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LAW OF THE ITERATED LOGARITHM FOR SUBSEQUENCES

BY

ALLAN GUT (UpPsALA)

_ Abstract. Let {S,}2, denote the partial sums of ii.d. random
variables with mean 0. The present paper investigates the quantity

lim sup S,,’/. /m loglogn,,
k—x

where {m}i2, is a strictly increasing subsequence of the positive
integers. The first results are that if EX? < co, then the limit supetior

'3

equals o'\/i as. for subsequences which increase “at most

geometrically”, and oe*, where

g* =inf{e > 0; ) (log )¢ < w},
k

for subsequences which increase “at least geometrically”. We also
perform a refined analysis for the latter case and finally present
criteria for the finiteness of

Esup(S, //moglogn,)*
K

in both cases.

1. Introduction. Let {X,}=, be iid. random variables and let {S,};2,
denote their partial sums. The purpose of this paper is to study the law of
the iterated logarithm (LIL) for subsequences. Thus, let {n,}~, be a strictly
increasing subsequence of the positive integers. Then, what can be said about

S
lim sup ———t———?
ko /mloglogn,

If EX, =0 and EX? =62 < o0, then, clearly, the limit superior is at
most equal to a\/E. But, is it always equal to a\/i ? Can it be smaller?

If {n,} is not increasing “too rapidly”, one would guess that the answer is

a\/f, for example if n, = k2. On the other hand, if n, increases “very rapidly”,
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it is conceivable that the answer could be something strictly smaller than
o /2.

Huggins [12], Lemma 1, proves that if the ratio n, . /n, has a finite limit
as k — oo, then the limit superior equals aﬁ a.s. Strictly speaking, the result
is proved as a functional LIL for Brownian motion (as a first step in proving
a functional LIL for time changed Brownian motion and for randomly
indexed partial sums) but, by combining this with well-known strong
approximation results, the result is valid also for partial sums.

Our first result, Theorem 2.1, states that the limit superior equals aﬁ
as. for sequences such that

liminfn,/n, ., >0,
k—x
ie. for sequences which increase at most geometrically.
The second result, Theorem 2.2, states that the limit superior equals ge*
a.s., where

* =inf{e > 0; ) (log n,c)‘az/2 < w},
k=3

for sequences such that

limsupn/n. ., <1,

ko0

ie. for sequences which increase at least geometrically. An easy estimate

shows that 0 < f In particular (see below), for “very rapidly”
increasing scquences hke for example when n, = 22 one has ¢* = 0. After a
section with some technical results, proofs of these results are given in
Sections 4 and 5.

In proving necessities, i.. that a finite limit superior 1mphes EX? <
and EX, =0, it turns out that such a result is true when

liminfm/n,,; >0 and limsupn/n., <1

k—w k=

“with &* > 0 (see Section 6). When &* = 0, however, one can obtain a positive

result without the variance being finite. This situation is dealt with in
Sections 7 and 8.

In Sections 9 and 10 we state and prove a dominated ergodic theorem,
i.e. a result on the finiteness of

- Esup(S,,//m loglog ).
k

For the case n, =k, see [14].
The necessary and sufficient integrability condition is the same as that of
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Siegmund [14] when
Iiminfnk/nk+1 > 0,
k—=am
i.e. the same as when n, =k, and weaker when
limsupm/n,,, <1.
k-
For “very rapidly” increasing sequences EX? < oo is necessary and
sufficient. ,
Throughout, very irregular sequences {m, )2, are excluded, where “very
irregular” means sequences such that ‘
liminfr/n,, =0 and limsupn/n.,,=1.
k= . k=0
Some examples, however, are given.
The last section contains some further remarks and results. Some
comments on the convergence/divergence of

) L ©
> P(S,| >e/mloglognm) and ) ;P(IS,,I > &, /nloglogn)
k=3 . n=3

are given. Also, the number of boundary crossings, i.e.
> 1{IS,,] >¢&./mlog” log* n}
k=1

is investigated. Contrary to the case m, =k, where this quantity has no
moments of positive order, see [15] (only a logarithmic moment for & > 2g if
a little more than finite variance is assumed; see [8], Corollary 8.3), it turns
out that the expected number of boundary crossings is always finite for
_ &> 0¢* when
limsupn/m ., <1
k-
(provided, of course, that EX, =0 and EX? = ¢ < ) and “sometimes”

finite when liminfn/n, ., > 0.
k—m

The final result in Section 11 deals with the case
limsupn/n, , <1,
. k—o
but a slightly different normalization will be used. For example, when &* = 0,
Theorem 2.3 tells us that the fluctuations of the sequence {S,,k} are of a

smaller order of magnitude than ,/m loglogn,, and in Theorem 11.1 we
show that

limsupS, //nlogk = aﬁ as.,
k-

provided EX, =0 and EX? =¢? < oo0.
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2. LIL ~ results and examples. Our starting point is (a) the classical
Hartman-Wintner-Strassen LIL (see e.g. [16], Chapter 5) and (b) Lemma
1 of Huggins [12], which is used as a first step for proving a functional LIL
for time-changed Brownian motion and thus, by using strong approximation
results, also for randomly indexed summation processes. In [12], Lemma 1,
increasing subsequences {m ), are used for which the ratio n,, /m has a
finite limit as k— oo. '

Our first result is an extension of the validity of (the one-dimensional
version of) this result to more general subsequences of partial sums of i.id.
random variables.

TueoreM 2.1. Let {m}2, be a strictly increasing .subsequence of the
positive integers such that

"

(2.1 lim inf > 0.

k= M+
. n
Further, let {X,}® , be iid. random variables, set S,= Y X, and
k=1

suppose that EX, =0 and EX? = ¢? < c0. Then

S,

(2.2) lnkn_.s;lp(lll’?lglﬂm_wn—k = (i)a 2 as.
Conversely, if
P(limsup——L"";— < oo) >0,

then EX? < o0 and EX, =0.

Now, suppose that (2.1) does not hold. What kind of results are then
possible?

Consider an example; let n = 22 Then n/n,, = 2‘2"—»0, in
particular, (2.1) does not hold. It follows from the proofs below ((3.6) and
Lemma 3.3) that

Y, P(S,] > e/mloglogn) <o for all ¢ >0
k=3 .
and thus, from the Borel-Cantelli lemma, that
S,
v m loglogn,

Note that the limsup (being 0) is strictly smaller than a\/ﬁ.
This example also raises the question whether it is possible to select the

—0as. as k- oo.
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subsequence in such a way that one obtains a limsup which is strictly
between 0 and a\/i. The next theorem (together with Example 4 below)
gives an answer to this question.

