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LAW OF THE ITERATED LOGARITHM - CLUSTER POINTS OF
DETERMINISTIC AND RANDOM SUBSEQUENCES

BY

INGRID TORRANG (Uppsara)

Abstract. Let {X,}=, be a sequence of iid. random variables
with mean 0 and finite, positive variance ¢> and let

S,=Y X, n>1.

k=1

Further, let
e ({m)) =inf{s > 0; ¥ (logny) "% < 0},
k=3

where A{n,"},t,1 is a strictly increasing subsequence of the positive
mtegers Then the set of cluster points of {S L loglogn}iLs equals
[~ o'\/i a\/—] as. if hmmfnk/nkﬂ >0, and [- aa*({nk})
as*{{nk})] as. if hmsupn,‘/nkﬂ <1 These resulis are then applied

to randomly mdexed part1a1 sums.

1. Introduction. Let {X 11 be a sequence of iid. random variables with
mean 0 and finite, positive variance ¢ and let S,, n > 1, be the sum of the
first # terms in this sequence. In [5] we find the first version of the law of the
iterated logarithm (LIL) for this case and in [8] a more complete formula-
tion is given, which, in particular states that the set of cluster points of the
sequence {S,,/\/nloglogn 2 3 coincides with [ — 0'\/5 af 2] almost surely.
- The first proof of the LIL in this formulation, that is based only on
basic probablhty tools, is given in [1].

', Let {nk}k 1 be a strictly increasing subsequence of the positive integers.
In [6] it is proved that the cluster set of {S,,k/, /mloglogm }i2 3 equals
[— a\/.i a\[ | almost surely if n,, ,/n has a finite limit as k — oo, and in [4]

results for the cases
lir,?fsup mfhe1 <1 and ]jzninf m/m ., >0
=00 =+

are proved in an elementary way.
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Following the lines of [1] and using the results in [4] we will, in Section
4, prove that, with probability one, the set of cluster points of the sequence

{8, /</mloglogm ity  coincides  with [ —oe*( {m)), oe*({m )1 if
Hmsupm/m,., <1 (k— ) and with [— 0'\/2 0'\/_] if liminfr/n,,., >0
{k — co). These results will then be used in Section 6 to prove an extension,
of the following theorem, which can be considered as an Anscombe theorem
for the LIL, and which is contained in [6], [3] and [2]:

TreoreM 1.1. Let {X,};%, and {S,};> be as above and let (b}, be a
strictly increasing sequence of positive reals, increasing to infinity, such that

(1.1) bysi/by—B ask—o0,1 <B<o.

Further, let {vilez{ be a strictly increasing sequence of positive, integer
valued random variables with v, = 3 and such that v,/b, “~0 as k — o0, 0 < 0
< o0,

Then, the set of cluster poinis of the sequence {S, k/\ﬂk log log;,:}k 1
coincides with [ — o‘ﬁ cr\/_] a.s.

2. Results for deterministic subsequences. Denote by C({x;}) the set of
cluster points (the cluster set) of the sequence {x,}2 ;.

Turorem 2.1. Let {X;}~, be iid. random variables with EX; =0 and
EXi=0%<c0 and let

=Z_Xk’ n;l.

Further, let {m )2, be a strictly increasing subsequence of the positive
integers and define &¢*({n.}) by

.1 e¥({n}) =inf{e > 0; 3 (logn) *"2 < a0},
k=3
Then

_ s,
(2.2) C ({W}) = [—oe*({m)), oe* ({m )] as.
k (1 )

if imsupn/m,, <1, and

k—rw

g i
2.3 — A =[- 2, 2] a.s.
@3) ¢ ({ m loglog nk}) Lo G\/ 1 as

if iminfn/n,, > 0.
koo
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For subsequences such that &*({m})=0, the normalization

\/Hk loglogm, is too strong. If we instead use ./ logk, we have the
following theorem:

Tueorem 2.2. Let {X,}>, and {S,}%, be as in Theorem 2.1 and suppose
that limsupm/n,, <1. Then

(i)

3. Preparatory theorems amd lemmas. In this section we state some
results that will be used in the proof of Theorem 2.1.

Tueorem 3.1. Under the assumptions of Theovem 2.1. we have

S,,k
fitn sup (lim inf)

= et ({n) as.
koo k-o L /m loglogn, (=) )

i imsupn/m,., <1
ko0

This theorem, see [4], provﬁdes a closed, finite interval which contains

the cluster set of {S,,k/«/ m log log nk}k 3 with probablhty one, in the case
limsupm/m .y < 1.

k—o0
To show the opposite inclusion we need the following two lemmas,
where the first one is due to de Acosta [1].
Lemma 3.2. Let {X,} be iid. random variables. EX, = 0, EX} = ¢® < 0.
Let me N, o, > 0, a/my — 0, af/my, — co. Then, for every beR and & > 0,

<o)z —1(8Y
€|z 20—.

