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ON STOCHASTIC EQUATIONS
FOR THE CLASS OF GAUSSIAN PROCESSES

BY

ANDRZEJ RUSSEK (Sopot)

Abstract. Tto stochastic equations are derived for a class of
multidimensional Gaussian processes appearing in connection with
generalized spline functions. Some analytic consequences for the
spline interpolation are also given.

1. Introduction. It is well known that the solution of a linear stochastic
differential equation of the form

dX (1) = A@®) X (O dt+0(O)dW(0),

where W is an n-dimensional Brownian motion, is a Markov process. Very
often one is interested in the following problem: having a Gaussian Markov
process, check if it is a solution of some equation of the form as above.

For square mean continuous processes for which the covariance matrix
EX(t) X (s)* is non-singular for all ¢, s such a problem is easy to solve
using e.g. the results of Mandrekar [5]. Without the assumption on the
covariance matrix function the problem is more complicated.

In this note we derive the Ito stochastic equations for certain class of
Gaussian processes for which E X () X (£)* degenerates at a finite number of
points. Since in this case A is discontinuous and non-integrable, the main
difficulty is to show that A(f)X(t) is integrable. Then the rest of the
derivation becomes easy and can be done using known methods (see, e.g., [2]).

The resulting Ito equations imply some interesting properties of the
reproducing kernel Hilbert spaces associated with the considered class of
processes. The properties are formulated in Section 4.

The processes considered here appear in connection with generalized
spline functions. The reproducing kernel Hilbert space associated with such
processes gives a natural setting for the spline interpolation problem (see [3]
and [7]).
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2. Preliminaries and notation. Let L be an ordinary differential operator
defined by :

LF®) = DO+, D" f O+ .. +a;()Df O+a(), D=,
where a;e C*(I), I = [0,1], and let A = (4;,,1 < i < n) be a set of linear
functionals of the form

o n—1
(1) o L(f) = kZO % k D*f(t)

with some real numbers «;, as coefficients and ¢;,...,t,el. It is assumed
that A, are linearly independent of ker L. Let G{t,s), t, se€l, denote the
Green function for the boundary value problem

Lf=g, A4(f)=0for1<i<n

and let z; = z(t), 1 < i < n, be the basis in ker L dual to (4)).

Suppose that on some probability space (2, #,P)aset £ =({,1<i<n)
of independent Gaussian random variables (possibly degenerated) with mean
zero is given and consider the process X = (X (2), teI) defined by

@ X0 =[G+ T Ll

where w = (w(z), te]) is some Brownian motion on (2, #, P) independent
of ¢ and [G(t,s)dw(s) for each tel is a stochastic integral of Paley-
Wiener-Zygmund type.

The class of processes of the form (2) with L, A4 and ¢ defined as
above will be denoted by M,. For notational convenience it is assumed
that the random variables (£) in (2) are numbered in such a way that

>0 for1<k<m,
=0 form<k<n.
It is not difficult to prove (see .[6]) that for XeM, we have

P(XeC"'(D)=1. For XeM, let us denote by X = (X(1),tel) the
n-dimensional Gaussian process given by

X =(X®,DX@®,.... D" X ().

Then X is a Markov process [6]. _

Let R(t,s) = [R;;(t,5)], 0 < i, j < n—1, t, sel, denote the covariance
matrix function of X. Obviously, we have R,;(t,s) = D®?R(t,s), where
R(t,s) = E(X (1) X (s)). |

It is easy to check that for each t¢{t,.,,...,t,} there exists an inverse
R(t,t)"! of the matrix R(t,t). Now we define for t # t;,, m < i < n, the
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matrix function 4 by the formula

@) CA(t) := DYOR(E+, )R, 1)

A() = [ﬂ

where E = [E,; ;] is an [(n—1)xn]-matrix with E, ; = 0 except for j = i+]1,
Ei=1,and a = (a,0(),..., 010 o

It is of the form

3. Stochastic equati.(;r;sq.ﬁ We want to prove that for X € M, the process X |

is a solution of the Ito stochastic equation

(5) dX () = A® X @) dt+cdW(2),

where W is some n-dimensional Brownian motion, 4 is given by (4) and
o =[0;;], 0 <i,j<n—1, denotes the matrix defined by

{0 for 0 < i+j < 2n—2,

6 -
©) d 1 fori,j=n—1.

[ ]

The definition of A is quite natural since

AOX () = 4

du "Pt)((uL

u=t+

where P, denotes the orthogonal projection (acting on coord_inates of )z (w)
independently) in I*(2) onto span{D'X(t); 0 <i<n—1} and P, X (u)
=E(Xw|X@).

