
NUCLEARITV AND AMARTSl OF FXNSTE ORDER 
TN LOCALLY CQNVm SPACB" 

Abst.~.s&clt. NucPear'ity, the Radon-Wikedym property and vex- 
tor-valved a m m a  in locally canvex spaces have been ex'Lc:nsively 
studied in mcent gears by many authors. The main parpaw of the 
paper i s  to establish some probabilistic haracteritations of nuciearity 
of locally earzvex spaces in ~ m s  of mares of f inite order. 

0. Intmltluctitln, In Section 1 we give ta brief ssumary of natation stad 
rtefmitions. In Section 2 we apply some rwults of [24] to prove some other 
characteriaations of nueiearity of bcaliy convex spurn (i,c.s.j. Finally, in 
Section 3, the class d amarts of finite order, recently introduced by the author 
io C191, is extend& to Hausdo8 quasi-complete 1.e.s. Some characte~zdions 
of nuckasity of such Z.c.s, are: abtdiiaed in terns of a m a ~ t s  of finite order* 

1. Notafiioa and definitisw. Let E be an I.c.s., UfE) a 0-neiabarhood base 
for IT3 E' the topoiogiczl dual of E,  It" the set etof all positive iatlegers, and 
(Q, d, Pj a coaaxplcte probability space, For each U E  UCE), jet U o  anr; p ,  
denote the plat a ~ d  the continueus senlinorms associated with U ,  I-e-espec- 
tively. 

Let p: d 4 E be a vector measme. Then, far every U E U [ E ] *  the 
pg-variation VU('p] and the p,-x~variation S,(p) of ,u are given by 

a 

V,CPI - sup { P ,  ( i~lA~f)[( . i~Tf=.  1 ~ J T l t d ,  Q)f 3 
j= 1 

where (at,  &!I denotes the dass of all. &like .wd-measusable partitbns of a, and 
s,~i~t) -- $UP (i(e2 F)I(QI;~E ~ 7 -  

Let Y ( d ,  i3)  nr S ( d ,  El denote the space rsf all V-bounded or $-huaded 
vector measures g: 4 3, respe~tiveIy. Thus, usil~g the arguments of [24] for 
the spaces (Ii ( E l ,  a-tapology] and (lk (E),  e-tspcslogy), we can prove easily the 
following 
- 

* This paper was partially campletd during the: author's stay at rtse University of Scinzces 
and Technics d talagudoc, Frazzq 21984-19115, 
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LEMMA 1-1. If 63 is eitlaer a IPat$sdd(arfl saquentiably corrtplete or Hausdorfl 
qacasi-campbrc. i.c.s., $hen SO are .$paces ( V ( d ,  E), I/-topotogy) and ( S ( d ,  E)? 
8-tapoIogy). 

Call a function f :  LR --, E to be simpit! if its range k fmite and if fat each 
Y E range &e(f 1, f - I (CY 1) Jd- 

k 

The integral of a simple function /= y, I,], where (yi)r- c E, 
j= 1 

(A,)f= s n (d, 523, and 1, is the characteristic fwction of A ~ d ,  is defined by 

' Tlbt Follawing definition is borrowed from [3, 4, 51. 
Definition 1.2. PL function f :  W 4 E is said to bbe itrtegrablc by ssminornz, 

write _fE 2Fi (d, E), if for each U E U (I?) there is a set E d with P (O:?) = fJ 
and a slequerzes: ( j r , D )  of simple fmnetions such that 

(i) bim p ,  (f (0) -2 (4 - O for each w c 9\ a$, i.e. f is masrxrabie by 
Pi 

smirtam; 
(5) pa (JF(w) -f/ to)) E ki (d, R) far every n E 66 and 

(iii) for each A E d there is a y, E E such that 

It has been noted in [5 ]  that if fe  Y "sf, E), then pf (A) = fdP ( A  .E sf) 
A 

defines a Ec-eontiauaius vector measure of csfbozrndcd vsrriation with 

then L ' (d ,  a equipp~d with the Bochrs~ t o p ~ l o g y ,  given by tho JihmiiEy 
{&,I U~11(&)7E) qf seminorm, is a linear subspase af ( Y ( d ,  wtopoPog). 
Furthermore, it is .easily checked that every  EL' (d, Q i% Peettis integrabb. 
TBereforc, one can define the failowing g ~ n o r m s :  

