
ABPLPiCATION TO PWIOCE,SS@S WITM IG"(IIBEPENXdENT M@mMEN'B"S 
AIM) TO GAUSSdAa BBO 

Ab8tract. Let X(t), be a real vagued stochastic process 
admitking a l a d  caldme and kt X,(r), &ESP* ,  be a family of' smmtk 
pclcesses which converge in some Yen= to X(t).  We exbibit suficimt 
eoruditirms ibr L z - c a n ~ e r ~ a a  of the number of erassings: of X,(t) to 
the: lacd tjme of X(t), alter ~~rmaliZittion. 

Two mzh cases am considered far X (11, stable proceases and 
Gaussian processes. 

Two main cases are considerd for X,(t): X=(t) being the 
caavolution of X ( r )  with a size F approximate identity and X,(t) being 
the: d z  E polygon& appmximation of X@]. 

S u ~ h  a coruvergencrp. is shown .ta hold far both appraximations 
when Xft) is a stable process with independent increments 6 t h  index 
a >  I ,  

Convergeaa d cyoshgs of the palygonal rapp~oxirn;ltiutr i s  
shown ta hold for EI h e s i a  pracesa uad~r  tcchnicaI condieons. 

The mnc~pt of" local t h e  of a stashastie process X(t) was introdwed by 
Eavy [f 91 in the case of the Brownian motion procesg. The gmeral theory of 
locd time has been davelowd ia &rm dif'Ferent directions, those of Markov 
processes, Gaussian procwscs a d  sedmareiagale process@. Even the defini- 
tion of the locd time is diaerent accsrdirag, to the. considered dass of processets, 
The p a p r  by Geman and Huravvitz [I71 gives a general stnney of the dilrerent 
approaches. 

1s this paper we define the losal time Lfu, t)  as the density of the 
occupation meaure of X(L). This definition was used for example by Berman 
[2] for Gaussian precesses, but it can he applied to any other G ~ B S  of ~ T O C ~ S S G S .  

Apart fmm IZlc; w ~ r k  an the definition ar~d strdy of tbr: properties of locd 
time some elfort haa 'been put-lint0 the canstrueticra of E(u, t) by k i t i n g  
processes based on the sample path propries of X(f) ,  Particulsrrly, Levy's 



consmcriorus [19, sest. 503 for Brownia~~ motion have been extended to 
generd Markov processes (see: e,g. [16]). 

1x1 1984, Wschebor [23,24] popused a construction which is quite d.ifferen.0 
from those oE Fristedt and Gglor, Let W(c) be a Browlaiaa motion, and let Wc 
be the eoav~Iutisn approximation of W defmed by 

1 
& = w* $,, Wh~3.e: $, ( 5 )  = - $ ( t / ~ ) ,  t 

$ being a nan-negative Ww fuction with ~ornpact support, and let [a, ip3 be 
Bhe a m b e r  af cmssings crf level td by the process kV,(t) for f: E [a, b].  Wsche'bior 
showed that 

Let XX,(t)  be a family of smooth. pro~esses which converge in some s e w  to 
X(t.). Such a Family will here be ~ U e d  an approximatin~f~rnEIy, The aim of this 
paper is to exhibit general s&~ient conditions for comergence of crossings af 
X ,  to the lotocal time of X (t). Two particular cases will be exmined in sec~orrs 
6 md 7: 

the coravalution case: X,(t) i s  &fined as far the Wiener procmcess; 
the polyt;onalkation case: X , @ )  is the palygonal ]line going through the 

points {(kd, X(kd) ) ;  k~ Nj. 

Ge~fcerilE m~ltak~arn. Throughout this paper: 
p [ X , ,  ., ., X,; x,, .. ., x,] - the joint densiw of rmdom variables 

X,, . . ., X, at the point x,, . ,., x,; 
(W%IS~] - an arbitrary positive constmt; 
Nf - the nunakr of crossings of X, defmed as 

Kqr) - # { ~ E I ;  X,(t) 

?ai . (~)  - the number af local extrema of X, on the interval I; 
;h", -- the derivative d r%, (in the xase of absolute contitluiry). 