‘The proof of (5) is rather standard (see [2]), the only doubtful point
is the summability of A(¢) X (t) in a neighbourhood of the knots f,11,---,
where A4 is non-integrable.

_LemMa 1. If XeM, and Y(t) = (Y,(t), ..., Y,(¢)) is given by Y(t) = A(t) X (¢),
where A is defined by (4), then for 1 < i < n we have

[ (EBIY @) dt < .
I .
Proof. We have

Y(®) = (DX (D), .... D" 1 X (), Y, (), where Y,(:) = di B, D" ' X (u).

u=t+

It is enough to prove that (E|Y,(¢)[*)"/? is integrable. To do this we use
the natural isometry between X (I) = span{X(t);tel} < [*(Q) and the
Hilbert space L2 := I2(I)x R™ with the scalar product

(. 3}, {9 3)) = (s @o+(xa )y = [£-0+ T b7 i3

i
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where b = (b) and m are given by (3), and with the norm || = (-, )1/
By (2) and the well-known properties of stochastic integrals, the isometry
is given by the linear extension of

() XOB{GE, )z},  z = (210), ..., zs (1)).
Applying (7) we obtain
- = d
(EIY,(00%)"* = |F,ll, where F, = —— P,Gyp-y,
du u=t+ b
P, being the orthogonal projection in L2 onto G, = span {G.:0<i<n-1} |
with G,; = {GP, 20}, G = D¥OG(t,"), 20 = (D'z,(t), ..., Diz,(1). Let
{H?, v}, 0 < i < n~1, be the basis in G, dual to (G,,) and let
n—1 . .
K.(s,7) = Y HP(s)GP(x).
i=0

Elementary calculations lead to the formula

8) F", = {F,, d,},
where
d n-1 , )
F@) =40 JK@9GT D @de+ 3 @Y, o, G6P),
u=t+ =
d n-t , .on-1 . ,
= Gl 5 G HO 0+ T, o), 2
u=t+ i= i=

By the well-known properties of the Green function, for fixed uel ‘the
function GI'~V = D"~ -9 G(y, \) is continuously differentiable on the intervals
[0, u) and (u, 1] and we have

D" 1O G, u—)-D" L0 Gy, ut) = 1.

Moreover, K, (-, s) for fixed ¢, seI is continuous on the intervals (t, 1]
and [0, r). Thus for u > ¢ we can split the integral in (8) and differentiate;
consequently, we obtain

K, (1, 5) D" 19 G (u, 1) dr)

By

d 1
Eb[ K, (z,5) Gy V(1)dr =

I

(] +

(= ¥

+ | K, (t, 5) D™ G (u, 1) dv +

K, (u,s)[D"" DG, u—)—D" 1O Gy, u+)]

+

K. (7, 5) G’ (r)dt + K, (u, 5).

(=
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Analogous calculations show that for u >t

n—1 n—1 -1

du Z (G(" 1} H(l))0 — Z H(')(u)+ Z (G(" 1) H('))
i=0 i=0

Taking u — t+ and applying once more the formula for P, in terms of
dual basis, we get from (8)

n—1

F,(s) = K, (t+, s)+f, and d,= Y HP(t+)z"+x,

i=o )
where. 1f,, x,} = P,{G™, z{"}. But since Lz;(t) = 0 and LG(t,s) = Ofor t # s,
G™ and z" are linear coml-inations of G and z{, 0 < i < n—1, respectively,
and thus {f,, x,} = {G", z{"}. It is easy to see that

sup {[{G™, z"}||;tel} < oo,
thus the lemma will follow if we show that

IJ.HKrH dt < oo,

where

n—1

Kr = {Kt(t+’ -)’ ht}’ ht = dt—xt —_ Z Hsi] (t+)Z;i).
i=0

The function B(t) = |K,| is continuous and bounded outside of an
arbitrary but fixed neighbourhood of the knots ¢, 4, ..., t, and has right-hand
limits for t — t;. Therefore, it is enough to examine B(t) for t7t, and fixed

t0 € {tms1s o> t}
For each f = {f x}eLi and te\{ty,..., t,,} we have the equality (K,,f)
= f(t+), where {f, %} = P,f. It now follows that

B(t) = IK,| = sup|(K,, ) = sup |f@t+) < y(0),
where the supremum is taken over all fel2 such that | fll €1 and

(&)= sup {|f(t+); {f, x} € G, [{f> x}| <1}

But for fixed to € {tms1,---» Iy We have the following estimate proved in
the Appendix: '

9 Y{to—1t) = Ot~ Y2)  for t1t,.

Thus B(t,—1t) = Ot '/?) for t1t, and the lemma follows.