Tueorem 2.2. Let {m}2, be a strictly increasing subsequence of the
positive integers such that

(2.3) limsup—*— < 1
k= Meg
and let
(24) e* =inf{e > 0; ) (log n) "2 < oo},
k=3

Further, let {X,}, be iid. random variables. Set S,= Y X, and

. k=1
suppose that EX, =0 and EX? = 6% < 0. Then

S, .
2.5) limsup(liminf) ————— =+, 0¢* a.s.
( k"'mp koo /mloglogm, (=)

In particular, if £* =0, then
S

v loglogn,

For the converse, suppose that ¢* > 0. If

(_ 1S,
P|limsup———e
k-w . /n.loglogn,
then EX? < o0 and EX, = 0. _

Remark 2.1. Condition (2.3) implies that there exists a A > 1 such that
N +1 = Ang, from which it easily follows that ¢* < \/5; in particular, ¢* does
always exist, finite.

Note that there is no converse in Theorem 2.2 when &* = 0. It turns out
that, in fact, one can do with a little less than finite variance. We shall return
to this case in Section 7.

Examples. The first observation (cf. [7]) is that a sequence such as
n, = 2* satisfies (2.1) as well as (2.3). Since &¢* = ﬁ, in that case there is no
contradiction.

1. n,=2* Then m/m., ;=4 ie. both theorems apply and, since
& = \/5, they yield the same result.

2. m=k% whered =1, 2,... Then n/n,, = (k/k+ 1) — 1, i.e. Theorem
2.1 applies.

(2.6)

—~0as. as k- oo

<-oo)> 0,
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3n= 22*. Then min., = 2%, 0, i.e. Theorem 2.2 applies and,-.since
&* =0, we have an example where (2.6) holds (cf. also above).

4. n, = [2"”], where f > 1. This is the “typical” example which yields

a limsup strictly between 0 and o-\/i We have n/n, ., ~ 27871 0 as
k — oo, ie. Theorem 2.2 applies and it is easy to see that ¢* = ./2/8. Thus

Sy 2
lim sup ————— =af— as. as k— .
koo /mloglogn, B
For =1 we have a geometric increase and for f <1 Theorem 2.1
applies. .
5. n, =k!. Theorem 2.2 applies with &* = \/—2_
6. n, = k*. The same.

Just like in [7], sequences for which
y

.. . y
lim inf =0 and limsup =1
kK=o Mey koo Mty

both hold have been excluded and, just like there, we shall mention two
examples of this kind, such that Theorem 2.2 can be applied to one of them

with &* =0 and such that the limit superior equals a\/2 and there is no
finite ¢* in the other one.

7a. Let ny =22 and ngq =22 +1 (k=1, 2,...). Since {ny )2, and
{ny+1}i>1 both satisfy (2.3) with &* = 0, it follows by applying Theorem 2.2

twice that S, /./n loglogn, — 0 as. as k— co. Also,
Y (log n) % < for all >0,
k .

ie. ¥ =0

7b. Let I, = {2+1, 22 +2,...,22""), k=1,2,..., and set

By=U Iy and B;= U Iy
k=1 k=0
Then v
Y (log m~%2 and Y (logn)~**?

neB neB>

are both infinite. Furthermore, since P(S,>¢./nloglogn io0)=1 when
£ < 0\/5, it follows that at least one (in fact, both) of :

P(S, >¢&/nloglogn i0. neB;) and P(S, Sa\/nloglogn 1.0. ne By)
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are 1 for ¢ <0./2, ie. if {n} is the (one of the) sequence(s) such that the
probability equals 1 we have

S,
lim sup : = aﬁ a.s.

k= /1 loglogn,
and no finite g*.

As a final remark we point out the fact that Theorem 2.1 provides a
proof of the LIL for random variables with index set Z%, d > 2, ie.. the
positive integer d-dimensional lattice points and T, the d-dimensional sector
in Z% , for the case where the summation index tends to infinity along a ray
(see [17], Theorem 1, and [9], Section 4). Note also that Theorem 2.1 covers
the case where the index tends to infinity, not only along a ray but also
along any increasing path.

3. Some preparatory lemmas. In this section we collect some results. of
technical character which will be used later. -

LemMa 3.1. Let {m )2, be a strictly increasing subsequence of the positive
integers, let

[x]
Mx)=>mn, x>0
k=1

and let \ be the inverse of the subsequence, i.e. { (x) = Card {k; n, < x}. Then,
for any random variable X, :

-
(3.1) Y mP(X|=n)=EMW(X]) < c.
k=1
Furthermore, if (2.3) holds, i.e.
3.2 lim sup i <1,
k- Mpsy
then ’
(3.3) ElX| <= ) mP(X| =n)<owo.
k=1

Proof. Since {|X|>mn}={Y(X))=k}, (3.1) follows by partial
summation. ’ .
As for (3.3), (3.2) implies that there exists a 4 > 1 such that

34 L Mg =Am, k=1,2,.

Now, set
[« o]

Z = Z nkP(lX’ 2 nk).

k=1

3 — Probability ...
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. Then, by (3.4),
= Z ("k—1+("k—”k—1))P(iX| = m) |

k=

—

<§“ P(X]| > nk)+2 Z P(X| =)

k=1 k=1i=ng_1+1
KA1+ E|X],
which proves (3.3); in fact, this, together w1th (3.1) shows that-
= A
(3.5) EM(!//(IXI)) =Yy nPlX|=Zn)< T IEIXI
k=1

Remark 3.1. If there exists a C, 0 < C < o, such that M (¥ (x)) = Cx
(for large x), then, clearly, EM (y (|X])) < o = E|X] < o0, and if, in addition,
(3.2) holds, then EM (y (|X])) < o0 <> E|X]| < o0.
~ Next some tail probabilities are estimated. Set

2007 | n -
S — . = 1 e
b : log*log*n’ n=12..

with 0 < d < 1/3, and define, for k < n,

1 ! ’H !
X;c,n = XkI{IXkI < Ebn}s Xi’c,n = XkI{IXkJ > \/;}, X k_Xk,n_Xk

and set

n n n
Sp= Z Xiws Sy = Z Xin  Si'= Z‘ Xin

LEMMA 3.2. Suppose that {X, }°° | are iid. w:th EX, =0 and EX?
= 06> < . Then, for large n,

LemMA 3.2. Suppose that {X,,},,=1 are iid. with EX, =0 and EX?
= g% < 0. Then, for large n,

(.6)  P(S)>e/nloglogn) < 2(logm ™22 ~392¢2 0 <5 < 1/3,

(3.7) P(S,>e/nloglogn) = (logn) =" ¥M2e%1-8 45 0,0<8<1/3.
Proof. Foliowing the lines of [8] we first note that |ES)|=

=o(/nloglogn) as n— co. Next, by usmg the exponentlal bound as
formulated in [8], Lemma 2.2, with t = 26b, ', we obtain, for large n,

P(|S|>s,/nloglogn) P(|S’ ES)| >e(1— 6),/nloglogn)
< 2exp{—26b; te(l— 5),/nloglogn+ n4c52 ~2 2(1+¢5)Jf
) 2
= 2exp{—-272(1 —3d)loglog n},

which proves (3.6).
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To prove (3.7) we use the lower exponential bound (see [16], p. 262).
However, first Var(S;) is estimated. Trivially,

Var(X;,) < E(X},)? < 0?
Also, '
1.
Var(X},) = EX;—EX21{1X) > 5 b,) ~(E(X;,0)’

and it follows that

< no? for all n,
= no?(1-¢) for large n.

