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Abstract. Nuclearity, the Radon-Nikodym property and vec-
_tor-valued amarts in locally convex spaces have been extensively
studied in recent years by many authors. The main purpose of the
paper is to establish some probabilistic characterizations of nuclearity
of locally convex spaces in terms of amarts of finite order.

0. Introduction. In.Section 1 we give a brief summary of notation and
definitions. In Section 2 we apply some results of [24] to prove some other
characterizations of nuclearity of locally convex spaces (Lc.s). Finally, in
Section 3, the class of amarts of finite order, recently introduced by the author
in [19], is extended to Hausdorff quasi-complete Lc.s. Some characterizations
of nuclearity of such lcs. are obtained in terms of amarts of finite order.

1. Notation and definitions. Let E be an l.c.s., U(E) a O-neighborhood base
for E, E' the topological dual of E, N the set of all positive integers, and
(Q, o/, P) a complete probability space. For each Ue U(E), let U°® and py,
denote the polar and the continuous seminorms associated with U, respec-
tively.

Let u:. &/ —E be a vector measure. Then, for every UeU/(E), the
py-variation V,(x) and the p,-semivariation Sy (u) of u are given by

k
Vol = sup{ 3, po(u(A)KAY]-1 €11 (of, D,

where I1 (7, Q) denotes the class of all finite .«/-measurable partitions of 2, and
Sy (1) = sup {|<e, w|(Q)|ec U®}.

Let V(</, E) or S(«#, E) denote the space of all ¥-bounded or S-bounded
vector measures u: &/ — E, respectively. Thus, using the arguments of [24] for
the spaces (Iy {E}, II-topology) and (I} (E), e-topology), we can prove easily the
following

* This paper was partially completed during the author’s stay at the University of Sciences
and Technics of Languedoc, France, 19841985,
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Lemma 1.1, If E is either a Hausdorff sequentially complete or Hausdorff
quasi-complete lLc.s., then so are spaces (V(,sa?' , E), V-topology) and (S(+#, E),
S-topology).

Call a function f: @ = E to be simple if its range is finite and if for each
yerange(f), f ' ({yPest.

The integral of a simple function f= Z yjla, where =1 < E,

{4; Di=1ell(, Q), and 1 4 I8 the characteristic functmn of Ae., is defined by
{fap = Z y;P(ANnA).
4 i=1

The following definition is borrowed from [3, 4, 5].

Definition 1.2. A function f: € — E is said to be integrable by seminorm,
write fe £ («, E), if for each Ue U(E) there is a set Qf e/ with P(Q]) =
and a sequence (f;’> of simple functions such that

@) hfmpv(f(w)— V(w)) =0 for each weQ\QY, ie. [ is measurable by

semmarm
(i) py(fl@)—fF (w)eLl (.s.‘f R) for every neN and

Iim [ py (f{@)—£F (@) dP = 0;
N 22

- (iii) for each A€/ there is a y,eE such that
ﬁmp‘c (ffwchwyA) =0 (CeU(®).

It has been noted in [5] that if fe £ (7, E), then ;;,-{A) = j fdP (Ae o)

defines a P-continuous vector measure of bounded variation wuh
Volu) = Bo(N) £ [py(f)dP  (UeU(E).
2 .

Thus, if we define
n={feL (4, E)By(f})=0 VUeU(E)},
L\, B) = £* (o, EYn,

then L'(sZ, E), equipped with the Bochner topology, given by the family
{BylUeU(E)} of seminorms, is a linear subspace of . (V(M E), V-topology).
Furthermore, it is easily checked that every f e L' («, E) is Pettis integrable.
Therefore, one can define the following seminorms:

Pu(fl'“sux){f [Ke,/>|dPlec Ut (UeU(E).

