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ON L&W (SPEnMB,) MEASURES 
OF INTEG%RJai;lh, FOWLM ON B A N A a  SPACES 

Dedkoted 10 my %acher and Masrsr 
PI.qfes$or KAZlMI E R Z  UKBA N X K orz 
the occasiun of hB sixtieth birthby 

Abstract. En order to b~ a Lkvy measurG ~ a m s  necessary ztnd 
sufficienr conditions are given for mewures of integral farm. h 
partbular, a compfett proof for clements from classrts I;,, ai =. 6, is 
presented. Also some other examples arc quoted. 

It is wdl-known that a measare M on a a lbe r t  space H is a Lkvy (spedral) 
measure iB M integrates the funs~on min (1, 1 1 ~ 1 1 ~ )  ever H. On the contrary, on 
general Banach spaces this condillion is neither necessary nor sufficient. 
Moreover, there is no func~on g such that the iategrability of g(/\xll) with 
respect $0 M would be a nmssary and suficient one for M to be a Lkvy 
measure on aure arbitrary Banach spme ([I), Chapter 111, Theorem 6.3). On the 
other h a d a  studying random integrals of the deterministic real-valued function 
with respect to Lkwy processes or stable masarea we have to show that some 
&lux@ af (Lkvy) zncasures are Ltvg measures as w ~ l l  C5-81. Some of the 
previous proofs have appealed to random inlegrd arguments to condude that 
a measure is Uvy. Here our just%catiotas go throughout the scrjcs of 
independenzt Bauach spa@ vdmd random val-iables and some type nf 
'keamparison principle" "(cf. Proposition 1). Proposition 2 shaws that if the 
I-mixture of T G ,  r 0, is Lkvy, then so is G. The opposite impllcatatian is 
consjidered iPb Prop~~i t i an  3. Fieally, in Section 4 some examples are discuss&. 

1. NOTA'H%OM AMLP SBME Bi'LSIC FACTS 

Let E be a real separable B a m ~ h  space with the norm - 11, the tcrpslo&cai 
dual %5" and the bilinear form C e ,  *) bctween F and E. Let ID ( E )  denote the set 
af all Idmitely divisible measures oa 6 A @-finite Bord measure M on E, S U G ~  

that M((O))  - O and the function 

cpM Qy)  "= exp $ fe'(Y+x) - 1- r ( y ,  x ) ~ ~  [x)] M [dx), y E E', 
E\fQ.) 



is a characteristic Ewetion (of a 91-obability measure $(MI), is called Lksy 
[specmi) measare (cf, [I], p. 117-1 18, where G[M) is denoted by c, Poio MI. 
Tbe importance af Ekvy measures fullaws from the fact that ~ E I D  iff 

= 5, * y * &(M),  where x E E ,  y is the syrnmelrje Gaussian measure and M is 
a L4vy (spe0;rtraJ) measure. The triple x, y and M is uniquely detemined by 
@ (d- "f,], Theorem 6.2, p. 136). 

In the sequel A (E )  denoter; the set of all Lkvy measures on Banlach spam E, 
B,: = (x E E :  lxll Q r ) ,  r r 0, is a ball and a, is the farrrily of all Bore1 sub=& 
of E ,  : = E\, (01, If H Is a Miibert space, then 

But on the genera9 Banach space 6bsmula (1.0) is not longer true. Hawever, 
some sumcient anditions are available. Namely, we have the foIlawing [d 
Chapter BII, Theorms 4.7 and 6.3): 

m 

(1 '1) M (11) < m implies M E ,& (E )  and e (M) : - e'"A(m Mek/k! E ID QE): 
k = O  

(1.2) 1 mi0 (1, i] xil) M (dx) c ao imp6es M E  (El:); 
E 

(1.3) if O < N d M and ME&(@, then NiZT, M - N  are in ACE);  

t 1.4) jf M ,  R ~ E & ( E ) ,  then M + N E & ( E ) .  