Now we can proceed in a standard way. Definition (4) of the matrix A
and the Markov property imply that for ¢, sel, t > s, we have

(10) jEA(u)ﬁ(‘u,s)du = R(t, s)—R (s, s).
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The integrability of the left-hand side follows from Lemma 1. Also by
Lemma 1 the process

Z@) = X(t)— fA(S))?(S)dS

is well defined and, moreover, from (10) and the Fubini theorem it follows
that Z = (Z (t),tel) is a martingale with respect to the family
F,i=0{X(s);s <t}. It follows from the special form of the matrix
A = [a; ;] that the first n—1 coordinates of Z are constant. For the n-th
one we have o

LEemMMA 2. If X eM,, then the process

tn—1

T Z@:=D"' X=X Y a.....-(S)DiX(S)dS
} ) 0i=0

is a Brownian motion with respect to the family F, = ¢ {X (s);s < t}.
Proof. Since the process Z = (Z(f),tel) is a continuous Gaussian
martingale with respect to %, = g {X(s);s < ¢}, tel, the lemma will be
proved if we show that E(Z(t)*) = ¢ for tel.
We have

tn—1

E(Z(tP) = D" " YR(t,0)-2{ ¥ a,:(s)D" P R(t, s)ds+
_ 0i=0

n—1

+2 a, ;(u) a, ;(s) D“? R (u, s) duds. '
0

j

But from the Markov property it follows that

(= S

ij=

n—1

D"PR(t+,s) = Y a,;¢)D*PR(t,s) for s<tand 0 <k <n-—1.

Using this and the formula for E(Z(¢)?), after elementary calculations
we obtain

d d

—E((Z(@t)?*) = —D" L= DR(t, )—2D"" "D R (t+, 1).

| pEe@) -4 (t, - (t+.1)

In the Appendix we have proved that the last expression equals one.

Now, if we take the n-dimensional Brownian motion W = (W(z), t’eI)
such that W(t) = (W, (1), ..., W,_ (1), Z(¢)), then because of the special form
of A(t) and by Lemma 2 we obtain

XO-X¢s) = fA(u)}?(u)du+fodW(u) for t,sel, t >,

where ¢ is given as in (6). Thus we have proved the following
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TueorReM 1. If X € M,, then the process
X = (X(@),tel), where X(1) = (X (), DX(®),...., D" ' X (1)),

is a unique solution of the stochastic equation (5).

The uniqueness part of the theorem can be easily proved using classical
results on each of the subintervals (¢, ¢,4), 1 S i< n—1..

4. Reproducing kernel Hilbert space. For a Gaussian process X the
reproducing kernel Hilbert space generated by the kernel R(z,s) = E(X (1) X(s))
is denoted by H(X). Let us recall that the Hilbert spaces- H(X) and
X (I):= span {X (2); teI} < I2(Q, #, P) are isometric under the map J,
where (see, e.g., [4])

(i J(T) = E(TX(), TeXx().

If X is given by (2), then using, e.g, Theorem 3.1 of [1] it is easy to
check that the function R(t,s) = E(X ()X (s)), t, sel, is the reproducing
kernel for the Hilbert space

= {feH"(I); ,(f) =0 for m < i< nj

with the scalar product
(f.9u:= [ LfLg+ T b AN A (o)

Here H"(I) denotes the Sobolev space of real-valued functions on I such
that feC"~1(I), D"~ f being absolutely continuous with D"f e L*(I), and b;
and m are given as in (3).

Lemma 2 permits us to obtaln another representation of the scalar
product in H{. Namely, let X eM, and let Z be the Brownian motion
from Lemma 2 Let, moreover, X {0} = span {D'X 0) 0<i<n-—1}. We
have

(12) X(I)=ZIDoX{0}.
Applying the isometry (11), for feH{ = H(X) we get .
(13) If1f = E(Y?)+E(Y7)
whenever f(t) = E(YX (), Y= Y+ Y,, Y, e Z(I), and Y, € X {0}. It is known

and easy to check that if Z is a Brownian motion on I, then its reproducing
kernel Hilbert space is equal to

2
dt.

d
H@Z) = {feH'U); f0) =0} and |flia =If ‘ Al
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Thus we have

d tn—1 . 2 .
E(Yf)=}[ —EMD" X O~ [ ¥ a,;6) D' X (s)ds))| dt = [ IMf(r)>dt,
dt 0 j=0 ’ i
where f(t) = E(Y, X (#)) and
n—1
(14) M=D"-3% a,;t)D.
j=0 :
~ For Y,eX {0} we have
n-—1 :
E(Y7) = Y ¢ ;E(Y,D'X(0)E(Y, D' X (0)),
i,j=0
where ¢;;, 0 < i, j < n—1, are constants satisfying
n—-1 -
Z Ci,jiO%i9m,i = Jems Gem = E(D"X(O)D"‘X(O)).
i,ji=0

