, if for example n, = kd, where d is a positive integer, then this.sum 
equals + cc for all t. 3 0 and thus 

(For d = 1 recall the comments following (11.5)). 
As for positive results we shall confine ourselves to  the following 

Example  11.1. Suppose that nk = [ e 4 .  Then M ( x )  - 2@', $(x) - (log x)' and hence 

It. follows from Lemma 3.1 (and Remark 3.1) that (11.7) holds iff 
EX: log' IX,l (logf log' lX,I)- ' < m, which hence is necessary for the 
expressions in (11.5) to be finite. In particular, finite variance is not enough. 

Now, by truncating at ibn,  where 

(cf. Section 3), and by using Lemma 3.2 and the fact that 
13 

1 n,P(IX,I > JI-) c n o EX:log+ I x , ~  log+ log+ IX,l< m 
L = 3  

(Lemma 3.1 and Remark 3.1) it follows that 
cm < co for E > 20, 

(11.8) 
k =  3 = co for E < 26 
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and 

< m for E > 2c, 

= m for E < 2t~ ,  

provided 

(11.10) ~ X f l o g '  I x , ~  Iog+ logf I X , ~  < m ' and EX1 = 0. 

We also recall from Theorem 2.1 that 

Iim sup (n, log log n,JL'/' Js,I = c ~ J 2  a.s. 
k -'sl 

or, equivalently, that N ( t )  < co as. when E > t~$. In this particular case we 
this are in the position that, if (1 1.10) holds and CT$ c a < 20, then 

lim sup (n, log log nk)- ' I 2  I SnkI = o$ < E ,  
k- rm 

but 
m 

(1 1.1 1) P(IS.~I > E J-) = + m. 
k =  3 

We thus have a situation intermediate to the cases nk = kd and 
lim sup ndnk+,  < 1, respectively. 

k -m 

For results related to the above, but dealing with the strong law of large 
numbers, we refer to [I] and [10]. 

11A. A useful tool for proving that sums of tail probabilities converge is 
formula (3.3), p. 164, of [ll]  (see for example [5]). Here we shall indicate 
how a weaker version of Theorem 7.1 can be proved this way. 

Suppose that Ex:/(log+ log+ IX,J)'-* < co for some 5 (0 < 6 < 1) and 
tluncate XI , .  . . , Xn at J-. Suppose also that the variables have a 
symmetric distribution. 

From the computations preceding Theorem 7.1 we know that 

EX: I {IX,J i 4-1 c (log log n ) ' - ' ~ ~ f / ( l o g +  log+ Ix,I)~-', 

which together with an iteration of the inequality of Hoffmann-JCrgensen 
(see also [5 ] ,  Lemma 2.4), applied to S:, and Chebyshev's inequality yields 

where C j  and Dj are numerical constants, which only depend upon j. 
By (3,3), the first sum in the RHS converges if EX:/log+ log+ (X,1 < cc. 
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The second sum converges if 

k 
For example, if nk = 22 this occurs as soon as 6 -2 j  > I .  Thus, given a 

sequence (nkj such that 

~{Ioglogn, ) -"coo  for some a > O  
k 

(which, by (7.9), is a stronger assumption than E* = 0 only), then if j is so 
large that 6 . 2 j  > a we can conclude that 

Since c: may be chosen arbitrarily small ( j  remains fixed, depending only 
on S), the conclusion follows. Note, however, again that this simpler proof 
yields a result which is weaker than Theorem 7.1 in that more integrability is 
required (this can be somewhat weakened) and in that fewer sequences for 
which G* = 0 are included. 

115. The special feature of the LIL is t h a  it describes the asymptotic 
fluctuations of the random walk {S , ) .  Theorem 2.1 tells us that the 
fluctuations are of the same order of magnitude for subsequences which do 
not increase too rapidly. Theorem 2.2 tells us that for rapidly increasing 
subsequences the asymptotic fluctuations are smaller. In particdar, when 
E* = 0, they seem to be of a smaller order of magnitude - the normalization 

is too strong. The following result describes the fluctuations 
for the latter cases: 

THEOREM 11.1. Let (n,),",, be a strictly increasing subsequence of the 
positive integers such that 

n k  lim sup - < I 
k-*m nk+l 

and suppose that {X,j$=, are i.i.d. random variables with E X I  = 0 and 
EX :  = 0' < a. Then 

(11.12) Iim sup (lim inf) s n k  = (2, a$ as. 
+ k+m Jm 

Conversely, if 

then EX: < and EX, = 0. 
The proof of the sufficiency is the same as that of Theorem 2.2 except 

that b, now equals e -  ' 26s' J n  (log' ) (n ) ) -  and truncation is performed at 
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ib,, -and at &. Further, log log n in the previous proof is now replaced by 
log Il/ (n) at relevant places (note then that Iog log n, t, log rl/ (n,) = log k). The 
proof of the necessity follows like in Section 6 (i.e. like in [16], p. 297), again 
with log log nk replaced by logk and with the sufficiency above playing the 
role of the Hartman-Wintner law. We leave the details to the reader. 

When 0 < E* < a&, we know that (n,)  increases at least geometri- 
cally, i.e. ~ increases at most as the logarithmic function, which means that 
log k = jog +jn,) increases at most as log log nk.  We thus normalize with a 
sequence which is smaller than the previous one, but, in view of (7.91, not of a 

smaller order of magnitude. For example, the case nk = ~ 2 ~ ~ 1 ,  f l >  1 (cf. 
Example 4 in Section 21, yields $ (x) - (log kj118, E* = m, log log n, 
= j log k. Thus, the limit superiors in Theorems 2.2 and 11.1 only differ by a 
constant scaling factor 8, and nothing essentially new has been obtained. For 
the limiting case n, = 2k Theorem 11.1 is, of course, the same as Theorem 2.2. 

When E* = 0, however, we know, by (73,  that logk = ~(loglogn,) as k 
-, co, i.e. the normalization here is of a smaller order of magnitude and the 
fluctuations of size o(J-) have been magnified into a readable size. 

- Q(,,/=). If, for example, n, = 22k, log log n, - k as compared to log k 
here. 

Another observation is that, since the subsequence increases very rapidly 
when E* = 0, the influence of S n k - ,  on S ,  should be small or, more precisely, 

S"k - 1 
and Snk should be fairly uncorrelated (in fact the coefficient of 

correlation is ,,/a; (which converges to 0 in typical cases like n, = 2'* 
is asymptotically N ( 0 ,  a') as k - m. Thus, the 
can be expected to behave asymptotically like 

the sequence {zJ@)~= , where {Z,)??, are i.i.d. N ( 0 ,  r2)-distributed 
random variables. Indeed, by well-known estimates for the normal 
distribution (cf, e.g. [16], p. 256) 

and thus 

Now, since {Z,}  are independent, the BoreI-Cantelli lemma applies in 
both directions and we conclude that 
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