On the other hand, the folIowing properties are necessary: 

(1.5) M E.M ( E )  implies M(BF) < co for each s > 0, i.e. M is finite outside 
every neighbourhsod of zero; 

(I -6) M t ,X (El imprlies J' min (1 ,  (y , x)') 1W (dx] < rn for each Y E  Es bmause 
E 

117, M E dl (R), where a7,: E -t X is given by n, x : = (y, x). 

Far  hrther references let explicitly state that (cf- (1.3) and (6.4)) 

(1.7) M E . ~ ( E )  iff M ~ : = M + M " E & ( E ) ,  where i k lm(A) :=M( -A)  far 
A E,%~.  

Thus wc can consider s p m a t ~ c  measures iM only, The mcasurc MQ in (1.7) 
is called the  sytnmetrizutiosn of a measure M .  We wmplete this introductc~ry 
seetiot~ with a Imma which will be repeatedjy applied hter on. 

LEMMA 1. I f  M i ~ "  u syrmzet~ic LPuy nfeasitm supported by $he unit. bail 
B , ,  {,2 aye E-aalued irrdepgndgnt rei" with disttibutio~s 

I : + - [ ]  J Q ~  n = 1 , 2 , . - . ,  

and fins tkc diselbsction P(M), theva Ctn converges la 6 ia &,-namr *for 
each p > 0, R 



Pr a o f, By Lemma 4 4  and Theorem 2.10, Chapter III, in [I], we infer that 
Ct,, converges a.3, to c, From [ij, Corollary 3 3 ,  we infer thai 5 hds all 

!I 

exponential moments, in particular all p-moments. From the Lkvy inequality 
.and Theorem 2.1 1 in [I] we conclude the proof of Idemma 1, 

Let R be a measure on R' = (O? m) and m a Bore1 measure on E. Then the 
measure r.ng; de6ned an Barel sets R by 

is the: 2-mixture of measwes J I I )  ( a)C .) = m (t" "1, r. E R'. Measures of the farm 
(2.1) appeared :din the study of stable measures (cf. [63, p, 272-293, or [I], p. 
1651, random integrals (cf, C71, p. 250, or [43, meorems 1.3 and 3-21 and in 
fractional calculus in probability theory (cf. [SI), In aU of these eir~umstaslct:s 
one has ta detersnine whether mWQs a Lkvy measure for a particular giwn 
measure A. Here (in Section 3) we will discuss this question as uu'etl as the 
opposite one in general. 

P~orasmo~  1. For I 6 j f fc let JGj be finite mmtrsures apt R" with rrmean 
~taltlfrs v j  and kt mj be,fiuaite Burel measures opt E with zero mean uallres. Then 

Pr a of, Let A, be the middle tern in thc above inequality. By Lemma 2, t 2 
p.. 108, from [I], we get 

which gives the ri&t-hand side irrequality. Since the nom of an integral is 11ot 
getter than the i n t c ~ a l  of the norm of ill f~~nclion, vs have 

which :his the left-bad side inequality in Proposition 1.  



We conclude this subsection with some simple pzapcsties of &mixtures mcA!, 
which will be nmded later on. Namely we havie; 

(2-2) Qn%SA1)' =. (moral, where rnD is the symmetrization of FE; 

(2.3) if m, G EIEZ OX: A1 G ,IZ, then m\'" G miA2); 

mt&) , y i a a j  - 
T,M and rill - Xa i  

j 

(2.8) amt"l = ((LFm)ta't = mf& for a~ R". 

In famula (2,2)42.6), m and mis are measures on E, and A and 1;s are 
measures on a'. 

3, MIX OF MEASSIRES 

h before, E dmotes a*Bmach space, B, is a cr-rtlgebra af Bard sobget of 
E,  : - E\ (0) and ,,kt (hi is the family of all Lkvy measures osr E. 

P ~ o ~ o s ~ n o ~  2. Ler g Be a memure orr Itc atd G he n measure on a@,, both 
naa-zero, such that GbB"~&i(E),  i,e., G'@) is a Lkuy measure. Then 

(4 c ( ~ : - ~ ) g ( d t )  = 1 g ( t : t  > I t~ j I -~) i l ; " (dxj  < oo, 
R ' Eur 

033 g and G are Lkvy measures on R" and E, rmspectiuely. 

