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OPERATOR SEMI-STABLE PROBABILITY MEASURES
ON BANACH SPACES

BY T

R. KOMOROWSKI (WROCEAW)

.....Abstract. This paper is concerned with the operator sémi-stable’
probability measures on a real separable space. The aim is to prove
the singularity of a Gaussian measure ¢ and a Poisson measure &(M)
which are the components in the Levy—Khinchine decomposition of
an operator semi-stable measure.

1. First we show a characterization of the spectral radius of an operator.
This characterization is not really necessary in the proofs of the remaining
lemmas and theorems but the use of .it makes reasonings more clear and
readible.

~ Let X be an arbitrary linear space with a norm ||+||, A be a continuous
operator on X and r(4) = lim ||4"|'" be its spectral radius. By {[|-||,};,cr we

n-—rw
understand the set of all norms equivalent to the norm [f-]|.

LemMa 1.1. With the above assumptions the following conditions hold:
(i) r(A) = inf[|All;

teT .
(i) lim A" = 0 iff there exists a teT such that ||A], <1;

n—a

(iii) if X is a finite-dimensional space, then, for all x€X, lim A"x = 0 iff

there exists a te T such that ||A||, < 1.

Proof. (i) It suffices to prove that r(A4) > inf||4,| (te T), the opposite
inequality . being trivial.

We show that for an arbitrary z > r(A) there exists.a toe T such that
l|All¢, < z. Indeed, let r(A4) < z. Hence there exists a positive integer n, such

that, for n > ny, [[(4/2)"| < 1. Then ||(4/z)"| <C (n=1, 2, ...) for a constant
C>0. :

Putting
Ixlle, = sup  |I(4/2)"xll  ((4/2)° =1)

n=0,1,2,...



140 - - R. Komorowski

we get ||x]| <|lxll,, < Clixll and
I(A/2) xll;, = Sﬁp II(A/Z)(A/Z)"XII _sup ||(A/Z)"x|| = |Ixlleq-

These inequalities 1rnp1y that lAll,, <z and toeT
(i) Since lim A™ = 0, there exists a positive integer n, such that, for n
=1,2,..., we have ||4""|| < 1. Hence r(A"™) < 1 and, since r(4"®) = r(A4)",
r(4) < 1
From (i) it follows that there exists a te T such that ||A||, <1.
~ (iii) easily follows from (ii) because in a finite-dimensional space the
strong operator convergence is equivalent to the norm convergence of a

" sequence of operators.

2. Let X denote a real separable Banach space with the norm ||-|| and
with the dual space X*. By (-, - > we denote the dual parting between X and
X*,

A measure pu on X is said to be full if its support is not contained in any
hyperplane on X. By &, we denote the probability measure concentrated at
the point x € X. Given a measure y, we define u~ by putting u~ (4) = u(—A4),
where —A4 = {—y: yed).

A probability measure p on X is called .infinitely divisible if, for every
natural n, there exists a probability measure y, such that u¥" = y' (the power
* is taken in the sense of convolution).

Tortrat [6], p. 311 (see also [1]), proved the following analogue of the
Levy—Khinchine (L - K) representation of infinitely divisible laws: every infini-
tely divisible measure 4 on X has a unique representation u = g*é&(M),
where ¢ is -a symmetric Gaussian measure on X and M is a generalized
Poisson exponent of &(M).

Let M (X) denote the set of all generalized Poisson exponents of X. The
characteristic functionals of these measures are:

21 .
| e(M)(X*)—CXP u (x, xc>+f[e'<"*">—1—l<X* x> 1p, (X)]M(dx)}( ),

22 8(x*) = exp(—3% (x*, Rx*)),

where xoe X, D, is the ball of radius 7 concentrated at 0 (D, is the set of
continuity of the measure M ([2], Th. 2.3)), R is a covariance operator, and
x¥e X* ([8], p. 173).