Obviously, L' («#, E), endowed with the Pettis topology, given by the family
{Py|UeU(E)} of seminorms is a linear subspace of (S(#, E), S-topology)
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In general, properties and structures of L («, E) are not known. But using the
arguments, similar to those given in [6] for the Banach valued case, we can
prove however the following result:

Lemma 1.3. Let UeU(E), ue S(, E) and fe L' (%, E) for some sub-c-field
# of . Then

(1) Syl < Vu(ﬂ-}a
#) o (1) = sup {py (u(A)| Ae o} < Sy(n) < 4qy (),
3) 4v(N) £ qu ) < Py(f) = Sylu) < g2(N £ g2 ),

where qf (y) = sup {py (1 (4))| Ae B} (yeS(o, E)).
For other properties of measurability, integrability of vector-valued func-
tions we refer to [3, 4, 5].

2. Nuclearity in Hauosdorff locally convex spaces. For an lcs. E, let (I} {E},
IT-topology) and (I (E), e-topology) be defined as in [24]. In what follows we
shall need the following

Lemma 2.1 ([24], 4 1.5 and 4.2.4). For an lc.s. E the following carzd;twns are
equivalent:

(1) E is nuclear.

(2) For every U € U(E), there are a C ¢ U(E) and a positive Radon measure 7,
defined on the weakly compact polar C°, such that

py(x) € I Kx, edldy(e) (veE).

(3) {1y {E}, H-topology) = (I} (E), e-topology).

The main purpose of this section is to apply the above results to prove tha
following

TueoreM 2.2. For an Les. E, the following conditions are equivalent:

(1) E is nuclear.

(2) For every probability space (Q, s, P), (V(«, E), V-topology)=
(S(s, E), S-topology).

(3) For every probability space (@, s#, P), (L'(Z, E), Bochner topolo-
gy) = (L* (o, E), Pettis topology). »

(4) Assertion (3) is satisfied for the special probability space (2, o, P),
where Q = N, of = P (N} the ofield of all subsets of Q and P({n})=2""
(neN).

Proof. (1) = (2). Let E be an l.c.s. Suppose first that E is nuclear. Then, by
Lemma 2.1, for every Ue U (E) there exist a Ce U (E) and a positive Radon
measure y on C° such that

2.1 | pu(x) < [ Ke, xdldy(e)  (xeE).

co
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Let peS(e, E) and {Ap}-,ell(, Q). Applying (2.1) to each pu(4),
we get

Q

k k
j;pu(u(ﬁj) Y. | Ke, (A dy(e)

=1

Lj }_; [Ke, u{4;Dldy(e) < 7(C°) Sup{z KKe, u(4)))]le€ C°}

J=1
< 7(C%sup {Ke, u)|())ee C®} = y(C%) Sy ().
This implies that

k
22 Vy=sup{} py(u(4))|<4pi=1ell(, E)} < y(C°)Sy(n),
=1

which proves (2).

Implications (2) — (3) — (4) are easy to shaw It remains therefore to prove
only

4)—(1). Suppose that E satisfies (4). It is clear that with the identification
IV {E}a{x, }HZZ"x 1,,€L*(2(N), E), one can regard (I {E}, ITI-topology)

as a subspace of ( 1 (Z(N), E), Bochner mpalogy)‘. Consequently, by (4), E has
the following property:

(*) On I} {E}, the II-topology is the same as the e-topology.

Suppose first that Iy {E} = I} (E). Then, by (), (§{E}, II-topology) = (I} (E),
s-topalugy). Hence, by Lemma 2.1, E must be nuclear. This proves (4) for the
case.

Finally, suppose that Iy {E} # I} (E). Then there is an element (x,»€l}(E)
such that {x,>¢I}{E}. Equivalently, there is a UeU(E) such that
Y pylx,) = co. Therefore there is a strictly increasing subsequence {m.> of

. N
N such that

M+ 1

Y plx)=k (keN).

j=npt+l

Now let us define f;: @ —E (keN) by
L= Z foklm and o, =co(f;,....fr) (keN).

Obviously, {f,> is a sequence in L' (2 (N), E), adapted to {s,), ie. each
fie L' (o, E). Moreover,
(a) by [24], 1.3.6, the sequence { f,» converges to 0 in the Pettis topology;

A+ 1

(b) fro(f)dP= ¥ pulx)zk  (keN).

J=ne+1
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This implies that the sequence ¢ f,) fails to be convergent in the Bochner
topology. Consequently, by (a) and (b), on L' (#(N), E) the Bochner topology
is strictly stronger than the Pettis topology, which contradicts (4), hence
completes the proof.

