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1. INTRODUCTION

In recent investigations of non-commutative, free probability and type B-free
probability, important roles are taken by the representations and the geometry of
Cayley graphs of the symmetry groups Sn, type B-symmetry groups and, in gen-
eral, by Coxeter groups (W,S) – see the papers: [3]–[6], [8]–[10], [12], [13],
and [16].

In the last papers connected with the free infinite divisibility, the first main step
was done looking for the length function on Sn, a so-called block length function:
forw in Sn and sk = (k, k+1), ∥w∥ := cardinality of different Coxeter generators
sij in an irreducible decomposition w = si1si2 . . . sik ; see [1], [2], and [5]–[7].

The norm functions: ∥w∥s and ∥w∥ :=
∑

s∈S ∥w∥s, are the main objects of
our paper. We will study the positive definite functions like fq,s(w) = q∥w∥s , fq(w)

= q∥w∥ and related positive definite functions fQ,F and fQ (for the definition, cf.
(2.3) below) of the Coxeter group (W,S). We are interested in the following:

PROBLEM 1. Are Gelfand–Raikov representations associated with the non-
central positive definite functions fq,s, fq, fQ,F , and fQ irreducible or factorial?
What are their structures?

PROBLEM 2. What does it mean the infinite divisibility of f for Gelfand–
Raikov representation πf for f = fq,s?
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To answer these questions we will work with the Gelfand–Raikov (GNS) con-
struction of representations coming from the given positive definite, normalized
functions on W and the structure of those representations like: inducing represen-
tations, cyclic representations, factoriality for special situations (see Sections 3–6
below). The main results for Coxeter groups are given in Section 7 and the next
sections. One of the more interesting results is Theorem 8.1, saying that for finite
Coxeter groups, the Gelfand–Raikov representation related to our length function,
the function fq =

∏
s∈S fq,s, is equivalent to the left regular representation of the

group W .
Also some structure results are presented in Theorem 10.1 in the case of the

affine Weyl (Coxeter) group, and in Theorem 11.1 for compact hyperbolic Coxeter
groups. Our representations in typical cases are: either the left regular ones LW or
direct sums of trivial representations 1W and those induced from certain parabolic
subgroups (containing LW ).

2. THE s-SEMINORM ∥w∥s ON A COXETER GROUP AND PROBLEM SETTING

DEFINITION 2.1. A Coxeter group (W,S) is defined by a set S, |S| ¬ ∞, of
generators and a set of fundamental relations of the form

(ss′)m(s,s′) = e (s, s′ ∈ S),(2.1)
m(s, s′) = m(s′, s) ∈ {∞, 1, 2, . . .}, m(s, s′) = 1 if and only if s = s′,

where e denotes the identity element of W . The order |S| is called a rank of W .
A subgroup ⟨J⟩ generated by a subset J of S is called a parabolic subgroup of W .

Our fundamental reference for Coxeter groups is the book of Humphreys [21].
Prepare an undirected graph Γ with S as vertex set, joining vertices s and s′

by an edge whenever m(s, s′) ­ 3, labelled m(s, s′) if m(s, s′) ­ 4. We call Γ a
Coxeter graph of (W,S). A Coxeter group is called irreducible if its Coxeter graph
is connected. In the case where S is finite, as a geometric representation of (W,S),
we prepare a vector space V over R with basis {αs; s ∈ S}, and a symmetric
bilinear form B on V given by

(2.2) B(αs, αs′) := − cos
π

m(s, s′)
.

Then B(αs, αs) = 1, B(αs, αs′) ¬ 0 (s ̸= s′). For each s ∈ S, define a reflection
σs on V by σs(λ) := λ− 2B(αs, λ)αs (λ ∈ V ). Then the order of σsσs′ is exactly
m(s, s′) for s, s′ ∈ S. This geometric representation σ is not necessarily faithful.
When B is positive definite (resp. positive semidefinite), we call Γ positive defi-
nite (resp. positive semidefinite). For an irreducible (W,S), its graph Γ is positive
definite if and only if W is finite, and Γ is positive semidefinite (but not positive
definite) if and only if W is an affine Weyl group. All finite irreducible Coxeter
groups are given in [21], Sections 2.4 and 6.4.
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DEFINITION 2.2. Let (W,S) be a Coxeter group. For w ∈ W , let |w| be the
length of w with respect to S, that is, the length of a reduced expression of w by
means of elements in S. For a fixed s ∈ S, a length function ∥w∥s (w ∈W ), called
an s-seminorm, is defined as ∥w∥s = 1 or 0 according as a reduced expression of
w contains s or not. Put ∥w∥ :=

∑
s∈S∥w∥s (w ∈W ).

For 0 ¬ r ¬ 1, the function f0r (w) := r|w| (w ∈W ) is positive definite on W
(cf. [5] and [10]). For Q := (qs)s∈S , 0 ¬ qs ¬ 1, and F ⊂ S, put for w ∈W

(2.3)
fQ,F (w) :=

∏
s∈F

fqs,s(w) with fq,s(w) := q∥w∥s ,

fQ(w) := fQ,S(w) =
∏
s∈S

fqs,s(w).

Then fQ,F and fQ are positive definite functions on W (cf. [12]), and called norm
functions. The case of the functions f0r , especially forW = S∞ := limn→∞Sn =∪

26n<∞Sn, has been treated in [17], together with the case of fq := fQ,S with
qs = q (for all s ∈ S), in connection with asymptotic theory of characters or in-
variant positive definite functions (cf., e.g., [18]–[20] and [22]).

Now we are concerned with functions defined in (2.3).
Note that, for q1, q2 such that 0 < qi ¬ 1, q1q2 = q, we have fq,s(w) =

fq1,s(w) · fq2,s(w). In particular, if 0 < q < 1, then fq,s = (fq1/m,s)
m for any

m ­ 2, and so it is infinitely divisible.
We are interested in Problems 1 and 2 stated in the Introduction.

3. GELFAND–RAIKOV REPRESENTATIONS, POSITIVE DEFINITE FUNCTIONS

3.1. Gelfand–Raikov representation. Let G be a discrete group, P(G) the
set of all positive definite functions on G, and P1(G) the subset consisting of
f ∈ P(G) normalized as f(e) = 1 at the unit element e ∈ G. Let F(G) be the
space of all functions on G which vanish outside of a finite number of elements,
and consider it as a G-module by left translations of g ∈ G. A function F on G
defines a linear functional on F(G) by F (ψ) :=

∑
g∈G F (g)ψ(g) (ψ ∈ F(G)). In

particular, a positive definite function f gives a positive semidefinite inner prod-
uct on F(G) by ⟨φ,ψ⟩′f := f(φ ∗ψ∗), where (φ ∗ψ)(g) :=

∑
h∈G φ(h

−1g)ψ(h),

ψ∗(g) = ψ(g−1). Then this gives a G-invariant, non-negative definite inner prod-
uct in F(G), and a seminorm ∥φ∥f :=

√
⟨φ,φ⟩′f . Let Jf be the kernel of this inner

product. Then we get on the quotient space F(G)/Jf a positive definite inner prod-
uct ⟨·, ·⟩f , and then completing it, we obtain a Hilbert space Hf . For φ ∈ F(G), its
image in Hf is denoted by φf ; then ∥φf∥f = ∥φ∥f .