Now from (12) and (13) we obtain Hf = H,@ H,, where Ho = J(X{O})
Hl.- J(Z(I)), and

IfIZ = flel(t)Ide Z D‘fz(O)Djfz(O)

i,j=0

with f,(f) = E(%X(8) for i=1,2. But Y, | Z(I) implies Mf, =0, and
since ¥; | D'X(0) for 0 <i < n—1, we have D'f,(0) = 0. Hence

(15) fli = IJ |MSf (¢)? de+ ,5__: i DIf(0) DIf (0)
and

. Hg = HO®H13
where

Hy = {feH#; Mf = 0}
and

n—1
= {feH Y ¢, ;Df(0) =0 for 0 < i< n—1}.
j=o

APPENDIX

Proof of (9). The Green function in (2) is given by (see [1])

(16) G(t,s)=g(t,5)— Zozj(t)hj(s);

i=
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where .
n—1
hi(s) = 4;9(,s) = aj.iD(l’O)g(tja s),
i=0
and g(t,s) is a Green function for the initial value problem Lf = F,
Dif(0) = 0for 0 < i < n—1,and thus g(¢,s) = 0 for t < s and D*Vg(t+, 1)
= 0;n-1- Therefore

7). .. lt%ff,’ DEOg(ty, ) (tg— 1) i7" = 1.
Take ‘
n—1
{fix}eG, [lo)= kZO . D*OGLt, s).
‘We have
e+ | 2 D 202, D4V 5,
< L )
1113 ‘0 _
° | |'ZkckD"zj(t)ocj'iD("o’g(tj, s)|” ds
t ey Js

The last expression for ¢t < t, can be written in the form

l;} tzj A;‘:}P @) D% g(t,, 1) D(”’O)g(tj, f)
1o

[YS AFP)D*Vg(t;, s) D"V g(t;, s)ds
t

k,p i.j

which for ¢t < t, is bounded by
Y. As? () D P g (o, 1)

const - k’t’; ,
) AG? (1) | D%V g (ty, ) D®V g (to, s)ds
. P t
where A§P(t) = AEER (1) and ¢ = ¢t;.

Now, because of (17), we can estimate this by a similar expression with
(to—t""*7* in place of D*®g(t,, t). The latter is easily seen to be of the
form (t,—1t)~!c(t) with ¢ continuous and bounded near t,. Hence for tTt¢,
we have |f(t+)/I{f, x}|*> < const-(t,—t)"" for" each {f,x}eG,, which
proves (9). '

Proof of the last part of Lemma 2. Since G is given by (16), the
covariance function can be written as '

(18) ' R(t,s) = [y(t,s)+I(t,s),

where I'o(t,s) = [ g(t, u)g(s, u)du. But since g(t,s) is a Green function for
Lf =F, Dif(0)=0, 0 <i<n—1, I'y(t,s) is a Green function for the
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boundary value problem
L*Lf =F, D'f0)=0, U(f)=0, 0<i<n-—1

where L* is the formal adjoint to L and

5

i . dk
Vi) = B (g | (i L),

t=1
Therefore, I'y is a symmetric function of the form

2n
Y c(t)yi(s) forr<s,

(19) Fo(t,s) = {:1
Jp— Y, di(t)y;(s) for t > s,
i=1

where c¢;, d;, y; (1 < i < 2n) are solutions of the equation L* Lf = 0 such that

2n

2n '
X aOD - ¥ di©D () = {

i=1

0 for 0 < k < -2,
(—1y for k =2n—1.

Differentiating this equality for k = 0,1, ..., 2n—2 we obtain
(20) |

2n ) 2n ) 0 for k+j < 2n—-2
Drc,(tyDiy, ()~ Y D*d, () Dy, (t) = ’
2 D)) DIy~ T D) D yi(0) {(—1)"“‘ for k) = 21
Now, using the symmetry of I'y, formulas (19) and (20), it is not difficult
to check that for ¢t # ¢, (1 € i< n)

d
I D= 1r= Dy (¢, 1)—2D"" " D o (t+,1) = 1.

Moreover, elementary calculations and application of formula (18) show

‘that (for ¢ # t)

; :
d*t D(n*l,n—l)rl (t, t)—ZD("’"_l)Fl (t'f‘, t) = 0.
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