Remark 2.3. (i) For Banach spaces, the theorem is easy to show (see,
e.g [6]).

(i) The equivalence (1}« (3) in the theorem has been recently proved by
Egghe [14], but his arguments can be applied only to Fréchet or sequentially
complete dual metric spaces (see remark in [14] and Theorem 4.2.5 in [24] for
the case).

3. Amarts of finite order and nuclearity in Hausdorff quasi-complete locally
convex spaces. Throughout this section, E is supposed to be a Hausdorff
quasi-complete lcs. Let (&/,> be an increasing sequence of complete
sub-o-fields of o7 with )’ = ( ) &, and & = ¢(Z). A sequence {u,) in S(«, E)

N .
or {f,» in L' («, E) is said to be adapted to {s/ ), if each p,eS(s7,, E) or each
f,e L} (s, E), resp. We shall consider only such sequences. Further, a sequence
{f,» in L,(<, E) is said to have property (p) if so has the sequence {u,) in
V(s/, E), given by

o A, E: p(A)=[f,dP (neN, Aest).
A

Definition 3.1. A sequence {y,» in S(«/, E) is said to be a martingale, if
au'n = #mi.mf., i}: lum,u (m: "EN'E m ;?‘ n)*

Now let T denote the set of all bounded stopping times. Given sequences
{p,» in S(s, E), {f,> in L'(s#, E) and 1e T, we define:

A, ={Aed|An{t=n}ed,, VneN},
pe A - E:p (A=Y ({r=n}) (dest),
N .

f:: Q "“” E: fr(m) = 2;‘ 1{f=n"if;r

Then, by [23], {« |teT*} is an increasing sequence of (complete)
sub-o-fields of «/. Moreover, u eS(#,, E) and f.e L*(</,, E).

Definition 3.2. A sequence {y,» in 5 (o7, E) is said to be an amart of finite
order, if, for each de N, the net {u,(2))..r- converges strongly in E, where T¢ is
a subset of all bounded stopping times each of which takes essentially at most
d values. Moreover, if the net converges for d = o0, then (p,» is called an
amart,

It is clear that every amart is that of finite order. A simple remark 2.8 given
in [19] shows that there is an amart of finite order of nonnegative real-valued
Junctions which fails to be an amart.
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Lemma 3.3. Let {u,» be a sequence in S(&ﬁ*, E). Then the following conditions
are equivalent:

(1) <p,» is an amart of finite order;

(2) lim sup Sy (4, ,—p) =0 (UeU (E)}, where each S} (*) is defined as Sy

ntor mER

Jfor the probability space (Q, <, P|, );

(3) {p,» can be written in the form p,=o,+p, (neN), where {w,> is

a martingale in S(sf, E) and {f,) is a Pettis potential, i.e.
lim % (6,) = 0;

(4) there is a finitely additive measure Heo, J': ~ E, called u_,, the limit measure
associated with {u,>, such that each p , = Hols, €8(,, E) and

him Sy (u,—poW) =0 (UeU(E).

Proof. Let {u,» be a sequence in S(«, E),« We begin the proof with
(1) = (2). Suppose first that {u,) is an amart of finite order. Then, in particular,
the net {(p (£2)>,.r- converges strongly in E. Thus, for any but fixed Ue U (E)
and & > 0, one can choose some 7(g)e T? such that if ¢, 1e T? with o, T = 7(g),
then

(3.1) Pl (@ —p @) <47'e
Let m, ne N with m = n > t(s) and Ae.oZ,. Define o, 1e T? by 6 =ml,
and t=nl,+mlgy ,. Obviously, ¢ =7 > 7(g). Thus, by (3.1),

Py (B (A) ~ 11, (A)) = py (11, () —p () < 47 7¢
which, with Lemma 1.3, yields
8% (U= 1) < 4G8" (ty ,, — 1) = 45UD {vu(.um(ﬁi) w(A)| e} <e,

which proves (2).