On Hf , we get a unitary representation πf of G with a cyclic vector vf := δfe
the image of the delta function δe ∈ F(G) and such that

(3.1) f(g) = ⟨πf (g)vf ,vf ⟩f , ⟨πf (g)vf , πf (h)vf ⟩f = f(h−1g).
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We call πf a Gelfand–Raikov representation (GR representation in short) associ-
ated with f , since Gelfand and Raikov [15] gave this construction in 1943, and
thus proved for the first time that any locally compact group has sufficiently many
unitary representations.

3.2. Cyclic vectors corresponding to a positive definite function. In this paper,
a representation of a discrete group G is usually assumed to be unitary. A cyclic
representation π with a specified cyclic vector v is denoted by (π,v), similarly
to (πf ,vf ). This means that we have also specified the positive definite func-
tion f(g) = ⟨π(g)v,v⟩ associated with v. When πi (i = 1, 2) are both cyclic,
and unit vectors vi ∈ V (πi) (i = 1, 2) define the same positive definite function
⟨π1(g)v1,v1⟩V (π1) = ⟨π2(g)v2,v2⟩V (π2), then we write (π1,v1) ∼= (π2,v2).

LEMMA 3.1. Let πi (i = 1, 2) be a cyclic representation of G with cyclic
vectors vi, respectively. Assume that there exists a G-module homomorphism Φ :
V (π1) → V (π2) such that Φ(v1) = v2 and that the associated positive definite
functions fi (i = 1, 2), defined by fi(g) := ⟨πi(g)vi,vi⟩V (πi) (i = 1, 2; g ∈ G),
coincide with each other. Then Φ is necessarily unitary.

LEMMA 3.2. Let π be a cyclic representation of G. For two unit cyclic vec-
tors va and vb for π, the corresponding positive definite functions are the same as
f(g) = ⟨π(g)va,va⟩ = ⟨π(g)vb,vb⟩ if and only if there exists a unitary intertwin-
ing operator U of π such that Uva = vb.

3.3. Partial orders for positive definite functions and subrepresentations.
For f1, f2 ∈ P(G), we define a partial order f1 / f2 if ⟨φ,φ⟩′f1 ¬ ⟨φ,φ⟩

′
f2

for
any φ =

∑
16i6n ciδgi ∈ F(G) with ci ∈ C, or

∑
16i,j6n

cicjf1(g
−1
j gi) ¬

∑
16i,j6n

cicjf2(g
−1
j gi).

Note that f1 / f2 is equivalent to that f2 − f1 is again positive definite. We also
define f1 4 f2 if f1 / af2 for some a > 0.

LEMMA 3.3. Suppose that f1 / f2 for f1, f2 ∈ P(G). Then there exists a
natural G-module homomorphism Pf1,f2 from πf2 onto πf1 such that φf2 → φf1

(φ ∈ F(G)).

P r o o f. Since ⟨φ,φ⟩′f1¬⟨φ,φ⟩
′
f2

(φ ∈ F(G)), we have Jf1 ⊃ Jf2 , and there
exists a self-adjoint positive operatorA on Hf2 such that ⟨Aφf2 , φf2⟩f2 = ⟨φ,φ⟩′f1
= ⟨φf1 , φf1⟩f1 , and that A commutes with πf2(g) (g ∈ G). Take B =

√
A; then

it also commutes with πf2(g) and ⟨Bφf2 , Bφf2⟩f2 = ⟨φf1 , φf1⟩f1 . From this we
see that the image B(Hf2) is isomorphic to Hf1 . Denote by Q this natural isomor-
phism; then Pf1,f2 := QB satisfies Pf1,f2(φ

f2) = φf1 (φ ∈ F(G)), and gives a
surjective map from Hf2 onto Hf1 . It intertwines πf2 with πf1 . �
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COROLLARY 3.1. Suppose f1 4 f2 for f1, f2 ∈ P(G). Then there exists a
natural G-homomorphic map Pf1,f2 from Hf2 onto Hf1 defined by Pf1,f2(φ

f2) =
φf1 , which intertwines πf2 with πf1 . Furthermore, suppose f1 4 f2 and f2 4 f1
at the same time. Then Pf1,f2 gives a natural G-module isomorphism between πf2
and πf1 .

4. THE CASE OF s-SEMINORM AND POSITIVE DEFINITE FUNCTION fqs,s

4.1. Decomposition of positive definite functions fqs,s. Denote byWs the sub-
group of W consisting of elements w with ∥w∥s = 0. Then it is also a Coxeter
group with the set of generators Ss := S \ {s}, and for 0 ¬ qs ¬ 1,

fqs,s(w) = q∥w∥ss =

{
1 if w ∈Ws,

qs if w ∈W \Ws,
(4.1)

fqs,s = qs1W + (1− qs)XWs ,(4.2)

where 1W denotes the constant function equal to 1 on W , and XWs is the trivial
character of Ws extended as 0 on W \Ws. These formulas are valid for qs = 0
with 00 = 1.

Note that the formula (4.2) proves that fqs,s is positive definite on W , since
the functionXWs is a diagonal matrix element of the induced representation Πs :=
IndWWs

1Ws of the trivial representation 1Ws of Ws, as seen in Lemma 4.1 below.

4.2. Induced representations and GR representations. In general, let G be
a discrete group and H its subgroup, and denote by µG/H a G-invariant measure
on G/H . For a unitary representation ρH of H , its induced representation Π :=
IndGHρH is defined as follows. Let V ′ be a space of functions φ on G with values
in the space V (ρH) of ρH satisfying

φ(gh) = ρH(h)−1
(
φ(g)

)
(h ∈ H, g ∈ G),(I-1)

∥φ∥2 =
∫

G/H

|φ(g)|2dµG/H(gH) <∞.(I-2)

Dividing V ′ by the kernel of the inner product and then completing, we get a Hilbert
space V . The operator Π(g0) is defined by Π(g0)φ(g) := φ(g−10 g) (g ∈ G).

As positive definite functions on W , 1W is the character of the trivial repre-
sentation 1W , and XWs is a matrix element of Πs.

