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AND TO GAUSSIAN PROCESSES

BY

J. M. AZATS (VERSAILLES)

" Abstract. Let X(t), teR, be a real valued stochastic process
admitting a local time and let X (f), seR¥, be a family of smooth
processes which converge in some sense to X (7). We exhibit sufficient
conditions for L*-convergence of the number of crossings of X, (1) to
the local time of X (f), after normalization.

Two main cases are considered for X (f), stable processes and
Gaussian processes.

Two main cases are comsidered for X, (t): X,(f} being the
convolution of X (f) with a size & approximate identity and X, (t) being
the size & polygonal approximation of X {i).

Such a convergence is shown to hold for both approximations
when X (#) is a stable process with independent increments with index
o> 1.

Convergence of crossings of the polygonal approximation is
shown to hold for a Gaussian process under technical conditions.

1. INTRODUCTION

The concept of local time of a stochastic process X (f) was introduced by
Levy [19] in the case of the Brownian motion process. The general theory of
local time has been developed in three different directions, those of Markov
processes, Gaussian processes and semimartingale processes. Even the defini-
tion of the local time is different according to the considered class of processes.
The paper by Geman and Horowitz [17] gives a general survey of the different
approaches.

In this paper we define the local time Lu,t) as the density of the
occupation measure of X (t). This definition was used for example by Berman
[2] for Gaussian processes, but it can be applied to any other class of processes.

Apart from the work on the definition and study of the properties of local
time some effort has been put'into the construction of L{u, t) by limiting
processes based on the sample path properties of X (). Particularly, Levy’s
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constructions [19, sect. 50] for Brownian motion have been extended to
general Markov processes (see e.g. [16]).

In 1984, Wschebor [23, 247 proposed a construction which is quite different
from those of Fristedt and Taylor. Let W(t) be a Brownian motion, and let W,
be the convolution approximation of W defined by

W= Wed,  where ¥, ) = (/)

¥ being a non-negative ¥ function with compact support, and let N} [a, b] be
the number of crossings of level u by the process W, (1) for te[a, b]. Wschebor
showed that

/22 )5 e Y2 N [a, b1 5 Liu, [a, b])  as e~ 0.

Let X, (t) be a family of smooth processes which converge in some sense to
X (). Such a family will here be called an approximating family. The aim of this
paper is to exhibit general sufficient conditions for convergence of crossings of
X, to the local time of X (f). Two particular cases will be examined in sections
6 a.nd 7:

the convolution case: X, () is defined as for the Wiener process;

the pmiygonahzatmu case: X () is the polygonal line going thmugh the
points {(k4, X (k4)); ke N}.

General notation. Throughout this paper:

piX, ... X,; %x4,...,%,] — the joint density of random variables
X .., X, at the point xy, ..., X,;

(mnst) — an arbitrary positive constant;

N} — the number of crossings of X, defined as

N = #{tel; X,(0) = u};

N,(I) — the number of local extrema of X, on the interval I;
X, — the derivative of X, (in the sense of absolute continuity).

2. MAIN RESULTS

Let & be a bounded real interval and let X (¢}, t € 2, be a stochastic process
having 2-dimensional continuous density functions

_ pLX (), X (t3); xy, x;]
with respect to the Lebesgue measure. It is assumed that these density functions
verify the hypothesis ‘
H,. There exists a function g, with g(g) = o(g), as & tends to zero, such that,.
for every [a, b] included in 2,

@1 [ osup p[X (), X(ty): xy, X,]dt dt; < g(b—a).

{a,B1? (x1,x2)eR?
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The condition of finiteness of the integral in (2.1) with continuity of the
density is a little stronger than Geman and Horowitz’s [17] condition (23.4). So
it implies the existence of local time in the sense that, almost surely, the
occupation measure u of the paths of X (t) over [a, b] is absolutely continuous
with respect to Lebesgue measure: there exists a function L(u, [a, b]) a.s. p a.c.
finite which is the density of u. Moreover, L(u, dt) is atomless almost surely and
for almost every w.