(2) — (3). Suppose that {yu,) satisfies (2). Then for any but fixed ne N, by (2),
it follows that the sequence (i, ,>m-, i8 Cauchy in the §"-topology of
S (o, E). Therefore, by virtue of Lemma 1.1, the sequence {y,, ,>n-, CONVerges
to some u, €S (+#,, E) in the §"-topology. It is easily checked that the sequence
{a,> is a martingale in S(o#, E). Moreover, the convergence in the §™-topology
Of {fhy nde=n t0 &, and (2) show that if B, = y,—a,(neN), then (B, is a Pettis
potential, which proves (3).

(3)~{4) is easy. Indeed, if we define pu,: Z—-E by u,(4)=ua,(4)
(neN, Aes)), then, by (3), the finitely additive measure u , satisfies all the
assertions in (4).

(4) — (1). Suppose finally that {u,» satisfies (4). Let de N be any but fixed.
For each Ue U (E) and & > 0, by (4) it follows that there is some n(g)e N such
that

sup S'E’I (ﬂw-“;uo;,,n) < dt
n2anig)
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Let e T? with t = n(g). The last inequality with (4) and Lemma 1.3 implies
that

Po (@)~ p, (D) = Py [ Z (1 (= 1) =g = )]

n=nie)

| $ Z p{}'(vu‘n ({T = ﬂ}) xuw‘u({‘c = ﬂ}))
CF
< Z n(ru ;’lm u) d sup qg" (Jun“'.u'm,re}
n=n{e) nZn(e)
<d sup SE’ (Pn_'num,nﬂ S &

nZnlE)

where 7 =max{n: P({t =n})>0}. This shows that the net (u,(Q)).q
converges in E to u_ (Q). Hence, by definition, {g,) is an amart of finite order,
which completes the proof.

Remark 3.4. The inspection of the proof shows that a sequence {u,) in
S(s#, E) is an amart of finite order if and only if, for some de {2, 3, ...}, the net
{p (82)),cra converges in E.

“In what follows we shall need the following definition (see [20] for the
multivalued case);

Definition 3.5. A sequence {y,) in V{7, E) is said to be an L'-amart, if

111‘11 sup VU (pm n lun) =0 (U'E U(E))a
n-too MER
where the seminorm Vj is deﬁned as Vy, for the probability space (2, .«¢,, P, ).
Moreover, if
lim V() =0 (UeU(E),
|+ ]
then {p,> is called a Bochner potential.

Note that by Lemmas 1.3 and 3.3, every L'-amart is an amart of finite
order, hence every Bochner potential is a Pettis potential.

The following result concerns the inverse implications.

THEOREM 3.6. For a Hausdorff quasi-complete l.c.s. E, the following conditions
are equivalent:

(1) E is nuclear.

(2) Every amart of finite order in S(s/, E) is an L'-amart in V(sZ, E).

(3) Every Peitis potential in L*(s/, E) is a Bochner potential.

Proof. (1) = (2) follows immediately from Lemma 3.3 and inequality (2.2)
in the proof of Theorem 2.2.

(2) = (3) is easy. The most important part consists in the proof of (3) — (1).
Suppose that E is not nuclear. Then, by Lemma 2.1, either I} (E)\ I} {E} # @ or,
on I} {E} = I}(E), the II-topology is strictly stronger than the s-topology.
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(2) Suppose first that I} (E)\I}{E} # @. Then the proof of Theorem 2.2
shows that there is a sequence ¢ f;> in L' (s, E) such that {f,) is convergent to
0 in the Pettis topology (equivalently, { f,) is a Pettis potential) but () fails to
be convergent to 0 in the Bochner topology (equivalently, {f,> is not
a Bochner potential). This completes the proof of (3) — (1) for the case.