Let 9 be a bounded real interval rrnd let \t t E 9, be a stochastic process 
having Zdimen~iond m~~tinuaus density funetism 

with revact la the hbesgue measure. It is asaurncd that these ddenaily fmctions 
vergy thc hypothesis 

H,. Thwe exists a.functton g, with g (6)  - o fs), as r;: fends tu zero, mch ti"la~, 
for every [a, b) included in 9, 



The condiGion of finitenms al: thk iifltegrd in (2.1) with continuity af the 
density is a little ~ f r ~ n ~ r  than Geman and Warowitz's El74 codition (23.4)- Ss 
it irngies the e~stence of local time in the sense that, almost surely, the 
a ~ u p a t i s n  measure p of the paths of X (c) aver [a, Dl is absolutely continuous 
with r c s p t  to Lebesgue meamre: there exists a Eunction L(u, [a, b ] )  a,s. f i  as. 
finite which i s  tbe demity of p. MR/IBRBV~,  &(us dz) is atamless almost surely and 
for ahost  every u. 

These: two conditions also provide an easy way to prove that the functions 

w'e conhuous, Arguments used by Beman [3, lemma 2.13 and Geman and 
HorawiQ k p l y  that the random va~ables 

convergG in L2-norm as d tends to zero and that (a, a) i~ the LZ-nam of 
L ~ L ,  &a, bjr. 

Hypothesis H, Is stranger than e rnan  and Hosovvitz's condition ('23.4) but 
for non-periodic stationary Gaussian processes it is equivalent to their 
condition (22.7) which is the weakest known sac ien t  condition for the 
exitstense of the local time. 

Hmothesis H, does not &ply the joint continuity of the, l a d  time, But 
Brman [.$I has given a set: af sufficient conditjorss depenang on the function q. 
For ex:xampl% if the function g of [%.I) satisfies the additional Aypoehesis 
g(e) = o[E'"') with S > 0, then Beman"$ condition (23) is fuEfilled for k = 2, If, 
in addition, g satisfies condition (2.81, then by Beman's theorem 2-1, the local 
time can be &osen jointly continuom. 

Oar mdn result can heuristiedy be stated as follows. k t  (X,('r), GEE') be 
a smooth almost sure approdatbsn sf X@], auld let n ( ~ ]  be a nam&a.fiou 
such that 

where 5 denotes the convergmce of all finite distributions md Y is a white 
noise independent sf X with E DSa (@I] = I; then we get thsarenn 2: 

Formally, 

Uu, 0 - linl(2S~"'jI ( ] ~ ( t ) - u t  < 6)  df, 
J - t O  I 

and by Kac's fornula [%8], with appropriate conditions, we- have 



Condition (2.2) jiwlies the 2dimendomal cylindrical, convergencr: of 
nfg),kE(t) to a white noise independent of X or X,, Onr thwrems state tthaf 
when you integrate a function of X, ( t ) ,  n ( ~ )  12, (t)f dr converges in Lz-norm trs 
the Lebcsgue measure. 

Sections 6 and 7 p i ~ s n t  applications for a givea class of paceswm 
Theorem 4 of section 6 proves the convergence in the wnv~lutiion and 
pdygazlalization cases where X(tj is a stable process with kdependewrt 
increments. Theorem 5 of section 7 proves the convergence in the plygondiza- 
tim case for it general class of Gaussian f3roc&ses, Using our method, 
Rorens-Zmiraw 6153 has shown the convergence in the pslygondizatioar cme 
For recurrent tIifSusions. At last, our method eauld be applied to the 
convoIutioa of statioszary Gaussian processm, but in this last case this wadd 
need stranger ~anditioxxs than tho% of hails and Florens-Zmirou El] which 
are obtdaed by explicit calcula%ians, 

L2-con-brergezle of the polygonal approximation crossings (theorem 5) 
s e a s  to be a new result even br the Brownian motion. Using results by 
ltiiorodin [9:511 or Csdrgli4 and R&v:vbz [SZJ we san define a probability space on 
which Ihe paIygond apiproxhation crosskgs eonverge stron& to the bca1 
b e  of another Brownjan motion. In our context this impties only we& 
convergence af the cl-ossings ;sf X ,  to the Iacal time of X itself. 