Lemma 3.3. Let {m}s2, be a strictly increasing sequence of positive inte-
gers and let ¢%({m,}) be defined by (2.1). Then, for every fixed mteger
v2 1 et ({ng)) = e* (fn).

Proof. By definition it immediatelly follows that &*({n,}) < e*({n}). It
thus remains to verify the opposite inequality.

Choose ¢ arbitrarily in the interval 0 <g <8”‘({n,c }) and consider the
identity

hmmf—logP’(S —b
iy,

k—oo O

S (ogm) =% ¥ (logny.) "
k=1

i=1k=0

Since the left-hand side is infinite, there must exist j, 1 <j < v, such that

—¢2
kZO (log ) "/ = 0.
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It then follows from Lemma 3.3 and the definition of &*({n,}) that

5 p(!_f'ﬂsﬂ(ﬂ_lb <£).__ 0.
k=3 \|\/n,loglogn,,

From this we obtain (4.3) by applying the Borel-Cantelli lemma.
Next we prove that

S, ‘
4.4. liminf y——-k — b‘ =0 as. for every |b| < age*({m}).
( ) k-o [/mloglogn, ).

Choose & > 0 and [b| < o¢*({n,}) arbitrarily, and then let v be so large
that |b] < oe*({m})/1—1"> and A~Y*(se* ({m})+¢) <e. By (4.1) we have
Sﬂ i
lim sup Vk='1)
k- '\/nv(k_ 1 loglog Ry —1)
i.e. for each w outside a set of measure zero, there exists a ky = kg {(w) such
that

< oe*({m)) as.,

| Sy 1) '
(4.5) ; <oe*({m})+e, k>ko.
‘\/ Ry~ 1y loglog nyg 4y
Thus we have
S

fyk

V ok IOg log By -

S

My(k— 1)

X

b|<

\/nv(k~ nloglogmn,g ;)

< Ny~ 1) l0g log myg 4
ny log log ny,

S"vk - S"v(k— n bl
Pk lOg log Ry

S"vk My - 1)

VALY IOg lOg Pk B

<g+

< (oe* ({nk'}) +e)A M2+

o™

S"vk—s"v(k—l) ’
b

VALY IOg lOg Ry

valid for k > k,. The second inequality above comes from (4.5) and (4.2).
This, together with (4.3), now yields

Sn Sn _Sn -
: Hminf}—*«»—b’<e+liminf}—vk——vu——b =¢as.
k- |\ /nyloglogny, k= |\ /nyloglogny,
for |b| < oe*({m})\/1—A7". Since
fim inf - — —b* < liminf | —b‘
o | /mloglogn, k-w | /n,loglogn, ’

¢ may be chosen arbitrarily small and v arbitrarily large, (4.4.) follows.
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To finish off the proof of (2.2) we finally note that it follows from (4.4)

that
\/ m, log log M

for every countable dense subset D < (—oe*({n.}), oe™ ({n.})), and, since the
set of cluster points is closed, we have

Sy
[—oe* ({m), oe* ((m})] = G\/ osioan } )

with probability one, which completes the proof of (2.2).
To prove (2.3) we define a strictly increasing subsequence {my}~, of

;
‘l_"k}l?o=1 by

m, =min{n;: n; >k*}, k=1,2,...

Since the condition liminfm/n, ., > 0 provides the existence of 4 > 1
such that n, < An,_,, we have k¥ < my, < Ak* and my/my ., < AK*(k+ 1% k

=1,2,..., which in turn yields &*({m,}) = ﬁ and limsup(m/my. ) < 1.
k—+o0
Applying (2.2), we now obtain

S S
el V¢ G_k }) 3
({\/r;c‘log log nk}) /my log log my, L= gf G\/—] -

and, since the opposite inclusion is trivial, the proof is finished.

Proof of Theorem 2.2. From Theorem 11.1 in [4] it follows that
C ({S,,k/../n,c logk}) =[— aﬁ a\[ ] a.s. To prove the opposite inclusion we

use the proof of (2.2) with obvious modifications.

5. Results for random subsequences. In this section we state correspon-
ding results concerning randomly index partial sums (cf. [6]).