(b) Finally, suppose that I} {E} = [} (E) and on I} {E} the IT-topology is
strictly stronger than the e-topology. Then there is.a sequence {{x>}7=, in
Iy {E} such that {{xJ">}-, converges to 0 in the s-topology, but it fails to be
convergent to 0 in the II-topology. But we note that if we take Q= N,
A =P(N) and P({n})=2"" (neN), then, with the identification
W{E}a x>+ Y 2"x,1,,€ L' (P(N), E), one can regard I} {E} as a subspace

N

of L'(#(N), E). Therefore, if we define f,: N—E (meN) by

Ju= 2, 2"x31,e L' (#(N), E) (meN),
neN
then the above observation and properties of the sequence {{x}>};=, show
that the sequence { f,,) converges to 0 in the Pettis topology (hence it is a Pettis
potential), but () fails to be convergent to 0 in the Bochner topology (hence,
it is not a Bochner potential). This completes the proof of (3) — (1) for every
case and of the theorem.
In order to give some applications of the above results to the study of
amarts of finite order we shall need the following definition given in [5]:
Definition 3.7. An Les. (E, U(E)) is said to possess the Radon—Nikodym
property (by seminorm) if for each complete probability space (22, ¢, P) and for
every p-continuous vector measure je V(«/, E) there exists a function (inte-
grable by seminorm) fe L' (sZ, E) such that

p(4) = f fap (des).

In what follows we shall need the following result whose Banach valued
version is well-known [23]:

Lemma 3.8. Let E be a separable lLc.s. with the Radon-Nikodym property.
Suppose that {f> is a regular martingale in L'(s#, E), ie. there is some
feL' (o, E) such that
(3.2) [f,dP=(fdP (Aes,, neN).

4 4

Then {f,> converges to f in the Bochner topology.

Proof. Let E, {(f,» and f be as in the lemma. Then, for every ee E/, the
sequence (e, f,» is a regular martingale. Therefore the classical martingale limit
theorem shows that, by (3.2),

(3.3) lim [{e, f2l = Ke, f)]  ae

B o
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Further, let UeU(E) be any but fixed, By [26], 11L.4.7, the separability
of E implies the separability of U° in the ¢(E’, E)-topology. Let {e;|ie I(U)}
be a countable family o (E', E)-dense in U°. By Theorem I1.18 in [7], it follows
that

py(f) = sup {[Ke, [, ee U®} = sup {|<e;, [l lic [{U)}  (neN),
and

py(f) = sup {[e;, H1ieI(U);.

Consequently, by Lemma V.2.9 of [23], (3.3) yields lim p, (f,) = py (), ae.
Moreover, by using the same arguments, applied to the regular martingale
{f,—a> (acE), we infer that, for every acE,

lim py(f,—a) = py(f—a) ae.
But, since E is separable, the same argument used by Neveu in the proof of
Proposition V.2.5 of [23] shows that

(3.4) lim py(f,—f)dP =0 ae.

On the other hand, by (3.2) the sequence {j,—f is Bochner uniformly
integrable, ie., for every CeU(E) the sequence {py(f,—f)> is uniformly
integrable. This with (3.4) shows that

lim i?u(fn““f)df) =0.

Finally, since U e U (E) was arbitrarily taken, by definition () converges
to f in the Bochner topology, which completes the proof.

Note that if measurability, integrability and the Radon-Nikodym property
of E are defined as in [11] or [25], then every E-valued Bochner integrable
function is separably valued. Therefore, in this case Lemma 3.8 remains valid
without the separability assumption on E. Further, it is also known that every
nuclear Fréchet space has the RN-property. Then in the following theorem the
words “with the RN-property” can be omitted if E is a Fréchet space.

TueoreM 3.9. Let E be a separable Hausdorff quasi-complete l.c.s. with the
RN-property. Then the following conditions are equivalent:

(1) E is nuclear. ’

(2) Every amart of finite order {f,» in L' (s, E) has a Riesz decomposition
f, = g.+h, (neN), where {g,> is a martingale in L' (=, E) and {h,) a Bochner
potential.

(3) Every Peitis uniformly integrable amart of finite order is convergent in the
Bochner topology. '

(4) For every UeU(E) and every Pettis potential {f,> in L*(of, E), the
sequence {py(f)> (of real-valued integrable functions) is an L*-amart.

9 - Probability 11.1
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Proof. (1)~ (2). Let E be as in the theorem. Suppose first that E is nuclear
and (f,> an amart of finite order in L' (s, E). Then, by Theorem 3.6, {f,>
must be an L'-amart, ie.