Mmst  sure convergence seems very hard tto establish since the only 
caicullrtions that can be done about crossings are moment calculations. In 
same cases, like convalution of parti~lalar stationary Gaussian promsstls, it 
can be proved that the Lz-nom between the namdi;r;ed number of cross- 
ings an$ the local time is bourrded by a power BE 8. By the Borel-CankIli 
lemma this implies h o s t  sure convergence along any sequence E, de- 
creasing to zero at geomeQical rate. Unfoflmately, mthing is known about, 
the variation of N, as a fundion of E, except Iftat iin the polygonaliwtion 
case we have N",/,(o 3 1W",(I), Anyway it is not sacient to m t r o l  %he 
v a r i a ~ ~ ~ .  sf the namalized mmber sf masskgs betwgn two terns ~f the 
almost surely converl;ring seqtrmce. The problem r e m ~ n s  open even fan: the 
Brswmiaa case. 

Se~tion 3 gives a new proof of Ria's formulae for a given elass of 3 t ~ c b u X i ~  
proasses. 

Let P(t), t ~ 9 ,  be a stochastir; process, We say that It satisfies &ices$ 
formgtae of ordm i z  for ( r ,  , . . , , tJ belonging to 9, c Y" iff the jfollowing three 
~onditiorts hold: 

(3-1) Y(t) h a  aliilost surely abso1ute;ly ccrjtltkuoras smgfe paths. 

(3.2) f i r  O,, .. . , c,) belonging to %%, Y(t,) ,  . .., Y(t,),  k(t,), ... , 1@,) b ~ c  



a joint density and the function 

is con~nucllus ia (yIr . . . yA); this fmction will be called thr; order n Rice 
funrc;t.i~ra of process K 

(3.3) Let 
ti 

M .  [wJ ( I , ) ,  N ~ I ~ s , ) ,  . . . , ( I" ) ]=  c [ti E r i ;  rttj = UJ - E ) ,  
i= l 

where E = (t,, . . ., t n ~ B n f 3  i, j ;  ti --. t j ) .  Then, for 850~h set of levels cs, and 
r 

Let us temwk that: 
1, When all 6,'s and u,"s ztre equal, E(Mfl) is the facto~ial moment of order a. 
2, The resrrlclion "'t; belong to 24; and not the whole Bn has bmn 

inttoducd for two masons= First, if Y is the: polygorrd approximation, Y and 
i" rn3tyl not have joint &nsities for It, -t,l < E. Second, in the same case 
(lt,--t,! < E) we do not know how te grove: t h ~  existence of joint densi~es for 
Y or .",wbe Y Yis the convolw~on approximation, 

3. The existencu: of joint ciensitiw is not reaUy needed; it has just 
been supposed, far simplicity, only the existener: and continuiq of A,,,.v.,R i5 
needed [s], 

Such formulae have be11 first establish4 for a given dass sf Gaussitin. 
processes by Rice E219 in 1945. The non-6aussim case has receivd 
cautribu~uns by Beeson [5j, Marcus C201, and Wschebor E22, 231. These 
aut%lors have given very general proofs of Rim fomulae using weak but: 
tecbnkaj, hypotheses. Here we give a proof for processes with a& '"rao many" 
crossings - hypothesis K, - which pmwnts m from studmg most d the 

' 

pathrrloyiml cmes sf the above-mentioned papers. 
Pauma~~un, Let r(t) sarigy cfie .foll~wfng laypotl~eses. 
K, . Conditions (3.1) cand (32) hold aprd jm any mmpm t sets K, c 9, and 

K, r W E  hame 

M, . The matnent of o r d e ~  n of the numbm of heal ex trema fi (B J of tlltr;) over 
9 is  Jfivrite, 

Them P(t) sacirtis$es Rice$ formulae of order n fafar (I,, . . . , tJ be6ongitzg to .9f,. 