We say that a probability measure p is operator semi-stable if its
characteristic functional j satisfies the functional equation [i(x*)*

(") Such a measure (M) we also denote by &(M)+0,,.
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= pu(B* x*) e *"*0> for all x* e X* where B is a continuous linear invertible
operator on X, x,€X ce(0, 1). :

Operator semi-stable measures have been con51dered by Krakowiak [4].
It is known that every. operator semi-stable measure x on X is infinitely
divisible (¢ #&(M)) and that

(2.3) . BM=cM (BM(4) =M(B"'4)),

(2.4) . ¢R=BRB*,

where B is a continuous linear invertible operator on X, ce(0, 1), Me M(X)
and g is a symmetric Gaussian measure on X with the covariance operator R
(see Prop.. 2.1 and Prop 4.1 in [4]).

The proofs of (2.3) and (2.4) immediately follow from (2.1) and (2.2).

By the triple (¢ * €(M), B, c) we mean the operator semi-stable measure
with an operator B and a parameter c. The representation L-K of this
measure is of the form g *&(M), where ¢ is a symmetri¢c Gaussian measure
and Me M (X). The set of such triples we denote by S(X).

By K we denote the unit ball on X, x* M denotes the measure define by
x* M(A) = M(x*" ' A) for Me M(X) and x*e X*.

3. In this section we show the singularity of the Gaussian measure g
and the Poisson measure &(M) in the L-K representation for the operator
semi-stable measure g *&(M).

THEOREM 3.1. Let (¢ * &(M), B, ¢) eS(X) and lim B" = 0. Then there exists

-a Borel subset A in X such that n_’w

@) e(M)(A°+x5) =0 for some xp€ X,
(i) M(A) =

(ii1) 0(A+y)=0 for all ye X

(A° denotes the complement of A).

First we introduce some necessary notation. Put D = B/\/E Let x§e X*
be such that x§ g # d, and {n;}}2, be such a sequence of positive 1ntegers
that ~

31y - [ ¢xef, DY x> M(dx) <277
. K

The existence of such a sequence follows from the observation that we
can assume ||Bj| <1 (see Lemma 1.1 (ii)) and (see (2.3))

(.2) [ (x8, DX M(dx) = | (b, x)2 M(dx).
K

Bk
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Finally, put
(3.3) A ={x: lim {x¥, D"x) = 0}.

j-o
Now recall a well-known fact concerning the Poisson measures:
Lemma 3.1. If Me M(X), M and &(M) are symmetric, then

[ Ge*, x)2 M(dx) = | %, x)? (M) (dx)
K K
Jor all x*e X* (see Lemma 1.8, p. 10, in [5]).
" Proof of theorem 3.1. (i) Notice first that
(3:4) 1e(x+y)<1,e(x)+1,.6(y) for all x, yeX.

~ Step 1. Let us assume that E(M) and M -are symmetric measures. Fix
£ >0 and a positive integer n, such that, for Ko = B "°K,

(3.5) M(K%) <.
Put m= M| c. Then by the definition of the Poisson measure &(m)
we get °
© kk A
2m)(47) = om0 3 1D
k=0
o= m®) o 1
Z k_“‘ c(xl + . +xk)m(dx1) m(dxk)
k= lemes -
o 1 ’
- m(X) s C k—1 : .
<e k; i km (A m(X) (see (3.4))
o X k
= e ™ m(49 Z m( ) = M(A° N K%) <e ., (see (3.5)
which gives the inequality
(3.6) E(M] )(A9) <e.
Ko
Now we show that
3.7 E(Mgo)(49) =0
We have ' v
' ® @ ® s 1
(38) =U N {|<x3, D)) >E}'
k=1i=1j=1

Thus, by the Borel-Cantelli lemma, formula (3.7) is justified by the
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estimations . .
o 5 . * i 1
> 8(Mie) ({x: 1038, D01 >
j=1

<k2 Y [ <8, DYx)*E(Mlg )(dx)

Jj=1X

M™s

= k2

i

| <x§, D" x? Ml (dx) (see Lemma 3.1)
X

I
—_

(j (xE, Dn1x>2M(dx)+zo: <=, D" x> M (dx))

=1 K B i=1pg—ip

{P = K\ BK; see also (2.3))
(Z 277+ Z [ b, x)M(@dx) < +00  (see (3.2).

llB I!K

Finally, from (3.6) and (3.7), we obtain
F(M) () = E(MIx, + Mlgs) (4) = E(Mlg o)+ E(Mi,t ) (49
< [ (19 +1,60) 2 (M) (@) (M) (@) (see 3.4)
= & (Mlg,) (49 +8(M]g) (4 <e.