These two conditions also provide an easy way to prove that the functions

4y (xy, xp) = II}P [X (), X(t,); xy, x,]dt, dt,
are continuous. Arguments used by Berman [3, lemma 2.1] and Geman and
Horowitz imply that the random variables

ni[a, bl = (28) ' 1{|X (t)—u| < &} dt

converge in L?-norm as § tends to zero and that gy, ;(u, ) is the L*-norm of
Lu, [a, b]).

Hypothesis H, is stronger than Geman and Horowitz’s condition (23.4) but
for non-periodic stationary Gaussian processes it is equivalent to their
condition (22.7) which is the weakest known sufficient condition for the
existence of the local time.

Hypothesis H, does not imply the joint continuity of the local time. But
Berman [4] has given a set of sufficient conditions depending on the function g.
For example, if the function g of (2.1) satisfies the additional hypothesis
g(e) = o(s* *’) with 6 > 0, then Berman’s condition (2.9) is fulfilled for k = 2. If,
in addition, ¢ satisfies condition (2.8), then by Berman’s theorem 2.1, the local
time can be chosen jointly continuous.

Our main result can heuristically be stated as follows. Let (X, (1), eeR*) be-
a smooth almost sure approximation of X (), and let n(g) be a normalization
such that

22) X, X n@0X.3(X, )07 ase—0,

where 3 denotes the convergence of all finite distributions and & is a white
nois¢ independent of X with E[[%(t)]] = 1; then we get theorem 2:

(2.3)  n@ND B L, D,
Formally, &
L{u, ) = lim 26) " * {1 {|X (¢)—u| < 8} dt,
3-=+0 I

and by Kac’s formula [18], with appropriate conditions, we have

Ni(I) = lim(28)~* .E 1{IX, () ~ul < 8} X, (1) dt.
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Condition (2.2) implies the 2-dimensional cylindrical convergence of
n(g) X, (1) to a white noise independent of X or X,. Our theorems state that,
when you integrate a function of X, (), n(e)|X, (1)l dt converges in L*-norm to
the Lebesgue measure.

Sections 6 and 7 present applications for a given class of processes.
Theorem 4 of section 6 proves the convergence in the convolution and
polygonalization cases where X (i) is a stable process with independent
increments. Theorem 5 of section 7 proves the convergence in the polygonaliza-
tion case for a general class of Gaussian processes. Using our method,
Florens-Zmirou [15] has shown the convergence in the polygonalization case
for recurrent diffusions. At last, our method could be applied to the
convolution of stationary Gaussian processes, but in this last case this would
need stronger conditions than those of Azais and Florens-Zmirou [1] which
are obtained by explicit calculations.

L?-convergence of the polygonal appmxlmatmn crossings (theorem 5)
seems to a new result even for the Brownian motion. Using results by
Borodin [9] or Csorgd and Révész [12], we can define a probability space on
which the polygonal approximation crossings converge strongly to the local
time of another Brownian motion. In our context this implies only weak
convergence of the crossings of X, to the local time of X itsell.

Almost sure convergence seems very hard to establish since the only
calculations that can be done about crossings are moment calculations. In
some cases, like convolution of particular stationary Gaussian processes; it
can be proved that the L?*-norm between the normalized number of cross-
ings and the local time is bounded by a power of ¢ By the Borel-Cantelli
lemma this implies almost sure convergence along any sequence g, de-
creasing to zero at geometrical rate. Unfortunately, nothing is known about,
the variation of N, as a function of & except that in the polygonalization
case we have N%,(I) = N4(I). Anyway it is not sufficient to control the
variation of the normalized number of crossings between two terms of the
almost surely converging sequence. The problem remains open even for the
Brownian case.

Section 3 gives a new proof of Rice’s formulae for a given class of stochastic
processes.

3. RICE’'S FORMULAE

Let Y(1), t€9, be a stochastic process. We say that it satisfies Rice's
Jformulae of order n for (t,, ..., t,) belonging to 2, = 2" iff the following three
conditions hold:

(3.1) Y(t) has almost surely absolutely continuous sample paths.

(3.2) For (t;, ..., t,) belonging to 9, Y(t,), ..., Y(t,), Y(t,), ..., Y(t,) have
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a joint density and the function
ApptnOts - v = J 0l 0l LY@, Y8, s Y, Y1), o0, V()
Rn

Pis vos Vs Vis voes VoldYy...d3,

is continnous in (yy, ..., y,); this function will be called the order n Rice
Junction of process. Y.