Re mark, Hypothesis K, is much stronger than those of Besson, Marcus or 
Wsehebor, but i t  is trivially satir;fied in the polyganaliization case. In the 
convolution case, K, is a eonsequmw of lemma 1, 

In the general case it must be consided as 5 ~onditian of smoothness on 
the faanilg X,. 

P ra o t Since both members sf (3.3) raze additive, it is sufficient* to prove i t  
for &st (n I f ,  E )  > 0. M" is thus an ordinary product, By K, the e m b a r  fi d 

i 
loed extrema of Ir@) for t bdonging to any subkterval of $3 iis almost sumly 
finite; we are aHowd to we '?he Kac's crossings camter" [18]: ra~gnal. Kac*~ 
proof can be extended without problems to absolutely conbhuous functitoras, As 
Y(t] is supposed to have 1-dirnensioaai densi~es, it does not take - with 
probability I - any of the values y at extremities of intervals and is 8aat 
constantly qua1 to any u, an any interval. Thus 

Kac's result can be improved by noting that, for every 4 > 0, 

The last inequality in (3.4) i s  an easy applierrfion of the RoUa Theorem, The 
first irreqctajity may be proved as f~1lows. ' 

It is suEcient to prove i t  for n =. 1. k t  I =. {C.E I :  IY[i)-wl< 83> where J i s  
t h ~  union d finitely many open intervals: 

Divide 9 actccarding 20  lcrcal exlrma of Y: Since Y is monotonous unvithh 
eacrb subintervd of the partitim, the ifltegd of f kl over such a subinterval is 
less than 25 in the general case and less than S when L, contains no crossing. 

Now, by. K, and the dominated convergmm obmrem we get 



Corurargenc~ of nmder  OJ crossings 25 

Since A,,t,r~t,m is co~tjnuous and dominated by K,, a second application of 
the dominated convergence &e?orem gives 

a sm~acmm .eomlraIekisl FOR C O W E B G E N ~  
OF NUMBER OF CRQSSINGS TO THE: LOCAL n m  

T ~ O R E E U I  1. Let X(t) ,  t ~ 3 ,  satisfi Hi, @lad let X,(tf, ~ E R + ,  be #family of 
pocesses defined on the same pmbability space. Suppose chieve exists a norm- 
alimtion n (8) mch that (X ,  X,) sati$es thefoJEowingr Jzypothgses H,, H I , ,  and W,. 
Ha. Rice formulm. {a) For every E, X,( t )  satisjes ardm ma Rice'sformulae 

for (tl t l )  be1ongiw to [BZ-- f [tl - t21 < 2~)], 
0 f i r  eoery pair ajinteruals I , ,  I2  with dist ( I , ,  f ,) 28 and far eumy bevel 

w we haoe 

H, . Conowgepzce and damination of Rice fu~cti~~as. Let A: (a) A:', ,$, (u, , iv2) be 
the order one cad two Rice -finctiuins qf X,. We Rape, bfor aU co~%.Fidered a, 

(a) ( R  ( ~ 1 ) ~  A& ,f, (us a] - p [X (t ,), X (t ,);  u, a] as E --s 0, the mnoergtznee 
befag pilrrwisla fir all diferenr t ,  srtd tz; 

sup (n CE~)":~,, (26% 4 6 H ,  l f g  5 ft) with 1 J fl,, ( ~ 1 ,  r2) < 00; 
e G ] t j  -zzIJ2 9 2  

(c) for a13 S > Q 

the cOnt"ergenee being poiiltwi*~~; 
(4 there exists an eo > B such tbacat 

Sup ( ~ ( 8 )  A: (ti)] .=: 
tsP$,e .Ceg 

Sup E[I%(E)PJ"(J)]' = of8), 
Is 9,I(.F)ce 

F(0 being bntgrtla of the internal 1. 