LEMMA 4.1. The function XWs on W is a diagonal matrix element of Πs =
IndWWs

1Ws , corresponding to a cyclic vector XWs in V (Πs).

Let us note that the GR representation πf associated with f is characterized,
modulo equivalence, as a cyclic representation containing a unit vector vf such
that ⟨πf (g)vf ,vf ⟩ = f(g).
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Consider the direct sum πs := 1W ⊕ Πs of two representations, and take a
unit vector v1,s ∈ V (πs) given by

(4.3) v1,s =
√
qs · 1W ⊕

√
1− qs ·XWs .

LEMMA 4.2. The cyclic subrepresentation π′s of πs = 1W ⊕ Πs on the sub-
space ⟨πs(W )v1,s⟩ generated by v1,s is unitarily equivalent to the GR representa-
tion πfqs,s . A W -isomorphism from π′s to πfqs,s , which maps the unit cyclic vector
v1,s ∈ V (π′s) to the unit cyclic vector vfqs,s ∈ V (πfqs,s), is unique.

5. GR REPRESENTATIONS πfQ,F
AND INDUCED ONES IndWWF ′

1WF ′

5.1. Isomorphism of πfQ,F
into the direct sum ⊕F ′⊂F

IndW
WF ′

1WF ′ . For a
subset F of S, put WF := ⟨S \ F ⟩ the subgroup generated by S \ F . From a
property of Coxeter groups we have the following.

LEMMA 5.1. For two subsets F1, F2 of S, we haveWF1∩WF2 =WF1∪F2 . For
a subset B of W, denote by XB the indicator function of B. Then XWF1

·XWF2
=

XWF1∪F2
.

Let Q = (qs)s∈S , 0 ¬ qs ¬ 1 (s ∈ S). For a subset F ⊂ S, we have a product
formula as fQ = fQ,F · fQ,S\F . If F is finite, applying Lemma 5.1, we have the
following expression of the positive definite function fQ,F :

fQ,F =
∏
s∈F

(
qs1W + (1− qs)XWs

)
=

∑
F ′⊂F

cQ;F,F ′XWF ′ ,(5.1)

cQ;F,F ′ :=
∏

s∈F\F ′
qs

∏
t∈F ′

(1− qt).

For a finite subset F ⊂ S, consider the direct sum π(F ) of quasi-regular rep-
resentations ΠF ′ := IndWWF ′

1WF ′ , induced from subgroups WF ′ = ⟨S \ F ′⟩ with
F ′ ⊂ F , as

(5.2) π(F ) := ⊕
F ′⊂F

ΠF ′ , V (π(F )) := ⊕
F ′⊂F

V (ΠF ′),

and take a unit vector wQ,F of V (π(F )) depending on Q as

(5.3) wQ,F :=
∑

F ′⊂F

⊕
dQ;F,F ′XWF ′ .

Here, Π∅ = 1W for F ′ = ∅, since W∅ = ⟨S⟩ = W . The diagonal matrix element
of π(F ) with respect to wQ,F is

⟨π(F )(g)wQ,F ,wQ,F ⟩V (π(F )) =
∑

F ′⊂F
(dQ;F,F ′)

2XWF ′ (g) (g ∈W ).
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PROPOSITION 5.1. Let F be a finite subset of S. Take the direct sum π(F ) =

⊕F ′⊂F ΠF ′ ,ΠF ′ = IndWWF ′
1WF ′ , and a unit vector wQ,F ∈ V (π(F )) given by

(5.4) wQ,F =
∑

F ′⊂F

⊕
dQ;F,F ′XWF ′ , dQ;F,F ′ =

√
cQ;F,F ′ (F ′ ⊂ F ).

Then the cyclic subrepresentation π′Q,F of π(F ) spanned by wQ,F is associated
with the positive definite function fQ,F . Or, for π′Q,F := π(F )|⟨π(F )(G)wQ,F ⟩,

(5.5) (πfQ,F
,vfQ,F

) ∼= (π′Q,F ,wQ,F ).

5.2. Orders among positive definite functions on W .

LEMMA 5.2. (i) For a subset F ⊂ S, assume that WF = ⟨S \ F ⟩ is finite.
Then the positive definite function XWF

on W is dominated by XWS
= X{e} = δe

as XWF
/ |WF | · δe .

(ii) For two subsetsF1 ⊂ F2 ⊂ S, assume that [WF1 :WF2 ] <∞. ThenXWF1

4 XWF2
or, more exactly, XWF1

/ |WF1/WF2 | ·XWF2
.

(iii) For F1 ⊂ F2 ⊂ S, let us assume that F2 \ F1 is finite. If qs ̸= 0 for s ∈
F2 \ F1, then fQ,F1 4 fQ,F2 . More generally, let F 0

21 := {s ∈ F2 \ F1; qs = 0}.
Then fQ,F2 = fQ,F2\F 0

21
and fQ,F1 ·XW

F2\(F1∪F0
21

)
4 fQ,F2 .

P r o o f. (i) For φ ∈ F(W ),

⟨φ,φ⟩XWF
=

∑
g,h∈W

φ(g)XWF
(h−1g)φ(h) ¬ |WF |

∑
g∈W
|φ(g)|2 = |WF |⟨φ,φ⟩δe .

(ii) Similarly to (i).
(iii) This comes from the following:

fQ,F2 = fQ,F1

∏
s∈F2\F1

(
qs1W + (1− qs)XWs

)
= fQ,F1

∑
F ′⊂F2\F1

cQ;F2\F1,F ′XWF ′ .

Thus the proof is complete. �

LEMMA 5.3. Assume W is finite. Then any positive definite function f on W
is dominated by f0 := δe. More exactly,

(5.6) f / f(e)|W | · f0, ∥φ∥f ¬
√
f(e)|W | · ∥φ∥ℓ2(W ) (φ ∈ F(W )).

5.3. Isomorphism of πfQ,F
with IndW

WF
1WF

for an F finite.

THEOREM 5.1. Let F be a finite subset of S. Assume that 0 ¬ qs < 1 (s ∈ F )
for Q = (qs)s∈S and that the subgroup ⟨F ⟩ ⊂W generated by F is finite.
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(i) The GR representation (πfQ,F
,vfQ,F

) is isomorphic to (ΠF ,uQ,F ), where
ΠF = IndWWF

1WF
and uQ,F is a cyclic vector which corresponds to vfQ,F

under
a surjective W -module isomorphism ΨF from V (πfQ,F

) onto V (IndWWF
1WF

).
(ii) Let us consider ⟨F ⟩-cyclic subspaces spanned by πfQ,F

(⟨F ⟩)vfQ,F
and

ΠF (⟨F ⟩)uQ,F respectively. Then, as cyclic representations of ⟨F ⟩,

(5.7) (πfQ,F
|⟨F ⟩,vfQ,F

) ∼= (ΠF |⟨F ⟩,uQ,F ) ∼= (L⟨F ⟩,u′Q,F ).