.19,Cf)=sup(f\<e,$)lrSPItz~U') QWEU(E]) .  
R 

abvlously, L' fd, Q1 ~ndawed with the Bet ti.? topology, gincn by tkejamiiy 
(P,I U E U (h?] of semiraswras i s  a linear subspa= of (S (d* S-fopoloa). 
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fn general, properties m d  structures of L1 (d, E) are not known. Brat using the 
arguments, similar ta those given in [6] for the Banach valued wse, we can 
prove howerrer the fallowkg result: 

LEMMA 1.3. Let rP E U (El,  p E S (d, E) and f~ Lb (By E) $01' S O I ~  a b - ~ $ ~ l d  
&9 01 ,&, Then 

8 IY) = SUP fi, (Y (4)B A E @) l y  E S (d5 El). 
Far other propertie's of measurabaity, integmbili ty of veetor-valued func- 

tions we refer to  [3 ,  4, 51, 
2. N~cleariQ in HQa~sdarfjf locrriltg mavex spaces For aa 1.c.s. 2;;; Jet (1h { E ) ,  

n-topology) and (Ei(E), E-tspologi) be defined as in [24]. lo what foEIows we 
shall need the following 

LEMMA 2.1 [f24],4.l.S and 4.2.414), For an E.c.s. E thefollowing conditians are 
eqtaieiaknt: 

(I) E is nrcelcar. 
(2)  For every U f U $El$ t h r e  care a C E U (El a& a positiive Rrldon mmsurcr y, 

deBned on the weakjy compact polar Ca, suck that 

(33 (1k { E ) ,  U-topology) zz (li {El,  E - ~ c ) P o E Q ~ ~ ) .  
The main purposmof this swion k to apply the above results lo prove the 

. following 
THEOREM 2.2. ~ O P  aa I.c.s* E, rhe following conditinrzs are e@iwfesrt: 
(I) E is :srmlar, 
(2)  For euery prnhrithility space (62, d, P), ( V ( d ,  a, 'li-topstcvgy) EZ 

(s (d, B), s-r~flology)~ 
(3) FOP E V ~ J Y  probsrhidity space [Q2 d, P), (L1 (a?, E), BoePlner t~polct- 

gy) E (JCZ (d, E), Pen& topobyy). 
(4) Asserrion (3) is satisfied f i r  the spqciad probabifdty space (Q, ,d, PI, * 

where R = N, ,# = B(m the &-field of all subs~is crf $2 a~rd P(fn)) = 2-" 
I'n E sv). 

Pr oaf, (1) -+ (2). k t  E be an 1.c.s. Strppose first that E is nuclear. Then3 by 
Eemma 2.1, for every U E UIE) there exist a C E IJ(a and a positive Radon 
meas;urs on CQ suck that 



h t  ,LLE S ( d ,  E )  and (Aj)fF I ~171(~d~ a). Applying (2-1) to each p(AJ, 
we get 

This implies that 

which proves (2). 
Implications (2) -+ (3) -+ (4) are e~xsy to show. It remains therefore to prove 

only 
(4) -+ (1 3, Suppose that E satisfies (4). It is clear that with the identification 

& { E )  3 (x,) I-+ 2" x, x LRI E L"(B [Wl E), one can regard (1; ($1, IT-f apology) 
N 

as a subspace of (L,  (LP (nS), E), Bochner topology). Carssaquenrly, by (41, E' has 
the following property: 

(+$ OPI I$ { E ) >  the n-topoio~y B the sram as the 8-tupology, 
Suppose first tkat Ik (Ef = Jix (E). Then, by (d) ,  ( ! i {E) ,  R-topology) = ($j (E], 

~-1opo1ogy). Hence, by Lemma 2-1, E must be nuclear. This proves (4) far the 
case. 