PraaE From (1.5) and (2.1) we get 

which gives (a), Moreover, 6: aad .q are finite outgide same neighbourhoads of 
zero in E md M', In fact, they are finite outside every neighbourhaod d zero. 
Nore that 

m 

G ( & - l ) g [ d t ) < c x ,  for each a > 0 .  
a t  

Thus tlhese is a to ~ ( n - I ,  UJ) S U C ~  that 6 (Bt,,) < car ;.I;., G/&) < 'U far 
u z 0. Simil;11"1y, we show this far g, Furthemore, fIY G [ @ ~ E  .A! (8) for all J'E 3:'" 
(cf. (1.6]'), and (IsO) $yes 

f rnia(1, s2)&G4@"ds) i.; J' j min(1, t2 ( y ,  ~ ) ~ ) g ( d l ) F ( d X )  < mI 
I? E P+ 

Hence them are xO E B and y, G iY such that w = {y,, x,) $- U and 
g integmtes min(l ,  f Z  w" aver R', ie., g ~d(3lf). 

Ta somplete the pruuf of part (b) we can assme that G is symmetric and 
mnantrated an the unit ball B, [cf, (1 -7) and (1.1)). Msa, without loss of the 



generaBty, we can assume that y is concentrated on a baunded set A in R" and 
that y (A)  = 1, because 3 tZcsrln'~ A@ {E)  and aS;{gl~) = (cf. (2.3), (2'6) 
and (1,3)). Comequendy, f;'g3"js a symetric ECvy masure concentrat~d on 
the bail B,, where r := sup A < cx, and g,  : - gIA. Taking 

and iadependent E-valued rv"s 5,  with distribution e(GkQd)), we see that zc, 
ti 

converges in L,-norm (cf. Lemma I), Applying Proposition 1 for 
I 

A,  = .., = A, = gz and m, = rn2 - ,.. = mk = G,, we obtain 
a - j  

I I 

1 iil ll [ Go)*& C ~ X )  G 5 Ci x 11 ( C G ~ @ ~ I ) + R  [dx) for k E N ,  
B n = j  E n = j  

where n i s  the mean-value of g,. Since G$QE"(E) = G,(E), we mnclude that 

where q, are E-valued independent rv's such that Lh,) = e(G,). Thus x q ,  

converges ia L,-norm and G = G, a A! (El ,  \which completes the proof of 

Proposition 2. ' 

Now we wiU detemiae when Gtg"is a U v y  measure if so is 6. However, we 
should be aware that in full-geaerality the amwer may depend on the geometry 
(the norm) of the Bslnach space E. Let us consider the following example: take 
g (d l )  - t -  @ ' l J d t  on RR' md f i ~ t e  measul-es rra an the unit sphere S in 6 i s . ,  
for AEL!B@~ 

m 

nabV(A) = S f  l , (~kc) t - (~+"dtv la . (da) ,  
9 0 

Zt i s  Laown that mM9' is a L6vy measure (an exponent of g-stable 
datsibutiora) for dl finite m's on S if and only if E is of shble fgpe p (cE [I 7, 
Thearem 7.9, p. 165, or, for a partid answer, [S], Theorem 2). In view of this 
exan pie, suEcirnt conditions for Gf@l to belong to .dF (El  will be gven for some 
measures g only. 

PKOPOS~ION 3, (1) lfj~g a j ~ z i t e  avrd csncentr~ted apt (0, TJ, then CbJ is w LBII~ 
measure {f so is C. 