Here the second “∼=” means that ΠF |⟨F ⟩ on
⟨
ΠF (⟨F ⟩)uQ,F

⟩
, with the cyclic vec-

tor uQ,F , is equivalent to the left regular representation L⟨F ⟩ := Ind
⟨F ⟩
{e}1{e} on

ℓ2(⟨F ⟩), with a cyclic vector u′Q,F ∈ ℓ2(⟨F ⟩) corresponding to uQ,F , such that
⟨L⟨F ⟩(g)u′Q,F ,u

′
Q,F ⟩ = fQ,F (g) (g ∈ ⟨F ⟩).

P r o o f. (i) By Proposition 5.1, we have (πfQ,F
,vfQ,F

) ∼= (π′Q,F ,wQ,F ),
where π′Q,F is the cyclic subrepresentation of π(F ) =⊕F ′⊂F ΠF ′ generated by
wQ,F =

∑⊕
F ′⊂F dQ;F,F ′ ·XWF ′ . Note that, under the assumption on (Q,F ), we

have dQ;F,F =
(∏

s∈F (1− qs)
)1/2 ̸= 0, and so each component dQ;F,F ′XWF ′ of

wQ,F is dominated by the principal component dQ;F,FXWF
by Lemma 5.2 (ii).

Hence, by Lemma 6.1 below, the cyclic representation (π′Q,F ,wQ,F ) is isomor-
phic to (ΠF ,uQ,F ) with a certain cyclic vector uQ,F ∈ V (ΠF ) corresponding to
wQ,F .

(ii) Denote by f⟨F ⟩ the restriction fQ,F |⟨F ⟩. We apply (i) replacing W by ⟨F ⟩
and fQ,F by f⟨F ⟩. Then we see that (πf⟨F ⟩ ,vf⟨F ⟩)

∼= (L⟨F ⟩,u′Q,F ). Moreover, the
former is naturally isomorphic to (πfQ,F

∣∣
⟨F ⟩,vfQ,F

). �

6. CYCLIC SUBREPRESENTATIONS AND GR REPRESENTATIONS

6.1. Cyclic subrepresentation of a finite direct sum of representations. Let
G be a discrete group, and πi (1 ¬ i ¬ N) be unitary representations of G. Let
π = π1 ⊕ . . .⊕ πN be their direct sum, and take a non-zero element

(6.1) v := ⊕
16i6N

vi, vi ∈ V (πi) (1 ¬ i ¬ N).

LEMMA 6.1. Let fi(g) = ⟨πi(g)vi,vi⟩V (πi) and assume that fi 4 fN for any
i < N . Then the cyclic subrepresentation πv of π generated by v is equivalent
to πN,vN

: πv ∼= πN,vN
, where πN,vN

denotes the cyclic subrepresentation of πN
generated by vN . Put f := f1 + f2 + . . . + fN . Then there exists a cyclic vector
w ∈ V (πN,vN

) such that

(6.2) f(g) = ⟨πN,vN
(g)w,w⟩, (πv,v) ∼= (πN,vN

,w).
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P r o o f. The positive definite function associated with the cyclic representa-
tion πv with the cyclic vector v is f = f1 + . . . + fN , and we have f 4 fN by
assumption. On the other hand, fN / f . Hence fN 4 f 4 fN , and this implies
that GR representations πf and πfN associated with f and fN , respectively, are
mutually equivalent.

Moreover, (πv,v) ∼= (πf ,vf ) and (πN,vN
,vN ) ∼= (πfN ,vfN ). Hence πv and

πN,vN
are mutually equivalent. To get a unitary intertwining operator from πv to

πfN , we need to find a cyclic vector w ∈ V (πfN ), as asserted in the lemma. �

LEMMA 6.2. Let π = π1 ⊕ . . .⊕ πN and v = v1 ⊕ . . .⊕ vN (vi ∈ V (πi)).
Suppose that, for any pair {i, j}, i ̸= j, HomG(πi, πj) = {0}, or there exists no
intertwining operator except 0. Then the cyclic subrepresentation πv of π gener-
ated by v is the direct sum of πi,vi (1 ¬ i ¬ N) as πv =

∑⊕
16i6N πi,vi , where

πi,vi denotes the cyclic subrepresentation of πi generated by vi for 1 ¬ i ¬ N,
and in the case vi = 0, πi,vi = ∅ by definition.

P r o o f. We may and do assume that πi,vi = πi or vi generates cyclically the
whole πi for any i. Let Pi be the orthogonal projection of V (π) =⊕16i6N

V (πi)
onto V (πi), and R be the orthogonal projection onto V (πv) = ⟨π(G)v⟩. Then
Rij := PjRPi is essentially a G-module homomorphism from V (πi) to V (πj).
Therefore, by assumption, Rij = 0 for i ̸= j, and R =

∑
16i6N Rii. This means

that V (πv) is the direct sum of V (πi,vi) (1 ¬ i ¬ N). �

In general, let πi (i = 1, 2) be cyclic unitary representations of G with spec-
ified cyclic vectors vi respectively. We study the structure of the cyclic part π′12
of π = π1 ⊕ π2 generated by v′12 := v1 ⊕ v2 ∈ V (π). Its representation space
V (π′12) is spanned by π(g)v′12 = π1(g)v1 ⊕ π2(g)v2 (g ∈ G). Put

(6.3) V
(d)
i := V (πi) ∩ V (π′12), V (πi) = V

(d)
i ⊕ V

(c)
i (i = 1, 2),

and π(d)i := π|
V

(d)
i

and π(c)i := π|
V

(c)
i

; moreover, let vi = v
(d)
i ⊕ v

(c)
i (i = 1, 2) be

the decomposition of vi according to (6.3). Then πi = π
(d)
i ⊕ π

(c)
i .

Put V (d) := V (π
(d)
1 ) ⊕ V (π

(d)
2 ) ⊂ V (π′12), let V (c) be the orthogonal com-

plement of V (d) in V (π′12), and define π(d) := π|V (d) , π(c) := π|V (c) . Then, V (c) ⊂
V (π

(c)
1 )⊕ V (π

(c)
2 ) and

(6.4) V (π′12) = V (d) ⊕ V (c) (in V (π)), π′12
∼= π(d) ⊕ π(c).