Findlg, suppms that Ik ( E )  + P.$(E). Then there i s  ma element (x,) ~bi [ E )  
such, tkat ( x , ) # l h ( E ) .  EquivaEently, there i s  a UE U [ E )  s z ~ h  that 
C p ,  (x,) =. no. 'Pkercclfore there is a strict3y inmeaskg subseque~ree (n,) laf 
Ird s" 

Now let us define S,: $B -+ E ( k  E N )  by 

Obt<ausly, (f,) i s  a scqsleace in ~y%B(l\rS, E), adapt& ta <&,), i,e. m& 
3F, E La (db IT). Moreover$ 

{a) by r24Jag, 1.3.6, the sequene (&) eanverFs to O in the Petbs topology; 



This implies that the sequence <&) fails to be convergent ktl the Boeh-tler 
topology. Ganseqtlerntly, by [B) and (b), on L"P [ N ) ,  E) the Boehner topology 
is strictly stronger than the Pettis topology, which contradicts (4)+ hence 
completes the proof, 

Remark 2.3. (i) For Bataaeh spaas ,  the theasem is easy to show (see* 
e.8- r61). 

(ii) The equivalence (l)c-t(Lfrf in the theorem his beerr, r ~ e l ~ t l y  proved by 
Egghe K1-43, but his arguments can be applied mly  tto Frkehet or seqtzentially 
complete dual metric spaces (see remark in [I41 and Theorem 4.2'5 in 1241 for 
the case). 

3, Amarts of Eiainic order aad m1earit.y in Hausdurff qanasi1~:omlpleae lacally 
calavex spaces. Throughout this se~tion, E i s  supposed to be a NausdorEf 
quasi-complete 1.c.s. Let (d,) be an iacseasing sequence of complete 
sub-@-fields of ,& with C = U -4, a d  Fr&l -- a (Z). A squencp: (prhu,) in S (d, Ej 

N 
ar ( A )  in L1 (d, E )  is said to he, adopted ta (dJ, if each p, ~ S ( s d , ,  E )  or each 
,f;; E L1 (jd,, E), resp. We shall consider only such sequences. Further, a sequence 
(A)  in L,  (A$, E) is said to have pruperty if irso has the squence (y,) in 
F/(d, E), ,@van by 

Defini t ion 3.1. A squence (pB}  in S ( d 3  E) is said to be a mar f i~go le~  if 
dS 

P,, = &Id, ==Pm,,t -Em3 H E N ,  m a  3:). 

Now let T" denote: the: set of all bounded stopphg limes, Given sequmws 
(p,}  in S ( d ,  El, <A) in LVd, E) and z E T", we define: 

Then, by [23], ( d r [ r  E T"j is an inclgasillg sequence of (t;ompIetk) 
sub-v-fields of Momuvar, p, E 6* (sf',, E) and & E L~ (.dzI El. 

De Fi nit  i oa 3.2, A sequenw ( j t , )  in SCd,  E) is said ts be an ar~mt ufjriaite 
order, if, for each d~ N ,  the net (br,/52)),,,# converges strongly in E,  where T%S 
a subset of all bounded stepping times e a ~ h  of which bkas essentially ar most 
d values. Moreover, if the net converges for d = m, then (y,) is called ail 
attgsrrt. 

It is dear that errery amart B that offfinire arider. A simple remark 2.8 givm 
in [Is] showa that I I J T C Z Y ~  is C X ~  a~ntmt of'Ji:pxite order cf norme~ativs real-valued 
functions which faib to be un amare. 



LEMMA 3.3, Let (p,) be a sequence ira S ( d ,  El. The% thefiklowiag cadit-a'mpz~ 
ow equivaiant : 

(1) (pn> is an m a r t  of finite orcZer; 
(2) kim sup Sir (P,,~, -- l2,3 = O f U E U (E)), whme each St  (-1 is de$~ed CKS SU 

n*m miam 
Jar the probability space (52, d,, Pfd,); 

(3) (p,} can be written in the form y, = m, + P, (n E PJk wl~evs {a,> & 
a. marrti~?~laFc in S ( d ,  E) aand ( f i , , )  is s:a B~t t i s  pote~ltfocrl, i.e. 