(33) Let )
M"[N“(1,), N*2(1,), ..., N*(I,}] = #{H el Y(e) = u]—E},
i=1 ‘

where E = {t,, ..., ,e 2,31, j; ¢, =t;}. Then, for each set of levels u, and

intervals I, such that [[I, = @,, we have
1
EM"[N™ (1), N**(I,), ..., N=(I)] = f Agan @y o)ty . dt,.
I

Let us remark that:

1. When all I;’s and u;’s are equal, E {M") is the factorial moment of order n.

2. The restriction “t belong to £,” and not the whole 2" has been
introduced for two reasons. First, if Y is the polygonal approximation, ¥ and
Y may not have joint densities for |t, —t,| < & Second, in the same case
(lt;—t,| < &) we do not know how to prove the existence of joint densities for
Y or ¥, when Y is the convolution approximation.

3. The existence of joint densities is not really needed; it has just
been supposed, for simplicity, only the existence and continuity of 4,, ,, is
needed [5].

Such formulae have been first established for a given class of Gaussian
processes by Rice [21] in 1945. The non-Gaussian case has received
contributions by Besson [5], Marcus [20], and Wschebor [22, 23]. These
authors have given very general proofs of Rice formulae using weak but
technical hypotheses. Here we give a proof for processes with not “too many”

crossings — hypothesis K, — which prevents us from studying most of the -

pathological cases of the above-mentioned papers.
Proposrrion. Let Y(t) satisfy the following hypotheses.
K,. Conditions (3.1) and (3.2) hold and for any compact sets K, < @, and
K, « R" we have
[ sup A, (% x)dE . dE, < 00,
Ky (x40 xnleky
K,. The moment of order n of the number of local extrema N (%) of Y(t) over
2 is finite. ‘
Then Y(t) satigfies Rice's formulae of order n for (ty, ..., t,) belonging to ,.
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Remark. Hypothesis K, is much stronger than those of Besson, Marcus or
Wschebor, but it is trivially satisfied in the polygonalization case. Iﬁ the
convolution case, K, is a consequence of lemma 1.

In the general case it must be considered as a condition of smnﬂthness on
the family X,.

Proof. Since both members of (3.3) are addntwe:, it is sufficient, to prove it
for dist ([]I;, E) > 0. M" is thus an ordinary product. By K, the number N of

local extrema of Y(z) for ¢ belonging to any subinterval of 2 is almost surely
finite; we are allowed to use “the Kac's crossings counter” [18]: original Kac’s
proof can be extended without problems to absolutely continuous functions. As
Y(t) is supposed to have 1-dimensional densities, it does not take — with
probability 1 — any of the values u, at extremities of intervals and is not
constantly equal to any u; on any interval. Thus

H N*(I)=1lm@28)™™" [ 1 {i‘Y(tl)wuil <8}...1 {1Y(t)—u,| < o} x

i=1 d-+0 I'Hg .
x|V Y@ de . dt, as,
Kac’s result can be improved by noting that, for every ¢ > 0,
B4 @)™ [ 1{Y(@)—ud <o} ... 1{|Y(t)—u,l <8} x
I

<Y ). ¥ dt, ... dt
< [T{N“(I)+ N (1)} < (const) {Ni( l:} I)}"+(const).
i i=1

The last inequality in (3.4) is an easy application of the Rolle Theorem. The
first inequality may be proved as follows. -

It is sufficient to prove it for n = 1. Let J = {tel: |Y(t)—u| < 6}, where J is
the union of finitely many open intervals:

K
J={J L.
k=1

Divide J according to local extrema of Y. Since Y is monotonous within
each subinterval of the partition, the integral of |¥| over such a subinterval is
less than 26 in the general case and less than § when L, contains no crossing.