From the definition of V (π
(d)
i ) it follows that, for any w1 ⊕ w2 ∈ V (c) ⊂

V (π
(c)
1 ) ⊕ V (π

(c)
2 ), the correspondence T : w1 → w2, from the first component

to the second, is bijective. Moreover, we have π(c)1 (g)v
(c)
1 ⊕ π

(c)
2 (g)v

(c)
2 ∈ V (c),

and so T maps bijectively as

T : π
(c)
1 (g)v

(c)
1 → π

(c)
2 (g)v

(c)
2 (g ∈ G).
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LEMMA 6.3. The restriction π(c) of π′12 or of π onto V (c) is equivalent to each
of the restrictions π(c)i of πi onto V (c)

i for i = 1, 2. The equivalences between them
are given by the projections V (c) ∋ w1 ⊕w2 → wi ∈ V (c)

i . The cyclic part π′12 of
π = π1 ⊕ π2 generated by v1 ⊕ v2 is given as

(6.5) π′12 = (π
(d)
1 ⊕ π

(d)
2 )⊕ π(c), π(c) ∼= π

(c)
1
∼= π

(c)
2 .

6.2. The cyclic part of (IndG
H1

1H1
)⊗ (IndG

H2
1H2

). Let G be a discrete group,
and Hi be subgroups of G for i = 1, 2. Put πi = IndGHi

1Hi (i = 1, 2), and ρ :=
π1 ⊗ π2.

LEMMA 6.4. Let ρ′ be the cyclic subrepresentation of ρ = π1 ⊗ π2 gener-
ated by a cyclic vector w1 ⊗w2 with wi := XHi ∈ V (πi) (i = 1, 2). Then ρ′ is
canonically equivalent to the induced representation π := IndGH1∩H2

1H1∩H2 , and
w1 ⊗w2 corresponds to the cyclic vector XH1∩H2 ∈ V (π).

P r o o f. Consider V (πi) as the space of functions φi on G such that φi(ghi)
= φi(g) (hi ∈ Hi, g ∈ G) with the norm ∥φi∥2 =

∑
g∈G/Hi

|φi(g)|2, where
g ∈ G/Hi means that g runs over a complete set of representatives of G/Hi. In
V (π1) ⊗ V (π2), we take w12 := w1 ⊗w2 = XH1 ⊗XH2 and consider the sub-
space V ′ spanned by

(6.6) ρ(g0)w12 = Xg0H1 ⊗Xg0H2 (g0 ∈ G),

where XB denotes the indicator function of a subset B of G.
On the other hand, consider a bilinear map Φ′ from V (π1)× V (π2), which as-

signs to (φ1, φ2) a function φ on G given by the product as φ(g) := φ1(g)φ2(g) :
Φ′(φ1, φ2) = φ. Then it induces uniquely a linear map Φ′′ from V (π1) ⊗ V (π2)
into a space of functions ψ on G such that ψ(gh) = ψ(g), where g ∈ G,h ∈
H12 := H1 ∩ H2. Denote by Φ the restriction of Φ′′ on the subspace V ′. Then
φ12 := Φ(w12) is given by

(6.7) φ12(g) = XH1(g)XH2(g) = XH1∩H2(g) (g ∈ G),

and Φ
(
ρ′(g0)w12

)
= π(g0)φ12, where

(6.8) π(g0)φ12(g) := φ12(g
−1
0 g) = XH1∩H2(g

−1
0 g) (g ∈ G).

From (6.6) we see that the set of vectors {ρ(g0)w12; g0 ∈ G/(H1 ∩ H2)}
gives an orthogonal basis of V ′. On the other hand, we see from (6.8) that the set
of functions {π(g0)φ12; g0 ∈ G/(H1 ∩H2)} gives an orthogonal basis of Φ(V ′).
This means that Φ is a linear isomorphism from V ′ onto Φ(V ′). Moreover, we
see from (6.7) and (6.8) that Φ(V ′) = V (π), and the representation π on Φ(V ′) is
nothing but IndGH1∩H2

1H1∩H2 . �
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NOTE 6.1. On V (π1) ⊗ V (π2), Φ is isometric inside of the cyclic subspace
V ′ by Lemma 3.1. But it is not necessarily isometric outside of V ′ even though it
is G-homomorphic.

6.3. The cyclic part of tensor product πf1 ⊗ πf2 . For fi ∈ P1(G) (i = 1, 2),
we realize the GR representation πfi as follows: prepare a standard cyclic vector
vi and a symbolic G-span Bi := {πfi(g)vi; g ∈ G} such that

fi(g) = ⟨πfi(g)vi,vi⟩ (g ∈ G),(6.9)

⟨πfi(g)vi, πfi(h)vi⟩ := fi(h
−1g) (g, h ∈ G).

The representation space V (πfi) is a completion of the linear span ⟨Bi⟩ modulo
the kernel of the inner product, and the representation operator πfi(g0) is induced
from the left translation by g0 as πfi(g0)

(
πfi(g)vi

)
:= πfi(g0g)vi.

Put f := f1f2. Consider the tensor product π := πf1 ⊗ πf2 on V (πf1) ⊗
V (πf2), and take a unit vector v12 := v1 ⊗ v2. The matrix element associated
with v12 is

⟨π(g)v12,v12⟩ = ⟨πf1(g)v1,v1⟩ · ⟨πf2(g)v2,v2⟩ = f1(g)f2(g) = f(g).

LEMMA 6.5. The cyclic part ⟨π(G)v12⟩ ⊂ V (πf1)⊗ V (πf2) carries GR rep-
resentation πf associated with f = f1f2, where ⟨π(G)v12⟩ denotes the closed lin-
ear span of π(G)v12.

7. THE CASE OF GR REPRESENTATIONS OF COXETER GROUPS

7.1. GR representations and induced representations. Let (W,S) be a Cox-
eter group. For a subset S′ ⊂ S, denote by ⟨S′⟩ the subgroup ofW generated by S′,
and for a subset F ⊂ S, put WF := ⟨S \ F ⟩ as before. Let us put Sf := {s ∈ S;
|Ws| <∞}.

DEFINITION 7.1. An s ∈ S is called co-finite (resp. co-infinite) if |W/Ws|
<∞ (resp. |W/Ws| =∞). A subset F ⊂ S is said to be of infinite type if |WF | =
|⟨S \ F ⟩| =∞.

Note that the induced representation Πs = IndWWs
1Ws contains or not the triv-

ial representation 1W according as s is co-finite or co-infinite.
Let Q = (qs)s∈S , 0 ¬ qs ¬ 1 (s ∈ S). For a subset F ⊂ S, we have, by the

definition in (2.3), fQ,F =
∏

s∈F fqs,s and fQ = fQ,F fQ,S\F .