The lower exponential bound thus yields

P(S, > e. /nloglogn) = ( \/___ J/log log n)

(3.8) v s2 = Var(S.) {

> ———-=loglogn- ,
exp{ 352 (1—-9) oglogn (1+y)}

which is the same as (3.7).

LemMa 3.3. Let {X,}%, be as in Lemma 3.2 and let {n,}}2, be a strictly
increasing subsequence of the positive integers satisfying (3.2). Then, for all
n>0,

39) 3 PUS3) > my/mloglogn,) < o,

(3.10) Z P(S;| > n/m loglogn,) < o0.

Proof. Since P(|S,|> n/mloglognm) < n P(1X,| > \/1;), an applica-
tion of (3.3) yields (3.9).

To prove (3.10) we argue like in [3], p. 635. Since
EXY,) < j [x| dF (x} = o(/n"tloglogn),
nf2
it follows that |ES;'| = o(,/nloglogn) as n— oo and hence that, for large k,

P(S;| > ny/nloglogny) < ( Sy~ ESy| > —. /mlog log nk)

4 Var(S,) < 4E (X”’,,)

S m-.
n*ndoglogn, ~ n*loglogn,
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Thus, by changing the order of integration and summation,

Y. P(Sy] >, /nk loglogn,) ———EXZI{Eb,,k <Xl < \/n_k}
ko

k= k= k loglog n,

) 1
( e
K [A;%x)loglognk

where A(k, x) = {k; 3b, <X <. /m}.

By inverting these 1nequa11t1es we find that, for large k (and |x|)

. . 2
G11) Ak, x) = A*(k, x) = {k; X2 <n <2 (S%Z) x2log loglxl},

which, keeping (3.4) in mind, yields

1 1 log log log | x|
< Card {A* (k, =0 (——
'A(%x) loglogn, — loglog(x?) ard {4* (k, x)} log log |x]
as |x] - oo
and so
(3.12) (S"I > /M loglognk> < Const- EX? < o0
- k= ko

and the proof is complete.

4. Proof of the upper class results. Since

hY
limsup——————- < limsup—=—t— = aﬁ as.,

k= ,/nkloglognk n~wo /nloglogn

. the upper class result for Theorem 2.1 is immediate. For Theorem 2.2 this

estimate is too crude and we need the following

LemMma 4.1. Assume that (2.3) holds and let ¢* be defined by (2.4). Then,
for all & > o&¥,

@1 Y P(S,) > e/nloglogn) < w,
k=3

4.2 P(S,, >¢&/mloglogn, io0) = 0,
4.3) P(S,) > ey/m loglogn, i0)=0

S

@4  limsup———t— <ot* as.
- ' ko /n loglogn,
| [Sn
4.5) v lih sup < og* as.

| ko /m, log log n,
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" Remark 4.1. If ¢* =0, then,
. S,

/M loglogm,

and the sufficiency has been proved for that case. Recall that e.g. the example
preceding Theorem 2.2 was such a case.

Proof. It is clear that once (4.1) is proved, the other conclusmns are
immediate.

By (3.6) it follows that

(4.7) Z P(IS,,| > &y/n;loglogn) < (log n)~<X1=30/2a% . o

k=kq kko

(4.6) —0as ask— o

if & > oe*(1—338)" Y2, Thus, given ¢ > g¢*, let >0 and 6 > 0 be so small
that (e—n)?(1 —30) > 6%(¢*)%. The fact that :

{18, > e/nloglogn} = {IS;| > (e—n)/nloglogn} U
u{lSﬁ,’l >g nloglog n}u{lS;”l > ; /nloglog n}

together with (4.7) and Lemma 3.3 now implies that

Y. P(S,| > ey/mloglogn) < oo

k=kg

and, since # and § may be chosen érbitrarily small, (4.1) follows.

5. Proof of the lower class results. Since the lower class result in
Theorem 2.1 can be deduced from the corresponding result in Theorem 2.2,
we begin by considering the latter. As mentioned above, there is nothing to
prove when &* = 0.

Lemma 5.1 Suppose that (2.3) holds. Let &* be defined by (24) and
suppose also that €* > 0. Then

(5.1 P(S, >c,/nkloglognk = +00 for all ¢ < og*

k=3 1

Remark 5.1. Just like in the classical proof, the events contained in (5.1)
are not independent, ie. there are no immediate further conclusions to be
made at this point. ’

Proof. By (3.7) it follows, for k, large, that

(52) Y P(S, >e/mloglogn,) >__Z\(1ognk)—32<1+;)/262<1-a>= +oo

k=kg k=kg

if & < oe* J1=0)/(1+7).
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Now, let ¢ <ge* be given and choose 7, y and & so small that
e+n)?*(1+9)(1-8)~! < o?(e*)?>. Since

- {8, > e/nloglogn} < {S, > (e—#)/nloglogn} u
U{IS;,’] >g./nlog'logn} {S"'I >~, /nloglog n}

it follows from (5.2) and Lemma 3.3 that
Y, P(S,, > e/mloglogn,) = + o,
k=kg

which proves the lemma.

Like in the classical proof (see e.g. [16] p- 271), we now pass to
increments in order to apply the converse of the Borel-Cantelli lemma and
we shall consider the subsequence {n,};%,, where v is an integer to be
chosen later.

The first step is to show that (5.1) holds for this subsequence. Let &¥ be
the &* corresponding.to this subsequence, that is,

(5.3) gf =inf{e > 0; ¥ (log ) ~*** < oo},
k

Now, let 0 < & < &*. Then, since ) (log n) % = oo, at least one of the
series :

—e2 .
Z_(lognvk{i) 8/22 J=O9 17 2’---’ V.-'l,
. k
must diverge. Since {m} is strictly increasing we must, in particular, have

(5.4) Y (logn,) > = + 0 for 0 <¢ < e¥,
k

that is, e¥ > ¢*. However, since trivially &* <e*, it follows that &* = ¢*.
Finally, since, by (34), n,/nu+;, <47V <1, it follows from Lemma 5.1,
applied to the subsequence {n,};2,, that

(5.5) > P(S,, >e&y/nyloglogn,) = +00  for-all & < oe*.
k=3 - ;

Next we note that-
(56) P(Snvk >¢e vk log log nvk) . .
s P(Sllvk nv(k 1) > 8(1 61) A Y Vk log log nd
+PSnygyy > €0, \/ny loglogn,),

where 0 < 8, < 1/3, but otherwise 8, is arbitrary.
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Moreover, recalling (3.4) and (4.1), we have

57 3 P(ISp,_ )| > €01 /nyloglogn,)
k=4

"g ,‘24 P(Isnv(k_ 1)' > 851 AV/Z —\/nv(k_ 1) log log nv(k_ 1)) < CD

if v is chosen so large that &6, A"? > g¢*, which, in view of (5.6) and (5.5),
yields, for & < ge* < &b, A",