Then for aFE cansiclrered kveb u and ethery internal 6, the ru~zdono vurhbles 
F ~ ( E . )  Mi (0 and 

11/25) J 1 (IX (t- ul < 6 )  d t  
f 

uonaergt. in ld2-norm ra the same limit ~zs E a d  d tend to zmo, 
If X(r) admits as. a space cantinuous local time L(u, I), then it is a.s, the 

limit of the last variable and we have the Wlowing 
THEOREM 2, k t  X and X, satisrfy HI-H,, and suppose tkgt EtX(t) admifs 

a space contintrious local time L@, 6);. Then, fur every iirztexuszi I in. 3, 

n ( @ ~ : ( r ) % ~ ( u , I )  u s ~ - + 0 .  
Put 

3 
E (a = n (8) N; (1) and 11; (I) = 26 

1 

Remarks, A. Hypothesis M, seems very difficult to avoid, because the only 
tool for studying crossings numbers are Rice fomulae. 

B. Hypothesis H, seems very dificult to avoid, bwause in the general case: 
it is -impossible to prove the Mce hrmulas: vaEdity without excludiug a sarnp 
around tbe diagonal. 

C. rz ( E )  may depend additionally on lime t. - as in sect.ion 7 - and even an 
the level EE. The proof of the theorem is then the same, but the statement of 
cond"srions is more complicated. Xn the mast general case, where 
n ( ~ )  -- n ( ~ ,  t ,  u), the main modifications are the follawing: 

11" n (E)$, (t) must be replaced, in (2.3, by R ( E ,  t ,  X, (r)) * ge ( t ) ;  
aP t:,Nt%) w s t  be written as 

Pr oaf of t heo rem 1. It is s, direct canseqklensc: of the fallawing tcsultr 

The quantity i s  divided in two terms: 

E (en) ean be calculated by Rice formulae, The convergence a d  daminatirsn 
of Rice functiam and the ciaminamed convergence themem imply 



E(t,f czm Ix bounded as follows. Let 1% be tbe integer part of ((b- aj/e:+ 1)- 
Divide I into n ordered equal intexvals I,, . . . , J;, and put ti = n (E) N: [ I , ) ,  
i =  l y  s',3 Then 

By H4, sup E( t? )  = a(& thus 
i= l r . . . nn  

The quantity q:(I){:(r) i s  divided into the same iwa parts as [(:(.l)'J2: 

E (q,) can be calculated using the ""Bee IikdVfomula N, (b); its limit in E is 
given through the dominated convergence theorem by H, (c) and H, (d): 

E ( g d  a n  be borm~~iied by the same proof 3 ~ s  E([ , ) ,  since H, implies 

The cxpctatian E[q%(it]]a can he c n l ~ l s t e d  by the B;ubini theorem: 



Now, relations (4.2) to (4.7) imply (4*l), 
Theorem 1 hold.ds by noting that (4.1) implim that ( : ( I )  is a Cauchy 

sequene and, ag in  by (4.1), qi(1) wnverga to the same h i t .  

In this sechom we assome that the approximating hrarily w,; ~ E R * ]  
satisfies the foEowlislg hypothesis: 

H,. For every irztegm m ehre mists a co~stamt en, such that,for all intmaais 
of 8i.m less than e: inclzrded in .@$ we h z l e  

H, an. be interpreted as a ~ondition af ""smoothness'kf the appmximating 
hmily. It i s  trividly met for polygonal approxiartation and is a consequence of 

a L bdow fur convolution approcoxhation. Grtotle that H, implies that? far 
every 6, X, hintisfim fi~rlpothesis K, of the proposition of ~ ~ t i o n  3 about Rim 
fomulae. 

THEOREM 3. The hypothesis H, on X, and eke folliawig hypothesis H, imply 
the hypotheses XI,, M,, and EI, of theorm 1. 

w6 (a) 516 (G) Are H3 (2t) to H3 (c). 
H, [d). For every E md ever# c a y a c t  set K, im R2 

I%, fe). There exists an 6,  strch 'that, for a e r y  colnpcact &, r R, 

sup n (8) A; (x) < m. 
e 8o,te9,xe@s 

Ns ff). ATlrt,, A: and I$ (u-6, u+S,  -3: late continuoess for given s if 
j r , - -~~[  'P. 2 ~ .  