LEMMA 7.1. Suppose F ⊂ S is finite. Then, for Q = (qs)s∈S ,

πfQ,F
∼= the cyclic part of ⊗

s∈F
πfqs,s generated by v′F :=⊗

s∈F
vfqs,s ;(7.1)

πfQ
∼= the cyclic part of

(⊗
s∈F

πfqs,s
)
⊗πfQ,S\F generated by v′F⊗vfQ,S\F .(7.2)
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LEMMA 7.2. Suppose F ⊂ S is finite, and let Q = (qs)s∈S .
(i) The GR representation (πfQ ,vfQ) is isomorphic to a cyclic subrepresen-

tation of

(7.3) ⊗
s∈F

(1W ⊕Πs)⊗ πfQ,S\F

with a cyclic vector
(⊗s∈F v1,s

)
⊗ vfQ,S\F , where v1,s ∈ V (1W ⊕Πs) is given

in (4.3).
(ii) Put Ff := F ∩ Sf . Then (πfQ ,vfQ) is isomorphic to a cyclic subrepre-

sentation of

(7.4) ⊗
s∈F\Ff

(1W ⊕Πs)⊗ (1W ⊕ IndWWFf
1WFf

)⊗ πfQ,S\F ,

with a cyclic vector
(⊗s∈F\Ff

v1,s

)
⊗wFf

⊗ vfQ,S\F , where wFf
is a certain

cyclic vector of 1W ⊕ IndWWFf
1WFf

.

(iii) In case of W is finite, the middle term 1W ⊕ IndWWFf
1WFf

in (7.4) with

cyclic vector wFf
can be replaced by IndWWFf

1WFf
with a certain cyclic vector

w′Ff
.

The following is an extended version of Lemma 6.4 in the case of Coxeter
groups. For a finite subset F ⊂ S, assume that Π′F is the cyclic subrepresentation
of⊗s∈F Πs generated by the vector⊗s∈FXWs . Consider a multilinear map

Φ′ :
∏
s∈F

V (Πs) ∋ (φs)s∈F →
∏
s∈F

φs =: φ,

where φ(w) =
∏

s∈F φs(w) (w ∈ W ). Then we get a linear map Φ onto a space
of functions on W invariant from the right under WF =

∩
s∈F Ws = ⟨S \ F ⟩ as

(7.5) Φ :⊗
s∈F

V (Πs) ∋⊗
s∈F

φs →
∏
s∈F

φs.

LEMMA 7.3. Let F ⊂ S be finite. The linear map Φ gives a W -isomorphism
from the cyclic subrepresentation Π′F onto the quasi-regular representation ΠF :=

IndWWF
1WF

, and the cyclic vector⊗s∈FXWs is mapped to the cyclic vectorXWF

∈ V (ΠF ).

7.2. Induced representation Πs and subrepresentation of πs = 1W ⊕Πs.

LEMMA 7.4. Suppose s ∈ S is co-finite, or W/Ws is finite, and 0 < qs < 1.
Then GR representation πfs associated with fs := fqs,s is equivalent to the induced
representation Πs = IndWWs

1Ws , and Πs contains the trivial representation 1W
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exactly once, or Πs = 1W ⊕ (1W )⊥, where (1W )⊥ contains 1W no more. Under
the isomorphism from πfs to Πs, the unit cyclic vector vfs ∈ V (πfs) is mapped to
the following unit cyclic vector ws in V (Πs): with cs := |W/Ws|−1,

(7.6) ws :=
√
qscs + (1− qs)c2s · 1W ⊕

√
1− qs(XWs − cs1W ),

so that (πfs ,vfs)
∼= (Πs,ws). Denote by Ps the orthogonal projection of V (Πs)

onto the subspace carrying the trivial representation 1W . Then

∥Psws∥ =
√
qs + (1− qs)cs.

LEMMA 7.5. Let s ∈ S be co-infinite, or |W/Ws| = ∞. Then GR repre-
sentation πfs associated with fs := fqs,s is equivalent to πs = 1W ⊕ Πs with
Πs = IndWWs

1Ws , and Πs does not contain the trivial representation 1W . The
positive definite function fs is the diagonal matrix element corresponding to the
reference vector v1,s ∈ V (πs) in (4.3):

(7.7) (πfs ,vfs)
∼= (1W ⊕Πs,v1,s).

8. THE CASE OF FINITE COXETER GROUPS (W,S)

THEOREM 8.1. Assume W is finite, and let Q = (qs)s∈S .
(i) Suppose 0 ¬ qs < 1 (s ∈ S). Then GR representation πfQ associated with

fQ is equivalent to the left regular representation LW of W, or (πfQ ,vfQ)
∼=

(LW ,vQ,S), where vQ,S ∈ ℓ2(W ) corresponds to wQ,F in (5.2) and (5.3) for
F = S.

(ii) Suppose qs = 1 (s ∈ F0), 0 ¬ qs < 1 (s ∈ S \ F0) for an F0 ̸= ∅. Then

πfQ
∼= IndW⟨F0⟩1⟨F0⟩ on ℓ2(W/⟨F0⟩).

P r o o f. (i) Apply Proposition 5.1 for F = S. Then πfQ with the cyclic vector
vfQ is realized as the cyclic subrepresentation of π(S) associated with the vector
wQ,S , where π(S) =⊕F⊂S ΠF = 1W ⊕

(⊕∅$F$S
IndWWF

1WF

)
⊕ LW .

We apply Lemma 6.1 for π = π(S), where the index set {1, 2, . . . , N} is
replaced by the set {F ;F ⊂ S}, and v =

∑⊕
16i6N vi is replaced by wQ,S =∑⊕

F⊂S vF above. The positive definite function associated with vF is given by
fF (g) := (dQ;S,F )

2XWF
(g) = ⟨ΠF (g)vF ,vF ⟩ (g ∈ W ), and fS = dQ;S,Sδe,

dQ;S,S ̸= 0. To guarantee that Lemma 6.1 is applicable, we have Lemma 5.2.
(ii) In this case, fQ =

∏
s∈S fs =

∏
s∈S\F0

fs · fQ,S\F0
. We apply Proposi-

tion 5.1 for F := S \ F0. Note that WF = ⟨S \ F ⟩ = ⟨F0⟩. Then, using Lemmas
5.2 and 6.1 as for the assertion (i), we obtain (ii). �

The isomorphism between πfQ and the regular representation LW is twisted
in the sense given in the following theorem. This fact has an important meaning
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when we consider a limiting process for a growing sequence of Coxeter groups as
(Wn, Sn)↗ (W,S), Sn ↗ S =

∪
n­1 Sn, for instance, in the case of Sn ↗ S∞.

Here is the place where we ask the question formulated in our Problem 1, in con-
nection with, e.g., [12] and [18]–[20].

THEOREM 8.2. Assume W is finite and 0 ¬ qs < 1 (s ∈ S). Put CfQ :=(
fQ(h

−1g)
)
g,h∈W . Then the matrix CfQ is Hermitian and strictly positive definite.