1) > 3(1 —98,)/n,log 1og ny) =+

(5.8) 24 P(S,,—8§

and thus, by independence and Borel-Canfelli, that

(5.9 P(S,,vk——S,,v(k_l) > g(1-08,) \/nyloglogn,, i.0)=1

for ¢ < oe* < &6, A2

By (5.7) we know, in particular, that

(5.10) P(IS,,v(knl)I > 280,  /ny loglogn, 1.0) =0,

which, together with (5.9), yields

(5.11) P(S,,, >&(1—38,)\/nyloglogn, io)=1

for & < ge* < &6, A¥2.
Thus,

S, S, .
limsup u > lim sup————2%—— > ge* (1 —34,),

k»o /mloglogn, k- . /n,loglogn,

which, in view- of the arbitrariness of §,, proves the lower class result for
Theorem 2.2. .
As for Theorem 2.1 we define, like in the proof of the classical case (see

[16], p. 271, also [12], Lemma 1),

(5.12) m; = min {k; m, > M},

where j=1,2,... and M is an integer > 2.
Now, (2.1) implies that

inf
k Mt

>0;

in particular, there exists an integer L > 1 such that -

(5.13) Mooy <Lm, k=1,2,...,
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which, together with (5.12), implies that
) : LT
(514) M/ <n, < LM’ and (LM)~* <# SLM™' (j=1,2,..).
mj
" The sequence {n,,,j} 21 thus satisfies formula (2.3). Further, it follows that
e* = \/5 and, therefore, by what has already been shown, we conclude that

Snk [,

lim sup —======—= > limsup ! > 0'\/5
. k-w . /nloglogn, Jmo /n,,,jloglogn,,,j

and we are done.

Remark 5.2. The subsequences satisfying (2.1) are “at most
geometrically increasing” and the sequence considered in (5.12) is, in view of
(5.14), “approximately geometrically increasing”. The subsequences satisfying
(2.3) are “at least geometrically increasing”. ‘

[

6. The necessity. We thus suppose that

6.1) P <]jmsup—|‘L < oo) > 0.
k~wo . /mloglogn,

First we assume that (2.3) holds and that &* > 0. By using Feller’s proof
for the classical case (see e.g. [16], p. 297) applied to symmetric random
variables, with &¢* playing the r6le of \/5 in the classical case, it follows that
EX? < oo, after which we desymmetrize and conclude that EX, = 0 by the
Kolmogorov strong law of large numbers. This concludes the proof of
Theorem 2.2 (with &* > 0).

Concerning Theorem 2.1 we observe that (6.1} in particular implies that

‘ IS"m I
(6.2) P (lim sup ot < oo)>‘ 0,
LN log log N S

which, together with the fact that {m,;}2, satisfies (2.3), proves the
conclusion. Alternatively, one may proceed like in [9], Section 3, and first
conclude that :

63) Y P(S, —S, 1l > &4/ Ny, loglogny,) < oo . for some &> 0
j=1 ! " '

and then, recalling (5.14), that

P( sup |S,,/~'/nlog logn| >¢;) <o for some g >0,

1 kjy1Snsk;

™8

J

where &, may be chosen as 2¢eM ./L{(M—L) and where k; = M/ — LM/~ !,
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j=1,2,... (and M > L). This implies that

(6.4) P(|S,| > &, /nloglogn i0)=0 for some ¢ >0,

from which it follows that EX? < cv and EX,; = 0 by the converse of the
classical law of the iterated logarithm.

This leaves the case ¢* = 0 without a converse at present The next
section treats this case in more detail

7. The case ¢* = 0. Since Feller’s proof for the necessity does not work
when &* = 0, one may be tempted to guess that for such sequences one can
: obtain positive results also when the variance does not exist. We begin this
i section by finding necessary moment conditions and then proceed to prove
that the above guess is correct.
Suppose that ¢* =0 and that

. ISHk,
Pllimsup—=———=——=< 0 }|>0.

ko /m loglogn,

Like in Section 6, we obtain (cf. (6.3)) that

(7.1) Y P(1Sy,~ S, _,| >e/mloglogn) <o  for some ¢ > 0.
k=3

Now assume that the variables have a symmetric distribution. Since

1 Xl <ISal+185-1) < 2 max Sy,

1sk<n

it follows from the iid. assumption, Lévy’s inequality and (3.4) that

2P(S,, — Sy, _ | > &/ loglogn, =2P(|Sy -, _ | > &/m Joglogn,)
= P( max lSI>s./nkloglognk)

l\nk nk 1
=z P( max |X;]> 2e/nloglogn,)
ismp—m_4

—(1=P(X,] > 2¢,/n Toglog n, )™ ™~
~(1=P(X,| > 26 /m Toglogn)

In view of (7.1) it now follows that

(1=P(X,) > 26 /mloglogn)) T o1 sk 0

and hence that

m P(X;| > 22 /m loglogn) -~ 0 as k—'oo.




‘concludes that the moment condition must hold for the symmetrized

(15 . EX?/log*log*|X,/ <o and EX;=0

_is a necessary condition.

__variance. In fact, the following result can be obtained:
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By Taylor expansion this implies that, for large k,
Sn_4| > & /m loglogny)
1 —_—————
;E(l-l_l)nkp(lxll >28 nkloglognk)

(72)  2P(S,, —

from which we conclude that

(7.3) Z L P(X,| > 2. /mloglogn,) < oo for some & >0,

and, hence, by (3.1), that
(7.4 EM(y(CX%¥log™ log* |X,|)) < oo for some C < c0.

If, in addition, M(y(x)) > Cyx as x—co for some C;,0<C; <00,
then EX3/log* log* |X;| < oo (recall Remark 3.1).
If the random variables are non-symmetric, one symmetrizes and

variables after which one desymmetrizes and, for the case M(y(x))> C, x,
uses the law of large numbers to conclude that EX; =0 [5, 8].

We have thus proved that (7.4) is necessary and that if, in addition,
My (x)) = Cyx as x— o for some C; (0 < C; < o0), then

Now, suppose that EX%/(log* log* |X,|)' *® < oo for some (small) & > 0.
Truncation and Chebyshev’s inequality yield

EXZI{X,| </
P(S,| > e/nloglogn) < nP(X,| > \/nloglogn)+ iRkl 21| nlpglogn}

s*loglogn

EXz 1 +1 + D¢ 1-6
< nP(X,| > /nloglogn)+ '1/(3f10g(;§grlz)"1|) -0 asn- oo,

ie. S,,/,/nloglogn—»O in probability as n— oo and thus there exzsts a

subsequence COnverglng to 0 as.
This indicates fhat positive results are possible even if there is no finite

Tueorem 7.1. Let {m}, be a strictly increasing subsequence of the
positive integers such that

limsup /. <1
ka0
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and &* = 0. Suppose, in addition, that

k
logk 10 as k= oo

7. —_—
(7.6) loglogn, °

Let {X,}%, be iid. random variables with EX, =0 and suppose that

log* ¥ (X3log* log™ |X,])

2
-7 B log* log™ | X,

Then
S,,k

v loglogn,

IS, )
P (lim SUp——————=oo < 0 | >0,
N\ k=w L/l loglog 1y

then EM(y(CX3/log* log*|X,))) < for some C < 0. If, in add:tton,
(dl(x)) = C;x (0 < Cy < ) for large x, then EX}/log* log™ |X,| < o0 and
EX, = 0.
An clementary computatlon shows that

—0as. as k— .