El, (&. There e x i ~ t ~  fi O such that t~ [E) = O 
Consqmendy, if X satisfies H,, wrrdusions of theorem 1 bold, 
Proof of theorem 3. H, (a) and the conhraity of AE(t , ,  t ,)  on 

3; = ((tld t2) E B ~ ;  Itl lE tZI 3 2 ~ )  imply K, of the proposition d section 3. 
Since H, implies K,, X, satisfies Riw ffomulae sf order 2 on 9;= 

$,,,(u-8, u+A, x) is Islss than A&fx) w ~ c k  k bounded by EI, f); the 
proof of the graposi~on implies that X ,  saiisj6es; the "'Ww Gke" brmda N, (b). 
Thus H, hdd* 

W, [el is stronger than H, (4, thua N3 bold. 
We now prove H,. Let u be fix&; H, (e) and H, imply that X, satiiafies Riw 

furnzulise of order I an 93- and that, for evevery [a, 61 c 93, every u, and every 
E <cot  n(~)E){CAC:jlas, ajl]] G (constJ[b-4. 



Let: now (b  -4 .c= E. EEy Bknaymds inequality, 

Take now q an integer and p its eonjagate: p - ' + g = 1. Then apply the 
HBlder inequdity. From H, and (5.1) we get 

where ci is a constant depending on q. 
An d e m ~ n t q  c;zlcrmlation sha%s that q can be chosen lwge enough far the 

r;@t-side term of (5.2) being bounded - by W, (g) - by cb'%witlz S positive. 
This proves B, and theorem 3. 

The fo8owing lemma gives sufficient conditicrns for H,. 
LEMMA I. Ilj~ppme that for every e rhe process X , ( t )  uerges the foEEawirr~ 

hypotheses: 
(a) X,@) has a,$, W" sample paths; 
(b) f i r  t Belonging 1.a B, 2, [ t )  and ;ir', (r) Faave tl joint d ~ ~ s i t y  bounded by 

 onst st) e (c)-J2, where n (el is a given furact ion; 
(GI for p > 1 we lzave E [sup [XiP"(t)l] < ~ t ,  ekP, X(P1 denot the. pth 

re3 

derivative, and c, a constmc dependiw on p. 
Then H, h o b .  
In the convolution case (a) holds if t#i is Q", and (c) holds if 

E [sup IX (t)l]. < os. where 9+ is a domain larger than $33, but (b) has te be 
re% + 

proved in each case, 
Praef. Apply Bason and Ws&ebark condition [63, [24] for fisiteaess of 

moments of crossin@. Considex t-he process I",($) = ta (6) 2, { ~ t ) ,  
Apply Wchebsr" [241 eorsllary 4, section 3.2, with p = 2m + 2 to get that 

the order m mommt oE E.", bvel zero mb-1-sssings over an intervd of length less 
than d i~ bauded by (sonsf) s-b@ej-~~coast), &em both cunsvants depend on 
m, Returning rcl X, (t),  W, holds. 

6. APPLECATION TO A. STABLE PROCESS VC'Lm mDWLN19ENT ENIIRP 

T X ~ R E M  -4. Let Xi t j  be a stlabig process with f~depende~t t  i~cremenn md 
index cr > 1 defied by 



k t  $ be o .(18" fz~rasrtiafz with mpprt in C- $2, 3/21, $,(t) =. (I/@) r/i @/E) crrw' 
X ,  obtained by canuoludorz witk $I,. Then.f~r -mery lieuel u a~rd every iaterunl 
I inciuded in 24 = [got,, b,], with a, > 0, we haw 

( ~ ] X [ f ) l ) - '  ~ [ ~ ~ I ; ~ E ' - ' ~ * N ~ ( I ]  2 8- 
Let X, be the size A polygonal approximcation a f X  and M, the number of 

crossings of X,, Then 

Proof, BoyIan [I03 has shown thzt swb processes a d d t  a bieontinraous 
local time L(u, I), We know that X (1) has a bounded con~nwous density and 
that X(Rt) bas the same distribution as R" 'X[~) ,  hence 33, is m ~ t ,  We give the 
prod only far X,, which is the more complicated case, the proof for X ,  being 
very similar except that we do not use lemma 1. The fallowing lemma gives the 
~4 imens i sna l  distribution of (X, (t), 2 @I): 

