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Abstract. In order to be a Lévy measure some necessary and
sufficient conditions are given for measures of integral form. In
particular, a complete proof for elements from classes L, 2> 0, is
presented. Also some other examples are guoted.

It is well-known that a measure M on a Hilbert space H is a Lévy (spectral)
measure iff M integrates the function min (1, ||x[|?) over H. On the contrary, on
general Banach spaces this condition is neither necessary nor sufficient.
Moreover, there is no function g such that the integrability of g(]x|) with
respect to M would be a necessary and sufficient one for M to be a Lévy
measure on an arbitrary Banach space ([ 1], Chapter III, Theorem 6.3). On the
other hand, studying random integrals of the deterministic real-valued function
with respect to Lévy processes or stable measures we have to show that some
mixtures of (Lévy) measures are Lévy measures as well [5-8]. Some of the
previous proofs have appealed to random integral arguments to conclude that
a measure is Lévy. Here our justifications go throughout the series of
independent Banach space valued random variables and some type of
“comparison principle” (cf. Proposition 1). Proposition 2 shows that if the
A-mixture of T,G, t >0, is Lévy, then so is G. The opposite implication is
considered in Proposition 3. Finally, in Section 4 some examples are discussed.

1. NOTATION AND SOME BASIC FACTS

Let E be a real separable Banach space with the norm | - ||, the topological
dual E’ and the bilinear form {-,-) between E' and E. Let ID (E) denote the set
of all infinitely divisible measures on E. A ¢-finite Borel measure M on E, such
that M ({0}) = 0 and the function

() =exp | [P ~1—ily, x)p, (I M(dx), yekE,
E\[0}
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is a characteristic function (of a probability measure &(M)), is called Lévy
(spectral) measure (cf. [1], p. 117-118, where (M) is denoted by ¢, Pois M).
The importance of Lévy measures follows from the fact that pelID iff
p =20, %y*é&(M), where xe E, y.is the symmetric Gaussian measure and M is
a Lévy (spectral) measure. The triple x, y and M is uniquely determined by
p (cf. [1], Theorem 6.2, p. 136).

In the sequel .# (E) denotes the set of all Lévy measures on Banach space E,
B,:={xeE: |x| <r},r>0,is a ball and 4, is the family of all Borel subsets
of Eq:= E\{0}. If H is a Hilbert space, then

(1.0) Me#(H) iff [min(1, |x[?) M (dx) < oo.
H
But on the general Banach space formula (1.0) is not longer true. However,

some sufficient conditions are available. Namely, we have the following (cf. [1],
Chapter III, Theorems 4.7 and 6.3):

(1.1)  M(E) < co implies M e.# (E) and e(M):= ¢ M® % M*/kleID (E);
k=0
u (1.2) jmiz:(l,, [Ix{) M (dx) < oo implies M € .# (E);
E

(13) I OKN<M and Me . #(E), then N, M—N are in . (E});
(1.4) if M, Ne.# (E), then M+ N e.# (E).
On the other hand, the following properties are necessary:

(1.5) Me.#(E) implies M (Bf) < oo for each r > 0, i.e. M is finite outside
every neighbourhood of zero;

(1.6) M e .4 (E)implies { min (1, {y, x)?) M (dx) < oo for each ye E, because
E
IT,Me 4 (R), where Il,: E— R is given by IT, x:= {(y, x).
For further references let explicitly state that (cf. (1.3) and (1.4))

(1.7 Me#(E) iff M°:= M+M~ e.# (E), where M~ (A):= M(—A) for
Ae,.

Thus we can consider symmetric measures M only. The measure M? in (1.7)
is called the symmetrization of a measure M. We complete this introductory
section with a lemma which will be repeatedly applied later on.

Lemva 1. If M is a symmetric Lévy measure supported by the unit ball
By, &,’s are E-valued independent rv's with distributions
E(Mtzx:(n+11“1<[ixiﬁén“ll) fOr n= 1, 2,...,
and & has the distribution (M), then )y &, converges to & in L,-norm for
each p> 0. "
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Proof. By Lemma 4.4 and Theorem 2.10, Chapter 111, in 1], we infer that
> &, converges as. to & From [1], Corollary 3.3, we infer that £ has all

exponential moments, in particular all p-moments. From the Lévy inequality
and Theorem 2.11 in [1] we conclude the proof of Lemma 1.