Now, by K, and the dominated convergence theorem we get

E{]] N“(I3}
o=l
uy +38 g+ &

= lim ‘(25}," !" I ver j Azﬂ;u:-gz[i(y‘i, ey yﬂ)dyl dtl d
=0 . n wy =8 ™8
iglh
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Since A,,,...., is continuous and dominated by K, a second application of
the dominated convergence theorem gives :

E { H N {IJ} = I Ativn-vin (‘ul, vrey un) dtl .dtn.

=1 n
I I
i=1

4. SUFFICIENT CONDITIONS FOR CONVERGENCE
OF NUMBER OF CROSSINGS TO THE LOCAL TIME
Tueorem 1. Let X (1), te D, satisfy H,, and let X,(t), eeR™, be a family of
processes defined on the same probability space. Suppose there exists a norm-
 alization n (g) such that (X, X ) satisfies the following hypotheses H,, H,, and H,.
H,. Rice formulae. (a) For every &, X, (1) satisfies order two Rice’s formulae
for (t,, t,) belonging to [D*—{|t, —t,] < 2&}].
(b) For every pair of intervals I, I, with dist({,, 1,) > 2¢ and for every level
u we have

E{ 5 1{|x(®)—u| < 8} N*(I,)}

u+¢’£ :
= [ | [RpIX (), X, (), X, (); v, u, X)d%dvdt, dt,.

Fixl; u~d R »
The last quantity will be denoted by
j th!l(u—_g‘i u+d, u)dtl dtzd,

IR
H,. Convergence and domination of Rice functions. Let Af (u) Af, ., (uy, u,) be
the order one and two Rice functions of X,. We have, for all considered u,
(a) (n(e))* 4, o (u, u) = p[X(t,), X (t,); u,u] as &0, the convergence
being pointwise for all different t, and t,; ,
(b) sup (H (E))z A:Mg (H, “) < Hu (Eie tz) with gg Hu (tl: tz) < a0,

ey 2|2

() for all 6>0

wtd
n(e) B, (u—d, u+d,u)— [ p[X(t)), X(t,); v,uldv as e—0,
) . u—&
the convergence being pointwise;
(d) there exists an &, > 0 such that
Sup {n(e) 4; ()} < co.
ted E<ep
H,. For each considered u
Sup E[nEN“(D] = o),
T g lh<e

I{I) being length of the interval I.
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Then for all considered levels u and every interval I, the random variables
n{g) Na(l) and
(]./‘2«‘5]_[ 1T{X (t)—u| < 8} dt
T

converge in L*-norm to the same limit as ¢ and 6 tend to zero.
If X (t) admits a.s. a space continuous local time L{u, I), then it is as. the
limit of the last variable and we have the following ,
THEOREM 2. Let X and X, satisfy H,-H,, and suppose that X (1) admits
a space continuous local time L{u, I). Then, for every interval I in 9,

n@EN (D)5 L, I)  as e—0.
Put

Gy =n(@E@N:(I) and ﬂa{D‘“WJI{X(I) —u| < 8} dt.

Remarks. A. Hypothesis H, seems very difficult to avoid, because the only
tool for studying crossings numbers are Rice formulae.

B. Hypothesis H, seems very difficult to avoid, because in the general case
it is impossible to prove the Rice formulae validity without excluding a strip
around the diagonal.

C. n(g) may depend additionally on time t — as in section 7 — and even on
the level u. The proof of the theorem is then the: same, but the statement of
conditions is more complicated. In the most general case, where
n(e) = nfe, t, u), the main modifications are the following:

1° n(s) X, (t) must be replaced, in (2.2), by n(s, t, X,(8) X.(9);

2° &) must be written as

n(e, t, u);
el Xty =u}

3° H; must be written as E{&(D)} = o(g).

Proof of theorem 1. It is a direct consequence of the following result:

(4.1) iméhxg E|I&(D—ns (P =
(“.2) E|& (D) —n3(D* = E[& D +2En5(I) & (D+E [n5(D]>.