LEMMA 2. Let g he a continzrocas fincfiapl with compact mpport i~ lPA and kt 

P r 0 ai f. Since gX is right continuaus with 11eft lirnitip { g (t.) X (t) df is qua1 to 
the limit of its Riemann"~ sums, so i t  sates to prove (6.1) for g (t) being a sum 
sf  '"irac frruet_ions". In this case, by a trimgttlar opa t ion  (which is i~ fact 
a hidden intepation b y  parts), Jg(c )X( t )  & can. ba: written as a Biaear 
combination of increments of X over disjoint iaterv'ala Siam these irncrem~nts 
are indepcindent, bath members of (6.1) are additive and it su$X-css to prove this 
far g ($1 defining an increment over an intervd, say (a, 61, In this case 
g( t )  = 6,-a,, S being the Dkac distribution, GCt) = 1 ((a, b] ) ,  and /6.;t) is 
Mvial. 

Cont inua t ion  of the proof  .of Tl~esrern 4. E will he supposed ea;l be 
leiis than a,. Take g ( t )  - Ai 9, [ti- c ) + ~ p , $ ~ ( t i - t ) .  Than lmna 2 @VEH the 
eharaclerhtic Emetiaar oif X ,  [t . . . , X, ti,&), X+, (G, J, . . . , .$, (t,). 

f P  ewry two ti(s differ from each other mor-e than of 28, we eauz sm that this 
characteristic firnction is ietembde over R; thus the density of the 2n-harplet 
eists, is batlnded md coatinuaus, From the expressioa of the characteristic 
fuwtion we can dso see that (2.21 balds with 

We prove now that the hypotheses crf lemma 1. am -eat. 
(a) is trivial. 
(b) comes from tbe Pack that (g,[t), $,(t;)) has the saxare law ars elh"-lk t 

El!a-z  2 , r  
,It), vrrbich hag a bounded density by lemma 2. 



(c) X (t) - t E  [ X  (111 is ta martingale with finite order (I < /3 < at) mo- 
ments. Apply t h ~  Doob inequalities 1131 to get 

Since E < aO, (e); follows and W, i s  proved, 
We prove naw that the hypotheses of theorem 3 are: met. 
(6.2) implies H, (g]. 
X t t )  is a Mare-rlcov process. Let Z p  denote ddensi~s for the distribution 

X (0) = z and define 

To prove 16-31 use a condi"cioning by X(t/2): 

" p  [X(f;/2); w] is bounded by (canst) ( t /2)-  'la- 

! Since X h a  independmt hcresneats, 

Mating that tbe integrd o v ~ r  tv does not d e p d  on x, we &:@t 

Using the Markov property, rehtion (6.3) gives all the required estlma- 
tiom: 
H~ ( G I ~  with ~ , ( t , ,  t,) -- ( W ~ S E )  It, -~ ,4+  
HB (dl and H, (el. 
(6-3) implies also the continuity of R i ~ e  ffunctiaos in N, (0 by the daanimtd 

convergence theorem. 

As: soon as E G id(t,jJ2, (i, - t2) /3) ,  mt~ditiohg by X(t,J2] and the 
increments of X over +1,)/3, (z, +2t2)/3] .$$hres 



where n = t,/2? 21 =. t,/2 +(t,-- ti)/>, t;; - d l  -a, and ti = 1, - b. 
Now p [X (a), X (b); , . , is bounded and continuous, and the quadruplet 

(X, (ti), 3, (ti),  I Z ( E )  X, (ti). 12 (g)  k8, (1-1,)) eonverges in distrjbutioa, brat (3,l is 
not bounded. Notkg that tn (E)  2, 11 2, {tg] has the same distribution as 
5"@SP,we get for 1 < y < a  

sup E In [ E )  A, ( t i )  n (E )  ge (&)lr < m., 
E 

and now, by a uniform integrability. af-%ument the limit of (6.4) is equal to 

Convergence of a@) BStSI, (26 -8, tt +8, tl) faJI_Ows by a similar proof. PI, (a) 
and H, @), and thus t h e o m  4, are proved. 