(2) L~if  g be cuncgntratsd on (0, ;t.g such thrad,for some seqwmc~ aJ9 in R' , 
we here 

L(% = c;= CG, < m and b:= suprg(aR+,, ta,J < mtj, 
n il 



(3) Let G be a fi~xice measure eance~ztvated OM Ej? alzd y be a measure an 
a*. ~j 

and 

(ii) 

thm G @ h s  rr U v y  masure on E, 
ProaC In view of (2.2) and {1,7) we assume that all G's are symmetric 

measures. We will prove each of these cases separately. 
Case (1). By {2,6) we may a s sme  additionany that y is a prclbability 

mesure. Since GI,; is finite (see f1.5)), and, for finite C, the measure Gdg3 
is also finite, we restrict our cotlsideration to CEA(E)  and conceatrat~d 
on B , .  

In:= Bljn\Bt!(,i I), G,, : = 63, and let q, be independent E-valued wqs 
with distfibutians e (G,) for a - 1, 2,  . . . From Lemma 1, 1 r t ,  converges in 

n 

L,-norm. Let (,, r z ~ J v ,  'bt3 independent, E-vdued rv's with distributions 
etGl;"'). AppIying Proposieion 1 ta A, = . .. = Ak -: and m, = m, = .-. = m, 

i 

= C G,, we obtain 
m =j 

Si~xce GlfYQ =: G, (E),  hence summing over k we get 

i.e., r, converges ia L,-nom ta an infmitely divisible rv wit11 Levy me;?$lihre 
n 2 Gi$= Gfg" which completes the proof sf case (I), 

FI 

Rema sk 1. An dkrnative proof far the case ( 6 )  is also possible by 
a random in&:ral appmach. Note that the random intgral 1 tdY(#(f)) 

ra,n 
exists for DE[O, q-valued rv Y with, straticrlaaw indwendent ~ncrements, 
Y(O] - O a.s, and g(s) : - g (s: s < I). Its U v y  measure equals 6") (see 59) 

Case (2). Eel L, : = (a,, , , a,J and g, : = $It,, R E  N .  Assuming additionally 
that @ is a finite measure wc. get 



from Proposition 1 and farmula (1.1). Since 
ah 

Ck = 2 8  (kSl) [I - (@ (3 : .Y < ~)/EI (LtI)Y] df < Za, g"Ld3 
0 

we obtain (cf. [I J, Lemma 2-7, p. 103) 

Taking q, to be E-valued independent rv's with distribution e(Gth9, we 
a btain 

1 1 

l-T It i ~ r , [ j  G 2 1 a,! ilxll e(bGl(dxl- 
N = J  s = j  e 

Hence zq, converges in L,-norm, CC("" = G G ' " ~ d ( E ) ,  and 
n 

far G finite and cancentrated on B , .  
B GE 4 (a and is conceatrated on B, , then, taking G,:= GIrn ( I ,  : = 

BII-"Btn1)-L).r we have G?)e&(Q and the above inequality holds for Gifb. 
Hence and from L e m a  1 we conclude that CG;?" GC;'"~d(E;r and 

n 

which conrpleta the prod of case (2)- 
Case (3). Note that, for A E , % ~ ,  

G") ( A )  = 1 4 ( t ~ ) g  (dt)  C ( d ~ )  9 5 f t ( t ~ )  8 (dt) 6; (dx) 
85 r l l j ~ l i  ET(o.llxlE '1 

is a sum af two measures, vl and v2,  say. Because sf assumpti011 [i), the measure 
v ,  is finite and v ,  e &[El. The mcaure 11, is concentrated on B, and, by (ii), 

ILxII 
f llxllv2(tdx)- j lix[$ j tg(rlr)G(d.ac)<ix, ,  
E -% 0 

Canscquen:naly, by (1.2) and (1.41, G")E dl (E) ,  whish eomptetes the proof of 
case (3) and Propodtion 3, 

4. EXAMPLES 



Conditioa ( i )  in case (3) of Proposition 3 or (a) in Proposition 2 for v, means 
the followiq: 

1. 
j 1 ~ o g t - y E " - ~ - ~ d t e ( ~ x j = ~ - L j ~ ~ ~ ~ / ~ ~ l ~ ( d ~ j ~ ~ c  

Bfl ll*il-E 6 

With the above rest%iction. a n  6, condition (ii) in case (3) of Pt-agasltian 3 ks. 
fulfilled becailase 

This and Propositions 2 and 3 give 

The& E, is a L & Y ~  measure on E @ so is G and 

R e  ma r k 2. Thu (6531, Theorem 4.33 dairns the result as ;zsabove, The prod is 
a ~om'hinatian of random integral wmments from 173 and praperty (1.3) 0% 
d&(EJ. However, ineqdi ty  (4.12) in /83 nmds a correction and applMg 
Corollary 4.2 (in Cases 1 and 2) one require-s that G E  GIQl+z (Xj3 not a d y  
G E G, [X). 