(4) there is  cs.finitety additive measure p, : X -+ El miled p,, the I h i t  meGsure 
nssociated with <K), such that each pWldn E S ( ~ . ~  E)  and 

~rnS.,.Ccl,-iu,,,)=O (u~utE)b. 
A + r n  

Proof. Let (1.1,) be a sequence ia S (.d, E). We begin the proof with 
(3) -. (2). Suppose first that (p,) is an amart of finirte: order. Then, in particular, 
the net (&, (Q),,, mnverges s t r o a h  in E. Thus, far a n y  but fixed U E U [El 
and E > 4 one can choose some 2: (E )E  T' such that if a, r E  T 2  with rs, T 2 T(E] ,  

then 

Let m , n ~ N  with m B n 3 ~ ( ~ )  and A E ~ , .  Define a, ~ E T " ~  g-ml,  
and z - nl, + ml,,. Obiously, cr 2 z 3 r (6). Thus, by (3.1), 

PU(PMSA)-P,(A)) - P,(P~G,Q~.-F,C~)) 6 4-% 
which, with Lemma 1.3, yields 

%(~# , , -&n )  G 44PCi-*m.a-~6rrE =z  SUP { P ~ ( P ~ ( A ) - P ~ I A ) ) I ~ E ~ ~ )  G 8 s  

wEch proves (2). 
(2) -+ (3). Snppase that ( p a )  sabisfies (2). Then for any but fixed rz E N, by (2J3 

it falluw, that the sequence (pw,,)g-, is Gu&y in the S''-fop~L~gy 01 
5" (d,, E). Themfore* by virtue of banma 1.1, the sequence (pR,,,)gt, mnverges 
tu some % E S (dm, E) iZ1 the P-topology. It i s  .easijy checked that the ssecguence 
(a,) is a marrtinmle in S ( d ,  Msreber, the convergence in the S"-topoJlo~i 
of ( F  fi,,, )$,, to cr, and (2) show that if F;, = p , - a , ( n ~ m ,  ahen (4) is a Pettis 
ptelxtjal, which proves (31, 

(33 --a (4) Its easy. Endeed, if we define y,: .Z-+ E by pml(R) = a,JA) 
( R  E N ,  A E dJ, then, by (31, the f"initdgr additive measure gsk, satisfies all the 
assar~~nti. in (4). 

(4) -t (I). Suppose Enally that (p,J si%tisfies (4). Let  EN be- any but fixed. 
Fur each U E TP (Q and 8 s 08, by 14) it follows that there is some n (E)E M gulch 
that 



Let r E Td with T 2: re), The last inequality with (4) and Lemma 1.3 implies 
that 

%? 

P, (4 0-4 - P ,  - P, 1 C ( ~ f i  lb = nl)--iu,, f(r = nllll 
il = *(E) 

3 

G C pV (K ICT " n) ) -~eo .n  fb z. =.I)) 
rr=a@) 

t 

G : : 4 4 " ( ~ ~ - ~ r n , n )  sup ~ g ~ ( ~ ~ r n - ~ c s , a l  
n = nge) s 3 n c ~ )  

where 5 = max (a: P((s =. a)) 0). This shows that the net (&(Q)j,,d 

canverges in 15 to J E ,  (SZjl. Heace, by definition, @,} is zn amart of finite order, 
which cornpieta the proof. 

R e m a r k  3.4. The inspection of the prosf shows that a seguence <fin> in 
S (d, E )  is an amart offinite order if and aniy iJC; for SOW d E (2 ,  3, . . . ), the net 
(&(Q)jTETd canuerges a'xa E. 