Since ¢ > 0 is an arbitrary number, we obtain (i).

Step 2. Let M and &(M) = & (M) =4, be not necessarily symmetric. Let
M+ M~ be the symmetrization of the measure M and é(M+M™) be a
symmetric measure. Notice that ((M+M™), B, ¢)e S(X). Hence

e(M+M7)(4) = fe (M) (4°—x) &.(M ™) (dx) =

ie. ¢, (M)(A°—x) =0 ae. with respect to e, (M~ )
Putting x, = x+y,, we get eé(M)(A°+x) =
(ii). It suffices to prove that, for all integers m,

39 0=M(A°nB™P) (P=K\BK).

By a similar argument as in the proof of (i), condition (3.8) results from
the following estlmatlons

S M(ix: [<xk, DY x| > 1/k} B P)
2 |

<k2§ ] <x3,D"x>2M(dx)=k2§ [ <x§, x)2 M (dx)
n=0 gmp ‘ ' n=OBm:l-np

=k? | xf, x)?M(dx) < +o0 (see (2.3)).
BMK '
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(iit) First notice that
(3.10) Do = 9.

This equality can be proved by éounting the characteristic functionals of
both measures applying (2.2) and (2.4).
Let ye X. Then, by (3.10) and since x§ ¢ # 85, we obtain

oo @

o+ =o( 0 U N ix: [<x8, DY) < 1k} +)

k=1i=1j=i

<iimfmg(lx: 1G5, D"x) < 1/K}+)

= limlim D" g({x: <x§, x)— <x8, D)l < 1/k})
= limlim x§ ({te R: |t — Gxf, D" )1 <1/k})

< Ijinxﬁ.g({teR: lt] < 1/k}) = 0.

The last inequality follows from the observation that a Gaussian measu-
re of an interval of a fixed length is the greatest possible when the interval is
a symmetric neighbourhood of zero. This completes the proof.

CoroLLarY 3.1. If (€(M)*g, B, ¢)€S(X) lim B" =0, then

(i) €(M) and ¢ are singular,
(ii) M and ¢ are singular.
CororLrAry 3.2 (cf. [3], p. 31). Let X be a finite-dimensional space and

‘.(E(M)*Q, B, c)eS(X) be a full measure. Then there exist two B-invariant
subspaces X, and X, such that: '

(i) o(Xy)=1; '
(i) M(X%) =0 and e(M)(X,+y) =0 for some yeX,

(iii) (Bly,) < /c;

(i) 7(Bly,) = /c;

V) X = X,®X,.

Proof. We can assume that lim B" =0 (B"(u*p~) = (u*u~)" =, and
see (ii) in [7], p. 120). '

Let X, = RX* (RX* is the image of the space X* by the covariance

operator R corresponding to the Gaussian measure g).
(i) is obvious for every finite-dimensional space.
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(ii) Evidently, X, = A (see (3.3)), which together w1th Theorem 3.1 (i),
(ii), implies (ii).

(iii) obviously follows from Lemma 1.1 (i), (iii).

(iv) Let ker R = {x*: Rx* =0}. Since the space RX*¥ is isomorphic to
X*/ker R, we can consnder all elements of RX* as x*+ker R = [x¥], and the
operator D as D[x*] = [D* x*].

. Now we can define a norm on X*/ker R by putting

Il = /<%, R,

Condition (24) gives at once that D is isometric on X*/ker R -and thus
~ we obtain that r(Dly,) = 1.
(v) is obvious in view of (iii) and (iv), for the considered measure is full.
We shall show a one more fact concerning the considered measures:
TueoRem 3.2. Suppose {o+&(M), B, c)eS(X) and r(BY/c <1. Then
[[]x||1’M(dx) < +00.

Proof. By Lemma 1.1 (ii) we can assume that ||B||"/c < I Since

and (2.3) holds, we obtain

llB"x ? a l""
it M@ = 3 [ M@ < M) 3 2 < oo,
K n=0P n=0
which concludes the proof.
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