(7.8)

Conversely, if

logk 035 ko Oo‘:loglﬁ(k)
loglogn, E loglogk

(79) e =0« -0 as k— oo,

~ 1e. the theorem captures those subsequences with &£* =0 where the
convergences in (7.9) are monotone. Further, (7.9) implies that
logy (x*loglog x) = o(loglog x) as x — oo, i.e. requirement (7.7) is always
strictly weaker than the assumption that EX? < co. Note also that for all
“reasonably well-behaved” sequences {n,}, (7.7) is equivalent to

» log™ ¢ (1X,)
"log* log* |X,|
Remark 7.1. If, eg. {m} is such that logy (x*/logy (x) < C, for all

large x or if l/l(xz)/l/l(x)< C, for all large x, then (7.7) and (7.10) are
equivalent.

(7.10)

Ifn = 22 (k=1,2,..) then ¥ (x) ~ loglogx as x —» o0 and conditions
(7.7) and (7.10) amount to requiring
+ + +
EX? log kzg 1<+>g | Xl
log™ log™ | X

.2k
Furthermore, if n, =22 with m2:s, the inverse behaves like
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log, (x), the m times iterated logarithm, and (7.7) and (7.10) become

log, | X,
EXZ——'"———
"logs X,

By choosing m large, it follows that one can reach arbitrarily close
to EX3%/log*log*|X,] <o by requiring sufficiently rapidly increasing
sequences. It is appropriate at this point to mention that we have not been
able to provide a condition which is both necessary and sufﬁc1ent for the
case ¢* = 0.

The following is a kind of boundary case when M (tb(x)) Cx. Let
{X,}%, be iid. random variables with EX, =0 and EX?%/log” log* |X|
< 0. Then there exists a strictly increasing function G(x) ~ c© as x — oo,
such that .

2 G0X4)
log* log™ | X

(see e.g. [13], p. 38). Thus, by choosing {n,} in such a way that its inverse
satisfies log ¥ (x?loglog x) < G(x) as x — oo, it follows from Theorem 7.1 that
the conclusion of the theorem holds for this very distribution and this choice
of subsequence. _

Finally, we mention [4], where a law of the iterated logarithm is proved
for variables without finite variance. For a complement to Theorem 7.1 we
also refer to Section 11.5 below.

8. Proof of Theorem 7.1. The proof of the sufficiency consists of a
suitable modification of the proof of Theorem 2.2 (cf. also [8]). Since &* =0,
however, only the upper class result _is needed. Define, for n =1, 2,... and

L 0<d<1/3,

26% /nlog™log* n nlog® log* n
3. _20 o8 08 R d ¢ = (28 5 °
®.1) = ey Y T g v ()

and set, for k=1,2,...,n X, =X, J{Xd| <3b}, Xiin = X J{IXl > €als

Xy = Xy— Xy~ Xy, and let S,= Y X;, etc. Also, set
k=1 .

log* ¥ (x?)
log*log™ x’

,log* Y (x*log* log™ x)
log* log* x

Thus, Eg(|X,|) < co and Eh(}X,]) < co.

First, we shall give estimates for EX} ,, and Var(X,) It follows from

(79) that b, > 25%e" . /n(loglogn) ™' for large n and thus, by a repeated
apphcatlon of (7.9), that

and h(x) = x* x> 0.

g(x) =

b2loglogh,>=n for large n.




LIL for subsequences ) 45

Furthermore, logb, <logn for large n. Since EX, =0 and. g(x)/x is
monotone for large x, we obtain

log log by,

EX, " x| dF (%) < |
EXin] < j HAF) S 3b,, logy (b7, loglogbnk)

[x[>

j g(x) dF (x)

1
> —
1= >0 70

"k

log logn, ( og log nk)
€S—————o(l)=0| —— as k — oo,
| b ogu () VT,
ie. :

(8.2) |ES, | = o(/m loglogn,) as k— co.

Since
loglog x log log .
up < - for large i,
%b".ﬂ <|x|<i,, logn//(x loglogx) logi
a similar computatlon, together with (7.6), yields
Var(X,,) < E(X}, ,,k) = f x2 dF (x)+ x2dF (x)
lx] <4 A<|x|$—;—bnk
loglogn,
S A4 2—=——== dF (x).
+ log k j g(|x)dF (x)
x> 4

By choosing A fixed, large, it thus follows (since Eg (X 1]} < o) that

1 '
(8.3) Var(X},)=o0 (———IOg O8% ) a5 k- 0.
, k logk

In particular, for k large,

log log nk'

(8.4) |ES,,) < &b/mloglogm, and Var(Xy,)<é log k

Remark 8.1. If we compare with b, as chosen in Section 3, it would
have been natural to choose b, here comparable to

20~ ' Var(Xy, ) /n(loglogn) 1.
However, by (8.3) it follows that this quantity is close to the same as b, as

chosen in (8.1).

By proceeding exactly like in the proof of (3.6) with t = 20b, !, we
obtain, recalling (8.4), that, for large k,

2
P(S, | > e/m loglogm) < Zexp{—%(l —3d)log k} = 2ks(1- 3928
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ie.
@8.5) ), P(S;|>e/mloglogn,)
k=kq
o —s2(1— 20
<2 Y kU392 <o for &> 13"

k=kq
Turning over to S, we find, in view of (7.9), that
X4} > cn } = {log* ¢ (X?) > logk}  for large k.
Thus, . :
P(IS W > 1/ T loglog m) < 1, P(|X,] > ¢pp)
<mP |X1|\/Eg+ W (X3) > /nloglogn) for large k

and, consequently, by (3.3), we obtain

Y. P(Sy| > n/mloglogn) < n P(I X4l \/logJr v(X?3 > \/n,‘ log logn,)

k=kg k= ko
< EXilog" ¢ (X1)/log™ log™ (X1l \/log™ ¥ (X)) < const+Eh(|X ),

which proves that

(8.6) Y. P(Sy| >n/mloglog nk) <o for all > 0.
k=3

As for the third sum, we first note, recalling (8.2), that
'|ES;,’,: < j |x] dF (x)

Lo <lxl<cy,
<m | |xddF(x)=o(/mloglogm) as k— o0
'x'zéb"k
and that, by (7.9), ¢2 > n for large n, from which it follows that
- loglogn 1

