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A GENERALIZED LAW OF THE ITERATED LOGARITHM
FOR THE LARGEST OBSERVATION
OF A TRIANGULAR ARRAY

BY

ANDRE ADLER (CHicaco, ILLINOIS)

Abstract. Consider independent and identically distributed ran-
dom variables {X, X;;, 1 €j <k, k> 1} from a particular distribu-
tion with EX = oo. We show that there exists an unusual generalized
Law of the Iterated Logarithm involving max «;j<i Xy;-
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This paper explores the asymptotic behavior of weighted partial sums of
random variables. These random variables are the largest observations from
each row of a triangular array. The techniques used in proving our theorems
are similar to those found in [1] and [5] in the sense that we first obtain
a weak law to conclude that the lower limit is almost surely bounded above by
1/(+2). As for obtaining equality the proofs differ in the sense that we actually
exhibit a random variable that achieves this bound. Furthermore, it should be
pointed out that our random variables, {X;, k > 1}, are not identically dis-
tributed.

Let {X Xy, 1< j<k, k=1} be independent and identically distri-
buted random variables with common density f(x) =x"2I(x > 1). Set
X, = max, <j<x Xi;. Note that since EX,; = oo, it follows that EX; =
for all k> 1. As for notation we set a,=n* and b,=n""2lgn, where
lgx = max {1, logx}. To expedite matters we also set c, = b,/a, = n*lgn. We
use the constant C to denote a generic bound that is not necessarily the same in
each appearance.
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Proof. We will use the Degenerate Convergence Theorem, which can be
found on p. 338 of [3]. For all 1 <k<n,
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When —2<a< —1 we need to partition j into three cases. Let

A;={j:j< —1Y@+1)}, B;j={:j=—1fa+1)}
and _
‘ C;={j: j> —1/@+1)}.
Then, as above,
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The first ‘series goes to zero since
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and there are only a finite number of terms in A;. In the event of B; # &, in
‘which case the second term would be zero, this series consists of one term,
which is bounded above by

C (n lgn)(a+ 2)/(a+1)
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which goes to zero since the exponent is negative. Finally, the last series
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Next, we need to show that
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This sequence is bounded above by
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Lastly, we need to see where our sequence is going:
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The first sequence

1 n OC+2) ka+1
() i_b"kz ayk ~ ( Za:izl - 1.

= n




152 A. Adler

The second sequence
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Using equation 0.155,#4 from [4], p. 4, we have
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Hence our third sequence
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Next we will show that the last sequence converges to zero. In doing so, we
again need to observe two different cases. If a > —1, then
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When —2 <a < —1 we need to partition j into three cases. Let
4;={j: @+1)(+1)>—1}, B;j={i: @+)(j+1)=—1}

and
Ci={j: @+1)(j+1)< —1}.
Then, as in the last calculation,
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The second sequence, which consists of at most one term,
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Combining (1), (2) and (3) we have
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Thus, we need to show that
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THEOREM 2.

n J
vin £ (i)
_ 1

(Mnlgn)? |~ Mlgn )

" o4 X
h‘minfz"=1 e 1
n>m b,
and

Mnlgn
- 0.

2 almost surely for all o > —2
. Z:: 1 a Xk
lim sup b

1p1s
N
Py

b
Y,
S

Ms

= o0 almost surely for- all o> —2
n n}

-

Proof. Using our Claim, for all M >0 we have
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To this end we need to find a new truncation to our random variables. Note
that

—1 Z ak b_ Z akaI(]. <Xk k2)
k=1
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The first term vanishes almost surely by the usual Khintchine-Kolmogo-
rov Convergence Theorem (see [3]) and Kronecker’s lemma since
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As for the second term,
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Combining (4) and (5) we have
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which completes the proof. m

In the case of @ = —2, a Strong Law of Large Numbers does exist. Natu-
rally, the norming sequence differs from our sequence b, = n**2Ign. This result
can be found in [2]. If « < —2, then our partial sum ZL . @ X, converges. S0
if we divide it by any sequence approaching infinity, the limit will be zero,
which is quite uninteresting.

TueOREM 3. The partial sum Y, _, &, Xy converges for all o < —2.

Proof. Here we partition our sum in a fourth and final way:

Y a,X,= Y a. X, I(1 <X,<n*(Ign))+ Y a, X, I1(X, > n*(lgn)?).
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So by the Borel-Cantelli lemma the second series is finite almost surely. As for
the first series,

@ © n2(lgn)2 1 n—1 dx
EY a,X,I1<X,<n(gn?)= ) a, | n(l ) —
1

X

n=1 n=1 x
) nz(lgn)zdx ®
Y ntt | =<CY n*tllgn< oo
n=1 1 X n=1

since @« < —2. Hence our series is convergent almost surely. m

A couple of comments about the underlying distribution used in this paper
should be mentioned. We used f (x) = x~2I(x > 1), but it should be possible to
work with any distribution in which P {X > x} ~ L(x)/x for all slowly varying
functions L(x). However, each case must be treated separately due to the in-
tricate calculations that must be performed, as shown in this paper. Also, on
a much simpler note, it does not matter where our distribution starts. What
always matters is the tail behavior. For example, if we let Y, = X, +c for

some constant c, then Y, = X, +c¢, and since ZL % = o(by), our conclusions
also hold for the partial sum ) _. 4, Y.
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