Tueorem 5.1. Let {X,}2, be iid. random variables with EX, = 0 and
EX?=0? <, and set

=ZX]” F‘l“—‘l,z,...
i=1

Suppose that {b,};> is a sequence of positive reals, strictly increasing to
infinity and let {v}2 be a strictly increasing sequence of positive, integer
valued random variables with v, 2 3 and such that

(5.1) vilby >0 ask— o0, 0<8<o0.
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Finally, let n, = [0b,] denote the integer part of 0b,, k=1,2,..., and
let ¢*({n,)) be defined by (2.1). Then

. Svk )
(5.2 C ({\/ﬁ}) = [—O“E*({I’Zk}), o‘s*({nk})] a.s.

if imsupby/b+q <1, and

k— oo

S,
) -l ({\/\;loglogvk}) L Gﬁ d\[] “*

if liminfb,/b, ., > 0.
k—w

Remark. Suppose that b, /b, — B, k— 00, 0 <B< 1. Then we have
e*({[6b]}) = \/5 and we rediscover Theorem 1.1.
TueoreM 5.2. Under the conditions of Theorem 5.1 we have

iz -naese

if limsupby/by., < 1.

k-0

6. Proefs of Theorems 5.1. and 5.2. The proofs in this section are based
on Theorem 2.1, the Lévy inequality and the following result (cf. [4],
Lemma 4.1):

LemMa 6.1. Let {X,}2, be ii.d. random variables with EX, = 0 and EX}
=0% < o0 and let {m ) be a strictly increasing subsequence of the positive
integers such that limsupm/m. ., <1.

k—o

Finally, let ¢*({n}) be defined by (2.2). Then

>, P(S,]| >&/mloglogn) <co for all e > ae*({m})
k=3

and

Y. P(8,| > &/mlogk) <o  foralle > aﬁ.
k=3

" Proof of Theorem 5.1. To prove (5.2) we observe that, if lim sup bk/b;cﬂ
ko0

<1, the sequence {m}2, is strictly increasing for I large enough and that
limsupm/m ., <1. The conclusion thus follows from (2.2) once we know

k—w
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that

Sy, S
() -e(fmin])as.
/v loglogv, n, log log

but this in turn follows easily if we prove that

62 Sy =S, o &

(6.2 S S — ) - 00.
: Vi loglogmy

Let y>0 be given and choose § >0 such that y/25'? >as*({m,,})
= ge*({m;}), where m =m~[1-0)m]—1 and m =[(1+&)nm]—m, k=
1,2, ..., and let | be an integer to be determined later. Then

- Su~Sw |
(6.3) P(U {‘————— > y})
‘ k=1 n, loglog n
o0 S‘, —S" 7 @
<Er(l el ol <ot r (Ol
k=1 n, loglogn, 1, k=1 (|
i S;—8§
< P max . > y)+
kgl{ (ﬂrmﬁ <m |/ loglog my
> 6})

+P( max Si= 5 »>y)}+P<U {F’ivl
ny, k=1 ([

<j<me+m |\ /m loglog

From the definition of m, and m; it follows that there exist ko
and k; such that

v/ moglog m, — o/ 2my, = (/6%)/mloglog m—a \/2m;
= (y/26Y%) /m loglogm, for all k > ko

y/m loglogn, —a /2m;, > (y/26Y%) /m;loglogm;  for all k > k.

Thus, if we choose | > max(k,, k;), the Lévy inequality (see [7], p. 248)
yields that the sum in the right most side of (6.3) is bounded by

2y { (]Smk[ > 251',2 ——./my loglog mk)+P(|SmkI > 261’2 m,’cloglogm;‘»)},
k=1

which in turn is finite by Lemma 6.1.
Further, condition (5.1) implies that

lim P(G {% —1‘ >6}) =0
-0 k=1 L .

and

i
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and hence it follows from (6.3) that

o S, —8
limP(U{ kA >y})=0.
I~  \k=! n, loglogn,
Since y is arbitrary, (6.2) follows. ‘
- To prove (5.3), we define m;, = min {j: [6b;] > k*}, k=1, 2, ... Since
limsupbp, /by, ,, <1 and s*(’{[ﬁbmk]‘}) = \/i,

k—wo

(5.3) follows from (5.2) applied to the sequence {Svm </ Vg loglog vy, }2 5 (cf.
the proof of (2.3)). *

Proof of Theorem 5.2. Theorem 5.2. follows from Theorem 2.2 once
we know that C({S,,//vclogk}) = C({5,/\/mlogk}) as, and to prove this
we use proof of (5.2) with obvious modifications.
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