8.7 E(X{,)’ < —-—gk—k (h(lXﬂ)'I{ibn,, < Xy <an})
for large k.

By proceeding like in the proof of -(3.10) we now obtain

1
Z P(ISy| > ny/m loglogn,) < ———E(X1,)°
k=kg k= kologlognk

- 1
zkzkol g‘p( k)Eh(IXlI)I{Ebnk \<~IX1| <c"k}

1
=452 h(|x|)dF (x),
| 2, 4

where B(k, x) = {k; 3b, <|x| <c,
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By inverting the inequalities we find that, for large k (and |x]),

: B _lleogx,b(]xl) x? (log y (1x]))?
(8.8) B(k, x) = B*(k, x)—{ > 2 Togloghl snk<16————loglog|x, }

which, together with (7.9), yields

-1 1x*logy (1) \\* ,
i, B ) < (“’gw(zm)) Cord B2k, =)

< (log ¥ (1x))*-O(loglog ¥ (Ix})  as x— oo
and, finally,

89 X P(S,] > ny/mloglogm) < Const- Eh(|X]) < oo for all 4 > 0.
k=3

By combining (8.5), (8.6) and (8.9) (cf. Section 4) we conclude that

(8.10) Y P(S,| > (e+n)/mloglogn,) < oo if &>
k=3 )

20
=3 and n >0,

and, since 6 and n may be arbitrarily small, it follows that

(8.11) > P(S,] >e/mloglogn,) < oo for all ¢> 0.
k=3

The conclusion now follows by the Borel-Cantelli lemma.
For the necessity we refer to (7.4) and (7.5).

9. A dominated ergodic theorem. In [7] a dominated ergodic theorem
related to the law of large numbers for subsequences was proved. In this
section, a corresponding result related to the LIL will be given.

TaeorEM 9.1. Let {m}2 , be a strictly increasing subsequence of the
positive integers, let  be the inverse and suppose that {X, )2, are iid.
random variables with EX, = 0.

(a) Suppose that

liminfn /., ; > 0.

kK~
Then :
Sz log* | X,
) — % EX}—= <.
©-1 Es‘:pnkloglognk g llog*log* |X | ®

(b) Suppose that

limsupm/n. ., 4 <1
k—~m
and define _
[~}
9.2 _ H(x)= ) (log*log*n)™!, x>0.
' k=1
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If H(w) < o0, then
S2

93 .
©3) E sukp n loglogn,

If H(o0) = o0, then

< o0 <= EX? <0,

s
94 Esipm <0 <=EX (. )Y (Xi/log* log* |X,]) < .
Just like in Section 7, we have, for all reasonably well-behaved sequences
{n,}, simpler moment conditions (cf. Remark 7.1). For example, if H(c0) = o
a and (¥ (x)" ¢ (x*) < C as x— oo, then

s
9.5 Esup

— EX? X )
x nkloglognk<00® THY(X,)) <o

Also, if H(oo) = o0 and k™ 'loglogn, — 0 as k— oo, then

: Y (X,
(9.6) EX?H( (X)) < oo :.Exfm < 0.
For very rapidly increasing sequences ¥ (x)=o(loglogx) as x— o0

and for “slowly” increasing sequences (such that limsupn/n ., <1),
k=0

W(x)/loglogx— o as x->o0. The boundary point is where (9.6)

begins/ceases to hold, i.e. typically when n, = [22"!], o =1.
When 0 <o < 1, the relevant assumption is EX7(log" log* |X|]
< oo, for a > 1 it is EX? < oo, but when o = 1 it is EX?log* log™ log™ | X}
< o0.
Another boundary case is n, = [22***], which requires
EX?log* log* log* log* | X,| < 0.
We also remark that n, = 2* yields
. log" X,
"log* log™ | X,
(in both (a) and (b)) and that the condition in (a) is the same as that of

Siegmund [14], where the case n, =k is treated.
By using examples like those of Section 2 and of Gut [7], Section 2,

different cases. with

Jle—t

lim Sup nk/nk +’1 = 1 and 1im illf nk/nk+ 1 = 0

k—a k=

can be constructed.
The proof is a mixture of the proofs in [14], [6] and [7] and will only
be hinted at whenever the resemblance is very strong.
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10. Proof of Theorem 9.1. For n=1, 2, ... set b, =, /nflog™ log™ n and

¢, = /nlog* log* n (b = ¢, = 0) and

. 1 | 1
Wy =EX,I {IX,,] < Eb,,}, W =EX,I {ax,,| > Ecn},

1 1
U = EXnI{Ebn <X < Ecn} (e. po+p,+p’ =EX,=0).
For n=1, 2,... we now define

1 1
X:,=X,,I{|X,,I <Ebn}_#;v X;t"':XnI{‘Xn' >§C,,}—ﬂ;,’,_

1 ! |
X;’,=Xn1{§bn<|Xul s } #:'” (i'e' XnIX;I+X;I’+X;'”)'

Further,
=Y X K=S5,S,_, W =supl¥//nlog"log" ],
k=1
-supIS /,/n,,]og log* n|

and similarly for Sy, ¥”,... and S}, Y.”,... Finally,
W =sup|Y//mlog*log*n| and V = sub IS,,//mlog™ log™ my|.
K k
Proof of the sufficiencies. Since

V < sup|S,/ /nloglogn|,

the sufficiency in (a) follows from [14].
To prove the sufficiency in (b) we first note that

EX? < o0 = Esup(S,//nloglogn)? < oo

by [14]; in particular it follows that A
(10.1) EX? < 0= E(W)P <4E(V)?: < 0.

Next, by proceeding like.in [3] (cf. also Lemma 3.3 above) it follows
that
i 1
E nn2
,Z—‘a nloglogn (X)” < 0

and thus, by Kronecker’s lemma, that

SIII

Vnloglogn

—~0as. as n-o oo,

4 — Probability ...
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which, together with the fact that | X7/, /nlog* log* n| ';<,1 and Corollary 3.4
of Hoffmann-Jgrgensen [11] proves that

EX? < o :-Esup(S;,”/, /nloglogn)? < o0;

in particular it follows that

(10.2) CEX? < 0= E(W")?: <4E(V")? < o0
As for E(W")* we proceed like in [7] to obtain

- E(Y)? o M=y

103) EW")? < < EX?1{X,| >c,
(103) () k;,nklog+]0g+nk Lomlogtlogtn, ! Xl > e}

< Y (log*log*m) 'Y EX{I{c;y <|Xil <cj}
k=1

i=k

®
\<‘ Z (Z (10g+ 10g+ nk) )EXZI{Cj 1 << |X1| Cj}

i=1 k=1

= 3 H(DEXII{;-, <IX: <¢j}.
i=1

If H(w) < oo, the sum in (10.3) is dominated by

Y H(@)EX}I {¢;-; <|X,| < ¢} = H(o0) EX?
j=1 : :
and, if H (o) = o, the sum is dominated by EX? H(y (X3/log* log™ |X,])).
We thus conclude that E(W” 2« oo, which, together with (10.1) and (10.2),
proves that EW? < 0.

Finally, by Theorem 2.2 we know that P(V < o) = 1 An application of
[11], Corollary 3.4, therefore yields EV? < o0.