2. FUNDAMENTAL INEQUALITIES

Let 1 be a measure on R* = (0, o) and m a Borel measure on E. Then the
measure m'?, defined on Borel sets 4 by
2.1 mP(A)=[ [ 1,x)2@d)midx) = [ m@~* A)A(dy),

ER* R*

is the A-mixture of measures (T, m)(-):=m(t™*"), te R*. Measures of the form
(2.1) appeared in the study of stable measures (cf. [6], p. 272-273, or [1], p.
165), random integrals (cf. [7], p. 250, or [4], Theorems 1.3 and 3.2) and in
fractional calculus in probability theory (cf. [8]). In all of these circumstances
one has to determine whether m™® is a Lévy measure for a particular given
measure 4. Here (in Section 3) we will discuss this question as well as the
opposite one in general. v

ProrosiTION 1. For 1 <j<k let 1; be finite measures on R with mean
values v; and let m; be finite Borel measures on E with zero mean values. Then

JUxI T my e T, my (dX) < [ || x) m@0 % e mi (dx)
E E
< f x| my=...xm (dx),
E
where a; =v; [ 4;(R") for 1 i<k and

J#i
=2 [ ... [ max(t,, ..., )4, (dt,)... A (dty).
Rt R+

Proof Let 4, be the middle term in the above inequality. By Lemma 2.12,
p.. 108, from [1], we get

A= .. ] f“--iﬁtixﬁ“ el my (dxy ) omy (dx) Ay (dty). L A (dey)

R* R*E

< ¢ fllxl my%...%m, (dx),
E

which gives the right-hand side inequality. Since the norm of an integral is not
greater than the integral of the norm of a function, we have

A4, = ij ﬂiﬂf ...,R§ (ty %+ .. F X Ay (d2)... A (de)] my (dxy) ... m, (dx,)
E + &
= jj lag xs+ ... +ap x| my (dx)...m (dx,),
E E

which is the left-hand side inequality in Proposition 1.
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We conclude this subsection with some simple properties of 2-mixtures m®,
which will be needed later on. Namely we have:

2.2) (m™° = (m®)?, where m® is the symmetrization of m;
2.3) if my <m, or A, < J,, then mi < m§?;
‘ ; E)
(2.4) Cm)?=YmP and m’ L 2 (4,
i J
(Zajﬂa
(2.5) mP% =T m and m’ Z ; T, m
(2.6) am'? = (am)¥ = m“?  for aeR*.

In formulas (2.2)+(2.6), m and m’s are measures on E, and A and A/s are
measures on R*,

3. MIXTURES OF MEASURES
As before, E denotes a*Banach space, %, is a o-algebra of Borel subset of
E,:= E\{0} and . (E) is the family of all Lévy measures on E.
ProposiTiON 2. Let g be a measure on R™ and G be a measure on %, both
non-zero, such that G9¢e # (E), i.e, G9 is a Lévy measure. Then

(a) [ G(B:-1)gldt) = Jo gzt > x| " Y Gdx) < oo,
R* .

1 (b) g and G are Lévy measures on R* and E, respectively.
Proof. From (1.5) and (2.1) we get
G9(BY) = | G(Bi-1)g(di) = [ g(t:¢ > [Ix]| 7" G(dx) < o0,
Rt Eg

which gives (a). Moreover, G and g are finite outside some neighbourhoods of
zero in E and R¥. In fact, they are finite outside every neighbourhood of zero.
Note that

f G(B:-1)g(d) < oo for each a> 0.

Thus there is a fye(a™?, o) such that G(B,;1) < o0, ie, G(B;) < oo for
a > 0. Similarly, we show this for g. Furthem:rore 1, G‘g’ M (R) for all ye E'
(cf. (1.6)), and (1.0) gives
fmin(1, s) 11,69 (ds) = { | min(1,  (y, x)?) g (dt) G (dx) < co.
R ER*
Hence there are x,eE and y,eE’ such that w= (y,, x,)> #0 and
g integrates min(l, t*w?) over R*, ie, ge #(R%).
To complete the proof of part (b) we can assume that & is symmetric and
concentrated on the unit ball B; (cf. (1.7) and (1.1)). Also, without loss of the
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generality, we can assume that g is concentrated on a bounded set 4 in R* and
that g(4) = 1, because G = GU4 e 4 (E) and aG¥'4 = GOl (cf. (2.3), (2.6)
and (1.3)). Consequently, G¥* is a symmetric Lévy measure concentrated on
the ball B,, where r:=supA < oo and g,:= g|,. Taking

In:= Bln't\'B{nivﬂ‘la Gn::: GII,,
and independent E-valued rv’s £, with distribution e(G¥"), we see that } &,
converges in L;-norm (cf Lemma 1) Appiying Proposition 1 for

h=..=X=g, and m, =m, =...=m, = E G,, we obtain
n=j

!
af x| (Y G y*(dx) < j x|l Z G¥y(dx) for keN,
E a=j nmj

where a is the mean-value of g,. Since G¥Y(E) = G,(E), we conclude that

EHZ nal < a” IEHZ &l for all j, IeN,

n=j ne=j

where 1, are E-valued independent rv’s such that L{y,) = ¢(G,). Thus Zn,
cunverges in L,-norm and G = ZG €. (E), which completes the proof of

Proposition 2.