In what fallows. we shall need the following definjtion (see [20] for the 
multivatued case): 

Defirmi ti on 3.5. A sequence {p,) in V ( d ,  El is said to be an L1-amart? if 

where the rsemirrom V$ i s  defind as V, for the probability space (a, dm, .Pid,). 
Moreovers if 

linnE(p,]=Q /UsU(LsJ), 
8 - )4  

then (pn) is called a Buchner pc2teialiul. 
Note that by L e m a s  13 and 3.3, evefy Hil-amart is an amart of finite 

order, hence ewry  Bac3znm ppote~ztital is a Petri5 potential 
The fallowing result caneeras the bnverse implicaliarms, 
THEOREM 3.6, For st Eausdorf quasi-conzplete h.8. E, thefollowing cc~ntdilions 

are eguiualeral: 
(1) E is saluelgfgsrrr. 
(2) Ensrjt amart uj$~it?ite order in S(,rd, B) i s  an L3-amart in V ( d ,  E;). 
(3) Eoery Pedtis planl.ial tvz L"(d, .El is a Bochner potetltt~l. 
P r o a f, (1): -p (2) folJows imtdiately from Lemma 4.3 and iaequaIity (2.2) 

in the proof of Theorem 2.2. 
(2) -+ (3) is  easy, 9hc most inaportax~t past consists in the pro~f  sf (3) -t (1). 

Suppose &at. E i s  not nuelear* Then, by L e m a  2.1, either Ii (E) \ E& { E )  $ Its or, 
on 1; ( E )  =: FA ( E ) ,  the f7-topology is strictly stronger than the ~ - t a g o l o a ~  



(4 Suwo~e First that lk(E)\l& { E l  $ irz* Tlzen the proof of Theorem 2.2 
shows that there is a sequence (ji) in LL{Srg5 E) such that (f,) is convergent tip 

0 in the Pettis topo1ol;y (equivaleutty, {f ,) is a Pettis potential) but <fk) Fads ra 
be canvergent to 0 irz the Bochnes topalogy (equivdeatly, (f,) is not 
a Bechner potential), This compieks the proof of (3) 3 (1) for the case. 

(2a) Finally, suppose that I; { E )  = ti(.E) md on !h { E )  the D-topology is 
strictly stronger tb.haxx the ~-tapolom. Then there is a seqrrence {(xr)):=, in 
1; ( E )  such -that ((x~)).,"=, converges to Q in the ~-topol.sa, but it fails ta be 
converg~nt to O in the IJ-topology. But we note that if we take S2 = N, 
d - P(N) and P ( ( n ) )  = 2-" ( r z ~  N),  thea, with the identification 
l$ { C E )  3 (x,) t-+ C 2" x,, If,, EL' (P(N), El:), one: can regard 1k ( E )  as a subspam 

N 
of &'(BIN), El. Therelore, if we define f,: N -+ E (mciN) by 

then the above observation and properties of the sequence ((x,"));=~ show 
tha! Ithe sequence (f,) canverges to 0 in the IPetds topology (hence it is a Pehtis 
pelenlial), but (f,> fails to be convergent to 0 in the Bochaer topology (hen~e, 
it is not a Bochlzer potential). This completes the proof of (3)  -+ (1) br every 
case send of the theorem. 

In order to give same appkations of the above raults. to the study car 
amarbs of finite: order we shall need the following definition given ia [ 5 ] :  

D efi n i t i  o 11 3.7. An 1.c.s. (E ,  U (@I is said to possess the Radora-Ns'kk-rdyfiz 
property (by seminorm) if far each complete probability spam (a, ,d, PI and for 
every k-continuous vector measure p~ V(.d, E) there exists a, function [inte- 
gvabk by seminorPlz) f E Li(,d', 6) srrch that 

p ( A ) - S f d P  ( A E ~ ) ,  
A 

In what follows we shall need the following resuIt whose Banach valued 
version is well-known [23] : 

L E M ~ ~ A  3.8. L E ~  E be n s~purabke il,c.s, with tk~ Rnclnn-Nikodym property. 
S ~ ~ ~ O S E  thut ( A )  i x  rs regulrrr nrcartittgale in L1 (d ,  a, i.e. thwt is some 
f~ L"d5 E) S U G ~  that 