Proof of the necessities. Like in [6] and [7] we assume without
restriction that 0 < P(|X,] < 1) < 1. Since EX? < co is trivially necessary, it
follows erm the LIL and (7.1) that

(10.4) Y P(Y] > e/mloglogn) < o for some ¢ >0
k=3 . - .

(in fact, the sum is convergent at least for all ¢ > 20\/5).

Set
A(x) = H P(Y%| < x/mlog" log™ m).

In view of (10.4) we have (cf. [7], formula (4.1)) .

(10.5) EX?<ow=A(x)>0 for x> some x,.
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To prove the necessity in (2) one mow proceeds exactly like in [7],
(2.3) =>(2.4a). We thus begin by assuming that the distribution is symmetric.
First, we observe that

EV?< 7z =EW? < %
Next,

2 (Sn_Sn - )2
(10.6) E sup S Z E sup —

—on +2EV?
,.>,,0n]0glogn kSko  m—1<nsm M- loglogm_,

. after which one needs to show that

107y Y Y P( sup (S,—S,_ 1) > mn,_ loglogn,_,) < 0.

k=kgm=mq a1 Sns<ny

By (10.5)

P(W?>m)=P(W > ﬁ) = A(ﬁ) i P(Y| > /mn, loglogn,) > 0
k=kq

if \/m > x, and, finally, (10.7) follows, i..

2

EVi< E —_
©= Sl,l,pnlog logn

from which we conclude that

2 10g+ |X 1|
'log* log* | X4
by [14].
A desymmetrization conc]udes the proof. We omit further details.

To prove the necessity in (b) we proceed like in [7], (2.3)= (2.4.b). Thus,
omitting details,

(108) oo >4EVZ2EW2 > ¥ P(W>./m)

m=mg

>A(/mo) 3. Y P(%| > /mnloglogn,)

k=k0 m=mq

>c, A(Smg) Z Z nkP(X1 > ¢, mn loglogn,)

k= kom mg

ClA(\/m_o)Z Z ")P(Czl<X1 c;(i+1)—cs,

i=1 wm,‘lm.lngu,c

where now ,/mg > x¢ (cf. (10.5)) and ¢y, ¢, and ¢3 are numerical constants.
By rescaling {X,} we can and do assume that ¢, = 1.
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- By inversion we find that, for large i,

( X m~ ¥ ( X Un

mnylog +ogt m <i m Sifloglogi g ifmylog +logt ny

— ]~i Y (log*log* n)~!

L ""[ log* |
ng Sifloglogi m log - log  my ny Sifloglogi

=i Y (log*log*mn)~' =iH (Y (i/loglog z))

k Sy(ifloglogi)

The sum in (10.8) (with ¢, = 1) thus majorizes
i=1

(109) f} iH (Y (i/log* log* ) P(i < X2 <i+1)

_ ~ EX{H(¥(X1/log* log™ | X)),
which completes the proof.

11. Miscellania. In this final section we collect some additional results

- and remarks.

11.1. In the process of proving Theorem 2.2 we found that
Y P(S,| >&/mloglogn) < oo (= )
k

for ¢ > ge* (¢ < ge*) when
limsupn/n, ., <1
. k-
(see (4.1) and (5.1)). By choosing the particular sequence n, = [c*], where
¢ > 1, and by performing computations like those in {5] and [8] we obtain

CoRrOLLARY 11.1. Let {X,,}:;l be ii.d. random variables with mean 0 and

finite variance a*. Then

e o]

(11.1) Z P(|S,] > &, /nloglogn) <o for e> af

(112) 5 P(S 0 > ex/c"log log™ ") <0 for &> 0 /2,
n=3 .

> 1
(11.3) > ;P(fS,,l > e /nloglogn) =0 = for ¢ <‘a\/§, .
n=3
o n. + +
(11.4) Z P(|S[c,,]| > e /c"loglog* ) =0 for £ <0 /2.

Conversely, if one of the sums is finite for some &, then so are the others,
EX? < o0 and EX, = 0.

As for the sufﬁc1ency, (11.1) and (11.3) were proved in- [2], Theorem 4,
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by normal approximation. For (11.1) and (11. 2), see [8], [9], and for the
converse, see [8], Theorem 6.2.

'11.2 Closely connected with the sums studied above is the number of
boundary crossings, i.e.

N(g) = Y I{S,)>e/mlog*log" n}, &>0.
k=1

In particular,

(11.5) EN(e) = ) P(IS,| > ey/mlog* log™ n).
k=1

For n, = k it was shown in [15] that EN"(g) = + oo for all r and ¢ > 0
and, in [8], Corollary 8.3, that Elog* N(¢) < oo for &> 26 provided
EX?*(log* log* |X,)) " 'log™ |X,| < .

By combining the results obtained earlier we get

CoroLLARY 11.2. Let {m} be as in Theorem 2.2, i.e. such that

limsupn/n,,. <1
k=

and suppose that {X,}2, are iid. random varlables with EX, =0 and
EX? = ¢% < 0. Then

<o for & > og¥,

=00 for ¢ < og*.

(11.6) EN(S){

Remark 11.1. For the case ¢* =0 it follows, in view of Theorem 7.1,
that EN(g) < oo for all £ > 0. provided (7.6) and (7.7) hold.

11.3. For the case
' liminfn/n.,, > 0

k— o

we did not consider

Y. P(1S,,| > &y/m loglogn),
k
but

%} P(S,, | > &y/nm;loglog ny)),

with {nmj}}‘;l as defined in (5.12). Nevertheless, one can ask whether the

former sum converges. Clearly, EX? < (and EX, =0) is a necessary
moment condition. Moreover, by using computations like those leading to
(7.3), we find that if

Y, P(S,| >e&/mloglogn,) < oo for some & >0,
k=3
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then necessarily we must have
=0}

(11.7) Y m P(X, > 31,/nkldgloga) <o for some g > 0.

k=3

By add:ng further points to the ’subsequence we increase the sum in
(1L.7), i.e. its “largest” value is

w

Y nP(X,| > ¢ /nloglogn),

n=3
the finiteness of which is equivalent to EX%/(log* log™|X,|)*> < oo. Thus, if
we only assume finite variance (and zero mean) the sum of interest may be
divergent for all ¢ > 0.

But, even more is true; namely, even if the necessary moment conditions
are satisfied we need not have convergence for any & > 0. In fact, suppose
that the summands are uniformly bounded and that the sum converges for
some ¢. It then follows from (3.7) that we must have

Y (log n)~*2* < w.
= ,

However, if for example n, = k%, where d is a positive integer, then this. sum
equals +oo for all ¢ >0 and thus '

o0
EN(g) = Y P(IS,| > e/mloglogn) = +oo for all £> 0.
k=3

(Ford=1 recall the comments following (11.5)).
As for positive results we shall confine ourselves to the following

Example 11.1. Suppose that n, = [eﬁ]. Then M(x) ~ 2, /xeV™, ¥ (x)
~ (log x)* and hence

M(y(x)) ~ 2xlogx(>x) as x— .