Now we will determine when G is a Lévy measure if so is G. However, we
should be aware that in full generality the answer may depend on the geometry
(the norm) of the Banach space E. Let us consider the following example: take
gldt) = t"®*1 dt on R™ and finite measures m on the unit sphere § in E, ie,
for Ae4,,

m®(4) =§7? 1 () e~ @+ drm(du).
S0

It is known that m@ is a Lévy measure (an exponent of p-stable
distribution) for all finite m’s on S if and only if E is of stable type p (cf. [1],
Theorem 7.9, p. 165, or, for a partial answer, [6], Theorem 2). In view of this
example, sufficient conditions for G to belong to .# (E) will be given for some
measures g only.

Provosiion 3. (1) If g is finite and concentrated on (0, T, then G9 is a Lévy
measure if so is G.

(2) Let g be concentrated on (0, T'] such that, for some sequence a,]0 in R,
we have

a,=T, c:=)a,<w and b:=supg(a,.,,a,]<o.
n H

Then, for Ge.# (E) concentrated on B,, we have G9e # (E).
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(3) Let G be a finite measure concentrated on B{ and g be a measure on
R*. If

(@) L gls:s > [x] ") Gldx) < o0

and

(i) « jlxit f ‘Iq{dz Gdx) < oo,
B 0

then G is a Lévy measure on E.

Proof. In view of (2.2) and (1.7) we assume that all G’s are symmetric
measures. We will prove each of these cases separately.

Case (1). By (2.6) we may assume additionally that g is a probability
measure. Since Glg is finite (see (1.5)), and, for finite G, the measure G
is also finite, we restrict our consideration to Ge.# (E) and concentrated
on B,.

Let I,:= By, \By/u+1y» G,:= G, and let #, be independent E-valued rv’s
with dlsmbutmns e(G,) for ﬁ =1,2,... From Lemma 1, } », converges in

L;norm. Let &, neN, be iude;:endeut E-valued rv’s with distributions

e(G¥). Applying Proposition 1 to A, =...=4, =g and m; =m, =...=my
H

= Y G,, we obtain

n=j

f ;ng(z Gy (dx) < 27 {1 z G,)* (dx).
E

n=j n=j

Since G¥(E) = G,(E), hence summing over k we get

t i
IS &l <2T 3 a,  for all ), leN,
n=j

n=j

ie, Y &, converges in L,-norm to an infinitely divisible rv with Levy measure

ZGf,Z:’ = G¥ which completes the proof of case (1).

Remark 1. An alternative proof for the case (1) is also possible by
a random mtagral approach. Note that the random integral | tdY(§(t)
0, T
exists for D, [0, T]-valued rv Y with stationary ix:uciel:r’em:hamsC m{;mments,
Y(0) =0 as. and §(t):= g(s:s < t). Its Lévy measure equals G9 (see [4, 5]
Case (2). Let L,:=(a,,,,a,] and g,:= g|, , ne N. Assuming additionally
that G is a finite measure we get

Y
[ lx]l e(GU)(dx) < e~ CENED 3 %Jiixfi G** (dx)
E k=152
E
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from Proposition 1 and formula (1.1). Since

e = 26°(0L) {[1~(g 525 < g L) < 20, (L)

we obtain (cf. [1], Lemma 2.7, p. 103) |
i Ix[| e(G¥)(dx) < 2a, i Ilxll e (g (L,) G)(dx) < 2a, | ||| e (bG) (dx).
E E

Taking #, to be E-valued independent rv’s with distribution e(G%), we
obtain

E[E m| <2 a.flxle(G) ().

Hence ' #, converges in L;-norm, y G% = GPe #(E), and
[ lIxl e(G¥) (@x) < 2¢ [ | x|l e (bG) (dx),
E E

for G finite and concentrated on B,. ‘

If Ge.#(E) and is concentrated on B,, then, taking G,:= G|, (I,:=
B,-:\B+1)-1), we have G¥ c.4 (E) and the above inequality holds for G¥'.
Hence and from Lemma 1 we conclude that ) G¥ = G¥e.# (E) and

[ 1%l 8(G¥) (dx) < 2¢ [ x| 2(bG) (dx),
E E
which completes the proof of case (2).
Case (3). Note that, for 4e4,,
GPA) = [ 1,x)gWd)GEx)+ fo1,(x)g(dn)Gdx)
R HVEY ) B (0,l1x1i~ 1)
is a sum of two measures, v, and v,, say. Because of assumption (i), the measure
v, is finite and v, € .# (E). The measure v, is concentrated on B, and, by (ii),

i -1

|
gﬁxii v, (dx) = i;]:‘ x| _f tg (dt) G (dx) < oo.