Ira this section we prove the SoIlowiz~g 
THEOREM 5. Let X ( t )  be a: zero-mean Gcmrssian process with caz~caricl~ce 

fuactbva r ( t ,  s]. We mppose that r is twi& cantinuowly dgmmtiable outsi& the 
diwanal ( e  = s) a d  sathpes the falbwistg hypotheses essn a cornpet set 9, 

Tkc-rue exist a < 2, P == 0112 aIZd d positive such that, for jt - sl < d, 

Coadirim (7.1) impti~s that X (t) is nun-difere~tiable iul guadrutic melara [I 13, 
Ouisda irhe diagonal the process satisfies R n ~ w - d e t e ~ m i ~ i ~ ~ n  esdirx^czn: 

Let I* ,  be the covariance juactior-l of the size - A polygoml npprroxi~aatio~. 
Thew exists a covrstarzt f such th@t in a strip It-sl 4 (Iconst) we .far 
A < i&--sl/ f ,  

(7-5) ' rd (t? t )  rB (3, S) -1'2 ( t ,  .P) 2 [const) It ---sf8 with y 2. 





and 

E ~2, (t,)JX, (r ,) - X ,  (t,) - a] aaZ zf2. 

Put (K = (&,(t,f, X,(t,)+X,(t,)) under the conditional distribution 
Xd (tl)--Xd ( tE )  - Om Then Var ( Y )  g (consq (n ( A ,  t,))- 3. 

Let ( G , ~ ;  i = Il 2; j =. 1, 2) be the variance matrix sf X, (t ,) and X, (o,). 
Then 

Var (4 = 4 fll 1 ~ 2 2  - 022  

c,, +@22-20, , '  

Now 

Isetrause oS"(7.5) and the fact that zil! -"" 2s b~unded. Gatl~eling the pieces we get 

wlich proves M, (b) with G = f fil)/2 arrd H , ( t , ,  t,) = (const) It, - t2\-7!2. 
We turn now to the proof sf the convergence of normalized Rice ful~ctioas 

(hypotheses H, (a) and H, (o), Formulae ( 4 2 )  and (7.71 imply 

Let 1, and t ,  be any timc points. Suppose thtkat d is legs than (t,-t2)/2, 

rh(r19 t a ]  = (1 - s L ) r 1 ( k A ,  e)+s,r ' ( (k+ 1) 4, 5)  with t ~ ( h d ,  (h+ 1)A) ;  

"out the derivative rJ i s  bounded on the compact set (s, t ~ 9 ;  1s'- a1 
> (E, - 1,)/2), so [rb(tl,  t2)f is bsundd by a constant as d varies. 

We haw rS(~t , ,  t,)== r l ' ( t l ,  &). t l . ~ [ k d ,  (k+I)d], 4 , ~ t t t d ~  (Ea+1)A13 $0 
that Ir;l ( t 2 ,  till is bounded by a coastant as a function of A. On the orlzer h a n 4  
(7.4 and (7.2) impiy that P ,  C U D V C ~ ~ ~ S  unif~xxMLy to r, 

The ralatioars above imply t h ~  convergence of the rrat.iance mat& sf X, (m,), 
X, @,), PZ ( A ,  t i )  kd ( t J r  ~t ( A ,  t z )  2, (E,) to the limit of (2.2)- This iandlies T-X, (a). 
131, (c) fallows by a similar pmof, and tileorem 5 is proved. 

The fo;olXowing are two exmples  of prwmws satisfying the hypothesex d 
theorern 5. 



1. The fmctianal Wiener process defined by 

The limit is ~ctuaIIy the locab time. 
2. Any stationary process with 

If the process satisfies the hypothesis of theorem 7.1 of C3-J the: limi~ is the 
IacaI time again. 
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