Then (.&) eorauerges m f i ~ t  the B Q C ~ M P  eal>olnyy. 
Proof. Let E, <L) and f. be aa in the lemma. h e n ,  lor every ce l, the 

sequence ( g  , &) is ca reg~~lar martirlgale. Therefore the dassical martingale lid h 
theorem shows that, by (3.21, 



Further; let U E EJ (El  be arty but fixed. By [26], IE1,4.7, the sparabilily 
of E implies the separability of U0 in the a (E', El-topology, Let f ~ , l  a ' ~  J ( U ) )  
be a countable family UF(EI, El-dense ia Ua, By Ttbeo~rn 11.1 8 in 173, it fallows 
that 

Comequentlp, by h m m  V.2.9 of [23], (3.3) yields Jim p,(.f,) - p, (f), a.e, 
Moteover, by using the same argumelsts, applied lo the regular martingale 
(A, - a )  (a E E), we infer thatat, for every aE E, 

But, since E is separable, Ibe same argument used by Neveu. in the proaf of 
Praposition V.2.5 of [23] shows that 

On the other hand, by (3.2) the sequence ( j i - f )  is Bochner unifordy 
inte~able,  i.e,, For every G E  U (El the sequence (p , ( j f i - f ) )  is utaXormly 

1 integrabfe, This with (3-4) d-~ows that 

Finally, since U E U (I?) was arbitrarily taken, by definition <,f,) ceawerges 
to f in the B~chfler ta,opolaa9 wl-tidl completes the proof 

Nure tfiat if measurahj.ility, integrability and the Radon- Mikadym property 
of E are defined as in [I t 1 or t251, then e v e v  E-vdued Bochwer integrable 
function is selpsu-ably valued. Therefore, in this case k m m a  3.8 rt:mains valid 
without the separability assumption 0x1 E. Further, it is also kglswnt that every 
nuclear FrecLSet space has the RN-property, Then in the follawing theorem the 
words "with the RM-pre?perr;y" can be amittcd if E i s  a FT~cZP~I space. 

THEOREM 3.9* &ti6 E be u sepcarcrble Piausdoflquasi-complete 1.e.s. with the 
KN-prupertj~. Thm the Jolbwirsg conditions are equit3abnt: 

(1) P is mclear. 
(2) Every antart offinite atadczv (I;) in 11;' (d, E) has a Wimz dlecumposirion 

JT, =. ,g,+ k, ( r ~  E M), where (g,) is  a r~artiwale in L",d, E) a d  <h,) a B~cAner 
potent2zl. 

(3) E ~ e r y  F~t t i s  uniforrtzb integrabb atl-3at.t offinite order is co:oPzuergl+nt irs &he 
B~efaner top0 E Q ~ J ~ .  

(4) For euefy tr E U ( E )  @and every Petbis patentz'al (&r,) in L1 (d, E), the 
sequence <pra (A)> (of ~enl-valued itatearable firnctions) is an L'-amart. 
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Proof. (1) + (2). Let E be as in the theorem. Suppose first that E i s  nuclear 
and (4,) ari atrrarl of finite order in L1 [,a?, El* Then, by Theorem 3,6, (AJ)  
must be ao 1,'-smut, i.e. 

where {p,,) is the sequence sf vector measures associated with (fnf,), given by 

(2-$) ~ , , f ~ ) = ; I j f , d ~  ( n e N , A ~ , d , ) .  
A 

First, by (3.5), it is easily cheeked that, fonvery R E N ,  the segueram 
( ~ ~ , ~ } g = ,  in V(d,,, El i s  Cauchy in the V"-topology. Bart E is  a Nausderff 
quasi-complete I.c.s., hence, by Lemma l,l, so is the space (V(,d,,, E), 
V"-topology), ConsequentIy, each sequence (p ,* , )g= ,  converges to some 
an E V ( d , ,  El iu the V"-topology, It is easy ta check that (a,,) is a t-nartingde In 
r/(d4,, E), Moreover, if fi,, - @,--a, {ne N),  tlilen ( J L , ~ )  has a Riesz decon%- 
position pn = E,~+B, (PZE M I ,  where ( p , )  is a Bo~hnes potential, i.e. 