A linear map ΨQ from V (πfQ) to ℓ2(W ),

ΨQ :
∑
g∈W

cgπfQ(g)vfQ →
∑
g∈W

cgδg,

gives an algebraic isomorphism of cyclic representations (πfQ ,vfQ) and (LW , δe).
Moreover, for v =

∑
g∈W cgπfQ(g)vfQ ∈ V (πfQ), express ΨQ(v)=

∑
g∈W cgδg

∈ ℓ2(W ) as a column vector c = (cg)g∈W . Then ∥v∥2V (πfQ
) =

∥∥√CfQc
∥∥2
ℓ2(W )

,

where
√
CfQ commutes with LW (g) (g ∈ W ). In other words,

√
CfQ · ΨQ is a

unitary W -map from
(
πfQ , V (πfQ)

)
onto

(
LW , ℓ2(W )

)
, which maps the cyclic

vector vfQ for πfQ to the one δe for LW .

9. THE CASE OF INFINITE COXETER GROUPS (W,S)

In this section, we assume that W is infinite.

9.1. GR representations and induced representations.

LEMMA 9.1. (i) Assume 0 ¬ qs < 1 (s ∈ S). For a finite subset F of S, the
GR representation πfQ with cyclic vector vfQ is isomorphic to the cyclic subrep-
resentation of

(9.1)
( ⊗

s∈F
co-finite

Πs

)
⊗

( ⊗
s∈F

co-infinite

(1W ⊕Πs)
)
⊗ πfQ,S\F ,

with a cyclic vector
(⊗s: co-finite ws

)
⊗
(⊗s: co-infinite v1,s

)
⊗ vfQ,S\F .

(ii) Let S be finite and 0 < qs < 1 (s ∈ S). Then (πfQ ,vfQ) is isomorphic to
a cyclic subrepresentation of 1W ⊕

(⊕∅$F$S, infinite type Ind
W
WF

1WF

)
⊕ LW con-

taining 1W ⊕ LW .

9.2. Intertwining operators among ΠF = IndW
WF

1WF
. Taking into account

Proposition 5.1 and Lemma 6.3, we study here intertwining operators among
quasi-regular representations ΠF = IndWWF

1WF
induced from parabolic subgroups

WF = ⟨S \ F ⟩.

9.2.1. Intertwining operators between Πi = IndG
Hi
1Hi

(i = 1, 2). Let G be a
discrete group, and Hi (i = 1, 2) its subgroups. The representation spaces V (Πi)
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consist of functions φi on G satisfying

φi(g) = φi(ghi) (hi ∈ Hi, g ∈ G), ∥φi∥2 :=
∑

g∈G/Hi

|φi(g)|2 <∞.

Any intertwining operator T from Π1 to Π2 is given by a kernel function K(g, g′)
as follows:

Tφ1(g) =
∑

g′∈G/Hi

K(g, g′)φ1(g
′) (g ∈ G).

Put K ′(g) := K(e, g) (g ∈ G). Then K(g, g′) = K ′(g−1g′), and K ′ satisfies

K ′(h2gh1) = K ′(g) (hi ∈ Hi, g ∈ G),∑
g∈G/H1

|K ′(g)|2 <∞,
∑

g∈H2\G
|K ′(g)|2 <∞.

Consider the restriction of K ′ onto a double coset H2gH1. If the order of
H2-cosets H2\H2gH1 is infinite, then K ′ should be zero on H2gH1. Note that

h2gh1 ∈ H2(h
′
2gh
′
1)⇔ h1h

′
1
−1 ∈ g−1H2g ⇔ h1h

′
1
−1 ∈ g−1H2g ∩H1,

etc. Then we have the following criterion:

(9.2) K ′(g) ̸= 0⇒

{
|H2gH1/H1| = |H2/(gH1g

−1 ∩H2)| <∞,

|H2\H2gH1| = |(g−1H2g ∩H1)\H1| <∞.

9.2.2. The case of a Coxeter groupW andWFi
= ⟨S \Fi⟩ (i = 1, 2). Put Πi :=

ΠFi = IndWWFi
1WFi

(i = 1, 2). An element φi ∈ V (Πi) can be considered as a
function on W which is Hi-invariant from the right. A φ1 ∈ V (Π1) belongs also
to V (Π2) only when it is also H2-invariant from the right, and so invariant under
⟨H1,H2⟩ =WF1∩F2 from the right.

LEMMA 9.2. Let ΠFi = IndWWFi
1WFi

(i = 1, 2). Then their spaces V (ΠF1)

and V (ΠF2) have a non-trivial intersection (denoted by V12) if and only if

(9.3)
|⟨H1,H2⟩/H1| = |WF1∩F2/WF1 | <∞,
|⟨H1,H2⟩/H2| = |WF1∩F2/WF2 | <∞,

and in that case ΠF1 and ΠF2 have a common constituent realized on V12 =
ℓ2(W/WF1∩F2).

LEMMA 9.3. There exists a non-zero intertwining operator from ΠF1 to ΠF2

if and only if there exists a g ∈W satisfying

(9.4)
|WF2/(gWF1g

−1 ∩WF2)| <∞,

|(g−1WF2g ∩WF1)\WF1 | <∞.
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LEMMA 9.4. (i) The trivial representation 1W is contained in the induced
representation ΠF = IndWWF

1WF
if and only if |W/WF | <∞.

(ii) The quasi-regular representation ΠF , F $ S, is not disjoint with the regu-
lar representationLW if and only ifWF is finite. In that case,ΠF is isomorphically
imbedded into LW .

10. THE CASE OF AFFINE WEYL GROUPS

Affine Weyl groups are a kind of infinite Coxeter groups (W,S) generated
by affine reflections in Euclidean spaces (cf. the definition in [21], Section 4.2).
Irreducible affine Weyl groups are listed in [21], Section 4.7, and their Coxeter
graphs are precisely the positive semidefinite ones which are not positive definite
(cf. [21], Section 6.5). Note that, for any non-empty F $ S, the parabolic subgroup
WF = ⟨S \ F ⟩ is a finite Coxeter group. Then, by Lemmas 5.2, 6.1, 9.2, 9.3, and
9.4, we have the following.

THEOREM 10.1. Let (W,S) be an irreducible affine Weyl group, and Q =
(qs)s∈S .

(i) Assume 0 < qs < 1 (s ∈ S). Then πfQ ∼= 1W ⊕ LW .
(ii) Assume qs = 0 (s ∈ F0 ̸= ∅), 0 < qs < 1 (s ̸∈ F0). Then πfQ ∼= LW .
(iii) Assume qs = 1 (s ∈ F1 ̸= ∅), 0 < qs < 1 (s ̸∈ F1). Then

πfQ
∼= 1W ⊕ IndW⟨F1⟩1⟨F1⟩.