It. follows from Lemma 3.1 (and Remark 3.1) that (11.7) holds iff
EX2log™|X,|(log* log*|X,])"' < oo, which hence is necessary for the
expressions in (11.5) to be finite. In particular, finite variance is not enough.

Now, by truncating at 3b,, where

b= 2% Juflog*log" n
&

(cf. Section 3), and by using Lemma 3.2 and the fact that

ke o}

Y n P(X,| > /n/loglogn,) < 00 <> EX7log" | X |log™ log™ [X;] < o0

k=3
(Lemma 3.1 and Remark 3.1) it follows that
d <o for g > 2a,
(11.8) kga P(|S,,| > &/mloglog nk){= for & < 26

Q0

.
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and

< oo . for &> 20,
(11.9) o EN(E){= w for & < 20,
provided

(11.10) EX?log*|X,|logTlog*|X;| < " and EX,=0.
We also recall from Theorem 2.1 that '

lim sup (m loglog )~ 12(S, | = cr\/i as.

k=
or, equivalently, that N () < o0 a.s. when ¢ > 0'\/5. In this particular case we
thus are in the position that, if (11.10) holds and aﬁ < g < 20, then
~ limsup (n, lbg'lbg-nk)"llzlSnk| = aﬁ <e,

koo :

“but
(11.11) kzaP(lS,,kI > g /loglogn,) = + .

We thus have a situation intermediate to the cases n, =k? and

limsup n /.y < 1, respectively.
k=
For results related to the above, but dealing with the strong law of large

numbers, we refer to [1] and [10].
11.4. A useful tool for proving that sums of tail probabilities converge is

formula (3.3), p. 164, of [11] (see for example [5]). Here we shall indicate

how a weaker version of Theorem 7.1 can be proved this way.
Suppose that EX?/(log™ log™ |X,|)' *? < co for some & (0 < < 1) and

truncate X,,..., X, at \/nloglogn. Suppose also that the variables have a
symmetric distribution.
From the computations preceding Theorem 7.1 we know that

EX2I{X,| < /nloglogn} < (loglog n)! ~? EX?/(log* log* |X,[)**,

which together with an iteration of the inequaﬁty of Hoffmann-J@rgensen
(see also [5], Lemma 2.4), applied to S, and Chebyshev’s inequality yields

Y P(S,) > 2-¥e/m loglogny)
k
EX?/(log* log* | X, ?\¥
< CGYmP(X, > nkIOglognk)+DjZ( Hlog* log* | X)) )
k _ X

(log log n,)°

where C; and D; are numerical constanfs, which only depend upon j.
By (3.3), the first sum in the RHS converges if EXZ/log™ log™ |X,| < c0.
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The second sum converges if
Y (loglog m) %% < w.
k

For example, if n, = 2?* this occurs as soon as -2/ > 1. Thus, given a
sequence {m} such that

Z(loglognk)“" <o for some a>0 -

(which, by (7.9), is a stronger assumption than ¢¥ =0 only), then if j is so
large that §:2/ > a we can conclude that

Y. P(S,,| > 2-3e./mloglogm) < .
k .

Since ¢ may be chosen arbitrarily small (j remains fixed, depending only
on d), the conclusion follows. Note, however, again that this simpler proof
yields a result which is weaker than Theorem 7.1 in that more integrability is
required (this can be somewhat weakened) and in that fewer sequences for
which &¢* = 0 are included. :

11.5. The special feature of the LIL is that it describes the asymptotic
fluctuations of "the random walk {S,}. Theorem 2.1 tells us that the
fluctuations are of the same order of magnitude for subsequences which do
not increase too rapidly. Theorem 2.2 tells us that for rapidly increasing
subsequences the asymptotic fluctuations are smaller. In particular, when
e* = 0, they seem to be of a smaller order of magnitude — the normalization

/mloglogn, is too strong. The following result describes the fluctuations
for the latter cases:

Tueorem 11.1. Let {m )2, be a strictly incréasing subsequence of the
positive integers such that

<1

m
lim sup
k-»w Mp+1

and suppose that {X,}>, are iid. random variables with EX, =0 and
EX? = 06? < 0. Then

=< ,aﬁ as.

: Sny
11.12 ' limsup (liminf) ——
(11.12) . kmp(kmnf) T oz £

Conversely, if

8,
p (.hrkn_’s:pm < oo) >0,
then EX? < o0 and EX, = 0. '
The proof of the sufficiency is the same as that of Theorem 2.2 except
- that b, now equals ¢~ *260%,/n(log* ¢ ()™ ' and truncation is performed at
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3b,-and at \/71 Further, loglogn in the previous proof is now replaced by
log Y (n) at relevant places (note then that loglogn, < logy (n,) = logk). The
proof of the necessity follows like in Section 6 (i.e. like in [16], p. 297), again
with loglogn, replaced by logk and with the sufficiency above playing the
role of the Hartman-Wintner law. We leave the details to the reader.
When 0 <&* <0,/2, we know that {n} increases at least geometri-
cally, i.e. Y increases at most as the logarithmic function, which means that
logk = logy(n,) increases at most as loglogn,. We thus normalize with a
sequence which is smaller than the previous one, but, in view of (7.9), not of a

smaller order of magnitude. For example, the case n, = [2"3], B>1 (cf.
Example 4 in Section 2), yields ¥ (x) ~ (logk)'?, ¢* = /2/B, loglogn,
= Blogk. Thus, the limit superiors in Theorems 2.2 and 11.1 only differ by a
constant scaling factor f§, and nothing essentially new has been obtained. For
the limiting case n, = 2* Theorem 11.1 is, of course, the same as Theorem 2.2.

When &* = 0, however, we know, by (7.9), that logk = o(loglogn,) as k
— o0, i.e. the normalization here is of a smaller order of magnitude and the

fluctuations of size o(./m loglog n,) have been magnified into a readable size .

— O(/mlogk). If, for example, n, = 22, log log n, ~ k' as compared to logk
here.

Another observation is that, since the subsequence increases very rapidly
when ¢* = 0, the influence of S, _, on §,, should be small or, more precisely,
Sw_, and S, should be fairly uncorrelated (in fact the coefficient of
correlation is /n, 1/"k whlch converges to 0 in typical cases like n, = 22
etc.)). Furthermore, S, \/n_k is asymptotically N (0, 6?) as k — oo. Thus, the

sequence {S,/\/mlogk};2, can be expected to behave asymptotically like
the sequence {Zk/./log }e i, where {Z,}2 are iid. N(0, ¢?)-distributed

random variables. Indeed, by well-known estimates for the normal

distribution (cf. e.g. [16], p. 256)

P(Z,y| > e /logk) ~
and thus
(11.13) Y P(Z) > e/logh) < 0 =& > 6,/2.
k=3

Now, since {Z,} are independent, the Borel-Cantelli lemma applies in
both directions and we conclude that :

2
exp{——zio—z—logk} as k— oo

o
&./logk

2 as.

(11.14) limsup

Z, _
ko A /logk
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