The quantity [£*()]? is divided in two terms:
£a=E)PH{0, el 1) > 25 X, (1) = X, (t,) = u},
$p= (n(&”z ¥ {{El! ty) Ells lty—t,] < 285 X, (t;) = X, (t;) = “}

E(¢,) can be calculated by Rice formulae. The convergence and domination
of Rice functions and the dominated convergence theorem imply

(4.3) lim E (¢ )% =lim [ [ p[X (¢)), X (t,); u, u] dt dzl

2=+ e~} T2
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E(&p) can be bounded as follows. Let n be the integer part of (b—a)/e+1).
Divide I into n ordered equal intervals I,,..., I, and put & = n(g) Ni(I),
i=1,...,n Then

E¢)< Y E(, &) <Tnsup E@)).

li—jl€3 i=1,n
By H,, sup E(&}) =o(g), thus
=10y n
4.4 ‘ E(tg)— 0. ‘
The quantity n%(I)&*(I) is divided into the same two parts as [&(I)]*%
1 il
Ny = Y % 1{|X (t,)—ul < 8} dt,,
tyel Xt} =u ‘
'm:zﬁf:}ze
] f )
tiel Xafty)=u o

tael,
ltx =ta] € 2e

E (n ) can be calculated using the “Rice like” formula H, (b); its limit in ¢ is
given through the dominated convergence theorem by H; (c) and H; (d):

mE(my = | pLX (), X (6o); ws o] dvde, dty,

e=0 RPa—3

and now, using H,,

4.5) lim lim E (7,,) = § [PIX @), X (t2), w, wldty s,
& =G gm0

E(ng) can be bounded by the same proof as E (), since H, implies

sup E[n5(I)1 = ofe),
TS5 P |

50
(4.6) lim E(ng) =

{8,e)=0
The expectation E[n3(1)]*> can be calculated by the Fubini theorem:

utd utd
e = (55) ([ | ] roxed, s e wdan dus e
2 4= u-s

and now, by H,,
4.7) lim E [75()]* = j f pIX(ty), X (2); u, wldtydi,.

§-+0
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Now, relations (4.2) to (4.7) imply (4.1).
Theorem 1 holds by noting that (4.1) implies that £(I) is a Cauchy
sequence and, again by (4.1), #5(I) converges to the same limit.

5. APPROXIMATING FAMILIES WITH NOT “TOO MANY” LOCAL EXTREMA

In this section we assume that the approximating family {X,; ceR*}
satisfies the following hypothesis:

Hs. For every integer m there exists a constant c,, such tkﬂt for all intervals
of size less than ¢ included in @, we have

E[N,DI"<c,[e7 ' n(E)+1]..

H; can be interpreted as a condition of “smoothness” of the approximating
family. It is trivially met for polygonal approximation and is a consequence of
lemma 1 below for convolution approximation. Note that H; implies that, for
every &, X, satisfies hypothesis K, of the proposition of section 3 about Rice
formulae. )

THEOREM 3. The hypothesis Hs on X, and the following hypothesis Hy imply
the hypotheses H,, H,, and H, of theorem 1.

Hg (a) to Hg (¢) are H, (a) to Hy ().

Hg (d). For every ¢ and every compact set K, in R?

3] sup  Af, ., (xy, x,)dt, dt, < 0.
{t1,22)e92 (x1.x2)eKa
ltr=ta]>2e

Hg (e). There exists an &, such 'that, for every compact Q, < R,
sup  n(e}A%(x) < o0. :
E<gp,ted, el
He (). A:.,. A5 and B, (u—08,u+38,) are continuous for given & if
Iti -—f2| > 23;
Hg (g). There exists > 0 such that n(e) = O ().
Consequently, if X satisfies H,, conclusions of theorem 1 hold.

Pmof of theorem 3. Hy (a) and the continuity of 4°(t,, ;) on
= {(t,, t,)€ D% |t;—t,] > 2¢} imply K, of the proposition of section 3.
Smce H; implies K,, X, satisfies Rice formulae of order 2 on 5.

B, ,(u—6, u+é, x) is less than A4;,(x) which is bounded by Hy (e); the
proof of the proposition m:lphes that X, satwsﬁez:s the “Rice like” formula H, (b} '
Thus H, hold.

Hg () is stronger than H, (d), thus H; hold.