0

* Consequently, by (1.2) and (1.4), G* € .# (E), which completes the proof of
case (3) and Proposition 3.

4. EXAMPLES
A. For o >0, let v, (dt} = (logt™"y*"' t7" dt be a measure on (0, 1]. Taking
a,i=exp(—n'®), n=0,1,2,..., we get

1

Ya, <o and  v(@,.4, 4] =0t < .
n

10 ~ Probability 11.1



146 Z. I Jurek

Condition (i) in case (3) of Proposition 3 or (a) in Proposition 2 for v, means
the following'

[ j (log ™1y~ lt“idtG(dx)ma“lj'log Ix] G{dx) < .

By =] -t
With the above restriction on G, condition (n} in case (3) of Proposition 3 is
fulfilled because

ixll -3
lim [x|/log®[lx| | (ogt ' 'dt= lim u‘“"e"j’e Y ldr = 0.

%]~ 0 - oo
This and Propositions 2 and 3 give
Cororrary 1. Let o> 0 and

G,(4) = ;(} 1,(tx)(logt™ 1y~ 1 dtG (dx)

={J1 e x)e* " dtG(dx) for AeB,.
E0

Then G, is a Lévy measure on E iff so is G and
j log® x| G(dx) < o0.

Remark 2. Thu ([8], Thﬁorem 4.3) claims the result as above. The proof is
a combination of random integral arguments from [7] and property (1.3) of
# (E). However, inequality (4.12) in [8] needs a correction and applying
Corollary 4.2 (in Cases ! and 2) one requires that Ge Gy, (X), not only
GeG,(X).

Remark 3. Taking a(f) = exp(—t'/) in Theorem 4 of Hong [3], one gets
Corollary 1 for Hilbert spaces. Since a part of Hong’s proof depends on the
Three-Series-Theorem, it is not obvious that his arguments can be extended to
arbitrary Banach spaces.

B. For §> 0 let us put g,(di) =1~ B+1d; on (0,1]. For 0<f <1 and
a,=n"'"" we get Za < w, gﬂ(aﬂﬂ, a,]=p"" If Gis a Lévy measure

concentrated on Bl, then GWe # (E) by case (2) of Proposition 2. If G is
supported by B} and finite, then from assumptions (i) and (i) of case (3) and (a)
in Proposition 2 if follows that
[ IxI? G(dx) < a0
B
From this and Propositions 2 and 3 we obtain
CoroLLARY 2. Let 0 < f <1 and

Gy(4) = jle () VUG (dx)  for Aed,.
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Then Gy is a Lévy measure iff so is G and
JIxlf G(dx) < 0.
By
Remark 4. Taking in Corollary 2 a finite measure m on the unit sphere
S of E we obtain measures

my(A) = [ [ 1,(tx)T®* Vdtm(dx) for AeB,.
S0

which are always Lévy measures {(corresponding to stable distributions with the
exponent fe(0, 1).

C. For y > 0 let us put v, (df) = (logt™ 1y~ dt on (0, 1]. Since v, are finite
measures (v, (0, 1] = I'(p)), (2) of Proposition 2 is fulfilled. Thus Proposition 3,
case (1),”and Proposition 2 give the following

CoroLLAry 3. Let y> 0 and

G, (4) = jf 1, (tx)(ogt 1)~ &G (dx)
EQ

e " x)e™ """ *dtG(dx) for AeB,.

ey b

-]

Then G, is a Lévy measure iff so is G.

Remark 5. Lévy measures G, from Corollary 1 correspond to infinitely
divisible measures from the class L, distributions (cf. [8]). These are subclasses
of the class L = L, of selfdecomposable distributions. Similarly, measures G,
from Corollary 3 are Lévy measures of distributions from classes %,. The class
YU, =% coincides with limit distributions of non-linearly deformed rv’s
(s-selfdecomposable distributions; cf. [4], Section 2).

5. FINAL COMMENTS

(1) All results (Propositions 1-3) are also valid if in the definition of m™ (see
(2.1)) we replace 1,(tx) by 1,(f()x), where [ is a real-valued measurable
function on R™. Simply, the measure 4 should be replaced by the measure
fA=Af"" in (2.1). There is a need to have analogous characterizations for
operator-valued functions (cf. [5] for measures from %,(Q) with § <0)
However, some of the present methods of proofs do not cover such a generality.

(2) The integrability of log®(1+|x]) (or |x]|?) over BY  with respect to
Ge 4 (E) is equivalent to

}Ek}g“(l+ [x)é(G)dx) < 0 (or i]fxiiﬁﬁé"(M}(dx] < o)

{cf, for instance, [2], Corollary 3.4),
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