(35} lim sup Vg (ﬂm,ﬁm!un" =0 [UE U {E))a

n-rm omEN

where {u > is the sequence of vector measures associated with (), given by

(3.6) Uy (A) = [f,dP  (neN, Aest,).
N A

First, by (3.5), it is easily checked that, for every neN, the sequence
{yndm=n i V(o#,, E) is Cauchy in the V"-topology. But E is a Hausdorff
quasi-complete lcs, hence, by Lemma 1.1, so is the space (V(,, E),
V"-topology). Consequently, each sequence (i, ,>m=, converges to some
u,€ V(s ,, E)in the V"-topology. It is easy to check that {z,) is a martingale in
V(#,, E). Moreover, if f, = u,—a, (neN), then {u,> has a Riesz decom-
position p, = «,+f, (neN), where {(#,> is a Bochner potential, ie.

(3.7) im VWJ(B,)=0 (UeU(E).
et o
But we note that by (3.6), as each p, is P-continuous, so is each o, and by
the assumption of the theorem, E has the Radon-Nikodym property. There-
fore, there is a martingale (g,> in L'(s/, E) such that

o, (4) = [g,dP (neN, Aes).
A

Finally, if we put h, = f, —g, (ne N), then it is clear that by (3.7) the amart of
finite order (f,» has the Riesz decomposition, required in (2).

(2) = (4) is easy. Indeed, let {f,) be a Pettis potential in L' (=, E). Then, by
(2), {f,> must be a Bochner potential, ie.

lim [ py(f)dP =0 (UeU(E).
n-+co £

Consequently, for every UeU(E), the sequence {py(f,)> must be an
L'-amart. This proves (4).

(1) — (3). Let {f,> be a Pettis uniformly integrable amart of finite order in
L'(s#, E). Then, by (1) - (2), it follows that {f,> can be written in the form
fo = g,+h, (ne N), where (g, is a martingale in L! («Z, E) and <A, a Bochner
potential. But note that, as E is nuclear and () is Pettis uniformly integrable,
inequality (2.2) in the proof of Theorem 2.2 shows that (> must be Bochner
uniformly integrable, hence so is the martingale {g,). Further, as E has the
Radon-Nikodym property, therefore, applying Lemma 3.8 to (>, we infer
that there is some fe L' (o, E) such that {,) is convergent to fin the Bochner
topology, hence so is {f,», which proves (8).
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(3) — (4) is easy. Indeed, let {J,> be a Pettis potential in L' (s, E). Then
{f,> is a Peftis uniformly integrable amart of finite order. Thus, by (3), (/>
must be convergent to some feL'(s#, E) in the Bochner topology, ie.

lim [ py(f,—NdP =0 (UeU(E),

: n=og £2
which yields that
Hm {lpy(f)dP—py()fdP =0 (UeU(E).

n-rw f2

Therefore, as a sequence in L' (<, R), each {p,(f,)> converges to p,(f) in
L'-norm. Hence each {p,(f,)) is an L'-amart in L' (<, R), which proves (4).

(4) — (1). Suppose that E is not nuclear. Then, by Lemma 2.1, either
IV(EWIY {E} # O or, on [} {E} = I}(E), the [I-topology is strictly stronger than
the s-topology.
proof of Theorem 2.2 contradicts (4).

(b) Finally, suppose that, on Iy{E} = I}(E), the Il-topology is strictly
stronger than the e-topology. Then the last arguments in the proof of Theorem
3.6 lead to a contradiction with (4), for if {f,) is a Pettis potential in L! («#, E)
and each {p; (f,)> (Ue U(E)) is an L'-amart, then {f,> must be also a Bochner
potential. Thus the theorem is completely proved.

Remark 3.10. (a) Lemma 3.8 (hence Theorem 3.9) remains valid without
the separability assumption on E, if measurability, integrability and the
Radon-Nikodym property are defined, however, as in [11] and [25].

(b) For Banach spaces, Theorem 3.9 seems to be new. In particular, if
E = R, the implication (1) — (2) in the theorem gives a new characterization of the
class of all discrete processes having a Riesz decomposition (see [18] for
comparison).
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