We now prove H,. Let u be f' xed; Hg (e) and H, imply that X, satisfies Rice
formulae of order 1 on @ and that, for every [a, b] < @, every u, and every
£ < &y, n{e) E(N:[a, b)) < (const)(b—a).
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Let now (b—a) < &. By Bienayme’s inequality,
(5.1)  P[N[a, b] > 0] < (const)z[n(e)] .
By the Rolle theorem,
E[(N%[a, b]1*] < E[(N,[a, 5]+1)?1{N%[a, b] > 0}].

-1

Take now g an integer and p its conjugate: p~*+¢~* = 1. Then apply the

Holder inequality. From H, and (5.1) we get
(5.2)  E(n(e))*(N¢[a, b])* < ¢y [6"P~ Han (g2 1~ 1P 4 g2 /P n(g)>~ 1/F],

where ¢ is a constant depending on gq.
~ An elementary calculation shows that g can be chosen large enough for the
right-side term of (5.2) being bounded — by H, (g) — by &' " with & positive.
This proves H, and theorem 3.

The following lemma gives sufficient conditions for Hj.

Lemma 1. Suppose that for every & the process X (1) z:er:j' ies the following
hypotheses:

(a) X,(t) has as. @“’ sample paths;

(b) for t belonging to @, X,(t) and X, (t) have a joint density bounded by
(const)e [n(e)]?, where n(e) is a given function;

(©) for p>1 we have E[sup|X® ()] <c,e7?, X® denozmg the pth

el
~ derivative, and c, a constant depending on p.

Then H, ho!ds. :

In the convolution case (a) holds if ¢ is 4®, and (c) holds if
E[sup | X ()| < oo, where 27 is a domain Iarger than &, but (b) has to be

te@t
proved in each case.

Proof. Apply Besson and Wschebor’s condition [6], [24] for finiteness of
moments of crossings. Consider the process Y,(f) = n(e) X, (et).

Apply Wschebor’s [24] corollary 4, section 3.2, with p = 2m+2 to get that
the order m moment of ¥, level zero crossings over an interval of length less
than 1 is bounded by (const) e~ n(e) +(consli) where both constants depend on
m. Returning to X, (), H; holds.

6. APPLICATION TO A STABLE PROCESS WITH INDEPENDENT INCREMENTS

index a>1 def ned by ‘
X0=0, Eexplil(X(a)—X b))] =exp[—(b—a)s(2)],

where s(A) = r[1—isign(l) ftg(ne/2)|2*], reR*, fe[—1, 1] wel(l, 2] (see

[14]).
When o =2 and =0, X(t) is a Brownian motion.
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Let  be a €* function with support in [ —1/2, 1/2], () = (1/e)y (t/e) and
X, obtained by convolution with .. Then for every level u and every interval
I included in 2 = [ag, by, with ay >0, we have

(EIX Q) [yl et~ Ne) S Liw, D.

Let X, be the size A polygonal approximation of X and N, the number of

crossings of X ;. Then
(EiX (1))~ 4~ = NY (1) 5 L, ).

Proof. Boylan [10] has shown that such processes admit a bicontinuous
local time L(u, I). We know that X (1) has a bounded continuous density and
that X (it) has the same distribution as 1! X (¢), hence H, is met. We give the -
proof only for X, which is the more complicated case, the proof for X , being
very similar except that we do not use lemma 1. The following lemma gives the
n-dimensional distribution of (X, (1), X (1):

LemMa 2. Let g be a continuous function with compact support in R* and let

+
Gity= | gnar, Y= Rj+ g X (t)dt.

Then
6.1) E[e"] =exp[— [s[G(®)]dt].
R

Proof. Since gX is right continuous with left limits, {g(®) X (1) dt is equal to
the limit of its Riemann’s sums, so it suffices to prove (6.1) for g (f) being a sum
of “Dirac functions”. In this case, by a triangular operation {which is in fact
a hidden integration by parts), [g()X(t)dt can be written as a linear
combination of increments of X over disjoint intervals. Since these increments
* are independent, both members of (6.1} are additive and it suffices to prove this
for g(t) defining an increment over an interval, say (a, b]. In this case
g(t) = 6,—8,, 0 being the Dirac distribution, G(f) = 1{(a, b]}, and (6.1) is
trivial.