Re rn a r k 3, %"aking a (i) = wp [- ti@) in T k e o ~ m  4 of Hong 131, one gets 
Corollary 1 far Hifibert spaces, Siam a part of Hang's proof depends oa the 
'Fhr~e-Series-Tli~eorern~ it is not obvious that his iw:wmks can be cxten&d to 
arbitrary Banach spaces. 

B. F,+ > a ret US put g p  (dt) = t-'fl+ljdt (a, 11% o < 8 < r md. 
an -- a-m31P we get xa, < a, @,(a ,,,, aJ - 8""'. Xf G is  a Erry me8um 

m 
eoncentrated on B, ,  then G(@ E .k ( E )  by case (2) of Proposition 2. If G is 
supported by ITL md fiajte, then from assmgtions (i) and (ii) sf case (3) and (a) 
in Proposition 2 if follows that 

J* IlxllP G(dx) --= 03. 

Fram this and Propasitions 2 xnd 3 we obtain 
COROLLARY 2. hl 0 < Ef (I $. b d  

11 

6;; (A)  = j 3 l A  ( tx)  t - f b ' l ) d t ~  (ax) ,for A E BO. 
P U 



Then Gg is a Lioy measure if .so is G and 

J 11~1[W64;(dx3 < m, 
G 

Remark  4. Taking in CorollEary 2 a Fmite measure n? on the unit sphere 
S of B we obtain measures 

91 

q, CA) = j I, (rx) FtB" IUtm (dx) for R E B ~ ,  
8 0 

which are always Livy measures (corl.espon$ing to stable distributions with the 
exponent j3 E (El, 1). 

C For y 0 let us put ~ , ( d i )  =: (log t -  t)Y dt on (4 11. Since v ,  are finite 
measurn (v,(O, 11 =. r (y) ) ,  (a) of Proposition 2 is fulfilled. Thus Proposition 3, 
case (f);md Proposition 2 give the fallowing 

COROLLARY 3. Let ?'> 0 and 

Tl~en 6, is a Lduy measure if so is G. 
R e m a r k  5. Lkvy measures G, Ram Corollary I wrrespond to infinitely 

divlisible measures from the class L, distributians (cf. t8-j). These are subclasses 
of the class E = L, of sdfdacompasabfe distpibutians. S idr~r ly ,  measures C, 
ham CoroElrjucy 3 are Levy meaij~tres of distributions from classex Q,, The ~Iass 
8, =I coincides with limit dist~buticmns of aon-Enearly deformed w's 
is-seIfdsomposabb distributions; cf. [b f r l ,  Ssc'liorm 21, 

(1) All rcslnlls (Propositions 1-31 are also valid if in the deGni titm d rntA"see 
(2.1)) we replace I, (%XI by 1, ( j r ( d )  x)? where f is a reail-valud measurable 
function an K". Simply, the measure R should be replaced by the meaml-e 
fR Af-"4n (2.2). "There is a need to haye anai;ir5gcrus chaa:acte&atiom for 
opwatar-~alued functions (cf. C5-j for measures from +l'k, (Q) with B c 0). 
However, scrmt: of the pmsexat metkeds of proofs $0 nat cover sush a gcnemgty, 

(2) The integ'rab2ity of laga(l + jl x]t) (or I[rc/[#) over EFf" with resvct to 
IC; E ,& (E)  is equivalent to 

(d, for instance, 121, Coronary 3.4- 
I 
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