Brat we note that by (3.61, as each pl, is P-continuous, so is each m, and by 
the assumption af the theorem, E has t h ~  Radon-Hikodym property, There- 
fore, there is a martingale (cJ,) in L v d ,  E )  such that 

i x , ( A f = j g , d ~  [ ~ E E N , ~ ~ E - ~ , , ) .  
A 

,Findp, if we put h, = j-;, - gn (rt e N) ,  rheu it is c l~ar  that by (3.7) tlre amart 01 
finite order ( A , )  has the Riesa decompositinn, required in {a). 

(2) -+ (4) is easy. Ind~ed, let (1,) be a Pettis potential in L' (d, El, Thcn, by 
421, musf be a Bochner pot~ntisl, is,  

Ern { p, { jJ  dP = O (U E U (E) ) .  
n+m R 

Cansecquedztly, for every I7 E U (El, the sequencz ( p , ( f , ) )  must be an 
6'-amart. This proves (4)- 

(I) -+ (3). Let (A,)  bc a %itis uniformly irreegabte mar t  of finite order in 
L1 (d, a. Then, by ( I $  -+ (21, i t  Sollaws that C.6) can be w r i l t c ~  in the Frr'em 

= gR+ hll [ I I E  N) ,  wbcre ( g , )  is a martingale in &' (d, E) and (4,) a Bochnas 
potential, But note tliu~t, as @ is nncleu and (J"',) is PettEs unifort~lly integrable, 
inequality (2.2) in the proaf of Theorem 2.2 shows that (JI,) gnust he Bocklner 
uniformly ii~tegrabla, bea6e; BQ is the martingale (y,). Eurtfier, as E has the 
Radon Wikaciym property, therefore, applyir~lg E4emma 3.8 to (A), we infer 
that there is same f " ~  l' (d, @ n)suc;h that (j;,> is co~vergent to f the Bockner 
toplogy, hence sa i s  <A), whicl~ proves (8). 



(3) -+ (4) is easy, Indeed, let ( j i }  be a Petlis patenlial in L' (d, EJ. Tlzen 
{ j f , )  i s  a Pettis uniformly integrabh: amart at finilc order. Thus, by (3); (in$,) 
must be canwergent to some f ~ L ' ( d ,  El iil the Boclmcr topology, i.c. 

which yields that 

Therelore, as a sequence in inL' (d, R), each ( p ,  (_f;,)) converges to p v ( , f )  in 
L1-norm. Hence each (p,(j;,)} is an L1-arnar~ in L' (d, R), which proves (4). 

(4)4{1). Suppose that E is not nuclear, Then, by Lemma 2.1, either 
ih (El\ !; { E )  + @ or, on I& { E )  =. 1; (El, the FI-topoE.agy is strictly stronger than 
the c-topology. 

(a) Suppose 5zs.t that I ;  (El\ lit { E )  f O. Then the example given in the 
proof of Theorem 2.2 contradicts (4). 

(b) Findly, suppose that, on I,$ { E )  = 1; (El ,  the fl-topobgy is strictly 
strongex than the E-topolagy. Then the last arguments in the proof of Theorem 
3,6 lead to a contradiction with (41, forif (f;,) is a Pettis patential in L' (d, &'I 
axad each ( p ,  (f,)$ ( U s  U ( E ) )  is an LLmarl, then ( L , )  must be also a Bochner 
potential. Thus the theorem is completdy proved, 

Remark 3-10, (a) Lemn~a 3.8 (hence Theorem 3.8) remains valid without 
the separability assumption an E, i f  measurability, inregability and the 
Radon-Nikodym property are defined, hawever, as in [I13 and [25]. 

(b) For Banacb spaces, Theoren1 3.4 seems ta be Dew, In particular, if 
.E = the imp[licati0~1(1) -+ (2) i ~ z  the slzeoren? giaes a new ckar"~tctui~atinn of the 
c l ~ s s  of a& dt'scrrzte iproce,Yses having cr Rtmz decompadtfetun (see [I87 for 
comparison). 
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