Continuation of the proof of Theorem 4. ¢ will be supposed to be
less than a,. Take g(1) = Y, 4, ¢, (t;— )+ Y. s, Y. (t;—1). Then lemma 2 gives the
characteristic function of X,(t,), ..., X,(t), X,(ty), ..., X.(t,).

If every two t;s differ from each other more than of 2¢, we can see that this
characteristic function is integrable over R; thus the density of the 2n-tuplet
exists, is bounded and continuous. From the expression of the characteristic
function we can also see that (2.2) holds with

(6.2) n(e) = (ELX () Jwls et~

We prove now that the hypotheses of lemma 1 are met.
(a) is trivial ] _ )
(b) comes from the fact that (X,(t), X, (¢)) has the same law as e*~* X, (1),

gl*~2 ¥ (1), which has a bounded density by lemma 2.
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(¢) X ()—tE[X (1)] is a martingale with finite order § (1 < f < &) mo-
ments. Apply the Doob inequalities [13] to get

E[ sup (X (] < oo.
e[ 0,bo + ag) :

-

Since & < a,, (c) follows and H; is proved.

We prove now that the hypotheses of theorem 3 are met.

(6.2) implies H, (g).

X (t) is a Markov process. Let “p denote densities for the distribution
X (0) = z and define

*B = n(s) [ || sup*p [X, (1), X,(t); x, £]dx.
R x
Then
(6.3) sup °Bf < (const}r ta,

zeR,e<t
To prove (6.3) use a conditioning by X (z/2):
“Bi = n(g) ifr |1 sup ‘Ia p[X (1/2); w]¥p[X,(t/2), X, (t/2); x, ] dw dx.
*p[X (¢/2); w] is bounded by (const)(t/2)™ /%
Since X has independent increments, ‘
*p[X,(t/2), X, (/2); x, X1 = °p[X,(1/2), X, (t/2); x—w, %],
we obtain ‘

Bt < (const)t ™ n(e) [ 1% sup | °p [ X, (2/2), X (t/2); x—w, X] dwdx.

Noting that the integral over w does not depend on x, we get
*B: < (const)t ™ n(e) E|X,(t/2)] = (const)t™ .

Using the Markov property, relation (6.3) gives all the required estima-
tions:

H, (c)*with H,(t,, t,) = (const)ag */*|t, —t,]~*;

H¢ (d) and Hg (e). '

(6. 3) implies also the continuity of Rice functions in H (f) by the dominated
convergence theorem.

Convergence of normalized Rice functions. A change of variable gives
[n (3)]2 Af (x5 X))
= _f xl x2|p[Xz(t1): Xs(tz)s n(E)Xa(tl): n{‘g) Xg(rz); xia xz: JE1, 3":2] dil dj"Z‘

As soon as &< inf(t,/2, (t;—t,)/3), conditioning by X(t,/2) and the
increments of X over [(2t, +1£,)/3, (t;+2¢t,)/3] gives
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[ (e)]* A, 1, (x5, X5)
= Slxdixzi 5 P[X(ﬂ3,X{b}= zy, Zz]p[X (1), X,(t3), n(9) X, (), n(e) X, (£2);

Xy —Zyy Xg—Zy, Xy, X5)dz, dz,d%, dX,,

where a =1,/2, b= t1/2+(t1—-t1}/3, ti=t,—a, and t; =t,—b.

Now p[X(a), X (b); ...] is bounded and continuous, and the quadruplet
(X, (), X.(t2), n(e) X, (31) n(e) X, (1) converges in distribution, but |%,][%,| is
not bnunded Noting that [n (g)X (£1), n(e) X, (t5)] has the same distribution as
RS, we get for l<y<a
sup E |n (e) X, (¢1) n (&) %, (£2)" < oo,

and now, by a uniform integrability argument [7], the limit of (6.4) is equal to
J p[X (@), X (b); 24, 2,] p[X (t1), X (t2); X, — 24, Xo—2,]dz, dz,
B2

T=p [X(I‘l), X(tgj‘; X1 xz]~

Convergence of n(g) B, ,,(u—3, u+ 0, u) follows by a similar proof. Hy (a)
and Hg (c), and thus theorem 4, are proved.