(iv) Assume qs = 0 (s ∈ F0 ̸= ∅), qs = 1 (s ∈ F1 ̸= ∅), 0 < qs < 1 other-
wise. Then

πfQ
∼= IndW⟨F1⟩1⟨F1⟩.

11. THE CASE OF HYPERBOLIC COXETER GROUPS

Consider the case where (W,S) is irreducible, of rank n, and the bilinear form
on V is non-degenerate. Define a cone C in V by C := {λ ∈ V ;B(λ, αs) > 0
(s ∈ S)}. Such a Coxeter group (W,S) is called hyperbolic if B has signature
(n− 1, 1) and B(λ, λ) < 0 (λ ∈ C); see [21], Section 6.8. An irreducible Coxeter
group (W,S) is hyperbolic if and only if the following conditions are satisfied:

(a) B is non-degenerate, but not positive definite;
(b) for each s ∈ S, the Coxeter graph obtained by removing s from Γ is of

positive type, or its bilinear form is positive semidefinite.
A hyperbolic Coxeter group (W,S) is called compact if the quotient of O(V )

by W is compact, where O(V ) is the orthogonal group for B. An irreducible Cox-
eter group (W,S) is compact hyperbolic if and only if it satisfies (a) above and

(c) for each s ∈ S, the Coxeter graph obtained by removing s from Γ is posi-
tive definite or Ws is finite.
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Hyperbolic Coxeter groups exist only in ranks from 3 to 10, and their numbers
are finite in each of the ranks from 4 to 10, as seen in Table 1 below.

Table 1. Numbers of irreducible hyperbolic Coxeter groups W

rank W 3 4 5 6 7 8 9 10

compact hyperbolic ∞ 9 5 × × × × ×
non-compact hyperbolic ∞ 23 9 12 3 4 4 3

11.1. The case of compact hyperbolic Coxeter groups. By [21], Section 6.8,
in this case, for any s ∈ S, the sub-Coxeter group (Ws, S \ {s}) is a finite Coxeter
group. Therefore, from Lemmas 6.1, 6.2, 7.5, and 9.1 we get the following.

THEOREM 11.1. Assume that a Coxeter group (W,S) is compact hyperbolic.
(i) Assume for Q = (qs)s∈S , 0 < qs < 1 (s ∈ S). Then πfQ ∼= 1W ⊕ LW .

(ii) Assume qs = 0 (s ∈ F0) and 0 < qs < 1 (s ̸∈ F0) for an F0 ̸= ∅. Then
πfQ
∼= LW .
(iii) Assume qs = 1 (s ∈ F1 ̸= ∅), 0 < qs < 1 (s ̸∈ F1). Then

πfQ
∼= 1W ⊕ IndW⟨F1⟩1⟨F1⟩.

(iv) Assume qs = 0 (s ∈ F0 ̸= ∅), qs = 1 (s ∈ F1 ̸= ∅), 0 < qs < 1 other-
wise. Then

πfQ
∼= IndW⟨F1⟩1⟨F1⟩.

11.2. The case of non-compact hyperbolic Coxeter groups. By [21], Sec-
tion 6.8, in this case, for any s ∈ S, the sub-Coxeter group (Ws, S \ {s}) is a
finite or affine Weyl group. We apply Lemmas 6.1, 6.2, 7.5, and 9.1 (ii).

THEOREM 11.2. Assume that (W,S) is irreducible and non-compact hyper-
bolic.

(i) For Q = (qs)s∈S , 0 < qs < 1 (s ∈ S), the GR representation (πfQ ,vfQ)
is isomorphic to a cyclic subrepresentation, containing 1W ⊕ LW , of

1W ⊕
( ⊕

s∈S
infinite type

IndWWs
1Ws

)
⊕ LW .

(ii) Assume that an infinite type s ∈ S is unique and denote it by s0. Then

πfQ
∼=

{
1W ⊕ IndWWs0

1Ws0
⊕ LW if |W/Ws0 | =∞,

IndWWs0
1Ws0

⊕ LW if |W/Ws0 | <∞.

Note that many of non-compact hyperbolic irreducible Coxeter groups, in the
complete list in [21], Section 6.9, pp. 142–144, have unique s ∈ S of infinite type.
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Actually, for n = rank W ­ 7, except two cases for n = 7, one for n = 9, and
two for n = 10, all such Coxeter groups have unique s of infinite type. However,
it might not be easy to check the condition |W/Ws| =∞.

EXAMPLE 11.1. Irreducible rank 3 Coxeter groups are divided into two cases.
C a s e 1. The Coxeter graphs are of the form ◦ m—–◦ n—–◦, 3 ¬ m ¬ n ¬ ∞.

Assume n < ∞. Then, except the following cases, the Coxeter group with this
graph is compact hyperbolic, and its bilinear form B is of signature (2, 1):

(m,n) (3, 3) (3, 4) (3, 5) (3, 6) (4, 4)
Type of
Coxeter group A3 B3 H3 G̃2 B̃2 = C̃2

C a s e 2. The Coxeter graphs are triangle with labels 3 ¬ m ¬ n ¬ p on three
edges. Assume p <∞. Then except only one case of (m,n, p) = (3, 3, 3) for type
Ã2, all other graphs are for compact hyperbolic Coxeter groups, and Theorem 11.1
is applicable.

In the case where only one component of labels (m,n) or (m,n, p) is∞, we
can apply Theorem 11.2.

EXAMPLE 11.2 (cf. [21], Section 5.1). An example of a non-compact hy-
perbolic Coxeter group of rank 3 is given as follows: S = {s1, s2, s3},m(s1, s2)
= 3,m(s2, s3) = ∞,m(s1, s3) = 2. Then the Coxeter group W is isomorphic
to PGL(2,Z) =GL(2,Z)/{±1} by sending the generators s1, s2, s3, respec-
tively, to [

0 1
1 0

]
,

[
−1 1
0 1

]
,

[
−1 0
0 1

]
,

where the canonical map GL(2,Z)→ PGL(2,Z) is denoted by(
a b
c d

)
→

[
a b
c d

]
.

In this case, WF is finite except for F = {s1}, where Ws1 = ⟨s2, s3⟩ is equal to
the parabolic subgroup P of upper triangular matrices. Hence we have |W/Ws1 |
= ∞, and for Q = (qs)s∈S , 0 ¬ qs < 1 (s ∈ S), πfQ ∼= 1W ⊕ IndWP 1P ⊕ LW ,
by Theorem 11.2 (ii).
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[6] M. Bożejko, Deformed Fock spaces, Hecke operators and monotone Fock space of Muraki,
Demonstratio Math. 45 (2) (2012), pp. 399–413.
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