7. POLYGONAL APPROXIMATION OF GAUSSIAN PROCESSES

In this section we prove the following
TreoreMm 5. Let X (f) be a zero-mean Gaussian process with covariance
function r(t, 5). We suppose that r is twice continuously differentiable outside the
diagonal (t = s) and satisfies the following hypotheses on a compact set 9.
’ There exist « <2, > af2 and d positive such that, for t—s| < d,

(7.1) r(s, r(t, t)—r’(s, t) > (const) |t —s[%
(7.2) Ir(s, ty—r(t, 1)] < (const)|t—s|". .

Condition (7.1) implies that X (t) is non-differentiable in quadratic mean [11].
Outside the diagonal the process satisfies a non-determinism condition:

(7.3) inf {r(s, s)rt, )—r?*(s, )} =e > 0.

Jt—=sl=d
The variance is bounded:

(7.4) 0 <infr(t, t) < supr(t, 1) < oo. S
e 1e® !

Let r, be the covariance function of the size —A polygonal approximation.
There exists a constant [ such that in a strip |t—s| < (const) we have, for
4< itwsl/f »

(7.5) r4(t, hrg(s, s)—13(t, 5) = (const)|t—s”  with y < 2.
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and
E[X (/X 4(t,) = X, (t;) = u]* = a® .
Put (Y, S) = (X,{t;), X,(t,)+X ,(t,)) under the conditional distribution
X, (t,)—X ,4(t;) = 0. Then Var(Y) < (const){n(4, t,))"%

Let {6,;; i=1,2; j=1, 2} be the variance matrix of X,(t;) and X ,(t,).
Then

2
611 0';%"0-}2

Var(S) =4 .
) Gy +0,,—204,
Now :
' sy ]2 ‘
2 va(Y, 5/2) < 4Var(Y};
Var (5/2) Var (S)
then

a? u? pLX (), X 4(t5); u, 1]

. o i +0 »"""25 ! i uza + o —2a

« y ; -2 3 Yi1 22 12 11 22 12

< (const)(n(4, 1)) *u PR l - —
ﬂ_,lu 'z g S - g 0 ay;

< (const) (n(d, 1)) 2|t —t,) "2

because of (7.5) and the fact that ze ~*/* is bounded. Gathering the pieces we get

E[("“}d )P /X 4 () = X, (t5) = u] p[X 4(2,), X 4(25); u, u]
< (comst) (n(4, t,) 2 (t, —1,) """,

which proves Hg (b) with & = (f4)/2 and H,(t,, t,) = (const) [t, —,| "7/2.
We turn now to the proof of the convergence of normalized Rice functions
(hypotheses H, (a) and Hg (c)). Formulae (7.2) and (7.7) imply

Pty £) = E(X 4(t,), X,(t,) < (const) 4# 2,
Let t, and t, be any time points. Suppose that 4 is less than (t; —1,)/2,
Palty, o) = (1—s) v (k4, & +5, ¥ ((k+1)4, &) with Ze(ha, (h+1)4);

but the derivative » is bounded on the compact set {s, te%;|s—i]
> (t;—t,)/2}, so |[F4(ty, ;)| is bounded by a constant as 4 varies.

We have r(t;, t,) = 1" (&, &), &, e[ka, (k+1)A], &, elhd, (h+1) 4], so
that [#;{t,, t,)] is bounded by a constant as a function of 4. On the other hand,
(7.4) and (7.2) imply that r, converges uniformly to r.

The relations above imply the convergence of the variance matrix of X ,(¢,),
X ,(t,), n(4, t) X 4(t,), n{d4, t;) X 4(t,) to the limit of (2.2). This implies Hy (a).
Hg (c) follows by a similar proof, and theorem 5 is proved.

The following are two examples of processes satisfying the hypotheses of
theorem 5. ~
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1. The fractional Wiener process defined by

[el* +1s* — |t —sI*
2

L

r{t, ) = with 0 < o < 2.

The limit is actually the local time.
2. Any stationary process with

r)=1—lt+0l* and O<ua<2.

If the process satisfies the hypothesis of theorem 7.1 of [3] the limit is the
focal time again.

Acknowledgments. I would like to thank D. Dacunha-Castelle and M.
Wschebor for their having proposed the problem to me.
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