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VERTICES OF GIVEN DEGREE IN A RANDOM GRAPH

By

WOJCIECH KORDECKI (WROCLAW)

Abstract. The asymptotic distributions of the number of vertices
of given degree in random graph K, , are given. By using the method
of Poisson convergence, Poisson and normal distributions are ob-
tained.

In recent years many papers were devoted to the problem of degree of
vertices in random graphs, mainly K, ,. For a review we refer the reader to [4].
The aim of this note is to use the method of Poisson convergence (Barbour [17])
for simplification and generalization of the above-mentioned results.

Let K, , denote a random graph on the set of » labelled vertices in which

each of (2) possible edges occurs with the same probability p (0 <p < 1)
independently of all other edges, g = 1 —p. Let

<o (1 if the i-th vertex has degree r,
n = &
0  otherwise,

Xon=XP+.. . +X3.

Then .
Ex = (" )y
and |
a,(n) = EX,, = n(nzx)p’q""’"’i.
Let

1 if the i-th vertex has degree r and is joined
1 with the n-th one,
0 otherwise,

il

44

Yoo = YDA XYY,
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Then
E}';{,,? - ('::';l)prqn“rml and EY,=(@n— 1)(::f)pr@1~rm 1

By K§), we denote a graph arisen from K, , in the following manner.
We add a new (say n-th) vertex and join it with exactly s other vertices by
exactly s edges. In such a graph K, we define a random variable

(1 if the i-th vertex has degree r and is joined with
ZO = the n-th one,
‘0 otherwise,
Zmn = Z‘,§.§+ “+ler’;p;’”-
Then

Ez® = 5 _(#72) roner-1 7 = nwl) r—1 n-r-1
EZ:s n»l(r«l)Pq » EZuy r(r_l Py

and

EZysipm= r("f’z)p'q"”'“z-

r
Let Z* =1{0,1,...} and
23
Po(d, A) =e "} % for 1> 0.
jeall

If Z,=1{0,1,...,m} and ¢ is such a function that
. _Po(i, AN Z,)~Po(3, A)Po(l, Z,)
Apm+1) = Po(A, (m})

and ¢(0) =0, then (see [27])
Prob(X € A)—Po(l, 4) = E{ie(X +1)— Xo(X)}
and

Ap = sup |@(m+1)—g@(m) <min{l, 17},

meZ*

THeoreM. For 0 < p <1 we have the following estimation:

sup |Prob(X,,e A)—Po(a,(n), A)

AcZ¥ ;
n—2 o fr+Dn—2r—1 r V
< prg" Tt (n—1)p?;.
( r )p’q { n—r—1 qul_n——r—ﬂ“" )p}

Proof. From the obvious formula
Xﬁ{ = Xm;’”Xn,n-l + Y;'-)-I,iz'" Kn =0
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we obtain
; r j n—1 U R
E(Xrn*Xr.n—l+K+l,nw Yo = EXSI]‘:CIT )P’ q i

From the fact that
Prob(X,, =k | X® = 1) = Prob(X, -1+ Z,u—Z, s 110 +1)
we have
E{XRo(X,)} = Prob(X® = DE{p(X,,) | X{) = 1}
= oM E{oX p-1+1+Zpy—Zyri1.0)}-
Hence the following estimation holds:
E {0, (1) 9(X pn+ 1)~ X, 0(X,)}|

= o, (ME{pXw+ D)~ 0Xrn-1+Zom—Zerr 1t 1)}

< 0, () (49) E1X pu— X1+ Zm—Zrp s 1l

< EXW+ EZ, sy n+EZ i+ EY, oy 0+ EY,,,
which gives the conclusion. =

Assuming r = const we immediately obtain the following result:

CoOROLLARY. If np = w(n), where w(n)— oo but w(n)/n* = o(l) for every
o or w(m =o(l) and r = 1, then

sup lPJI\‘Ob(XmE,A)“P(}{CK,(ﬂ}, A)I = o(1).

AcE*

Proof. The theorem gives the following estimation:
sup |Prob(X,,e 4)—Po(x,(n), A)
A=Z+
o\ ') fom) r+l w?(n) |
"‘"(1 n ) | T e@r el

(Ao '(n) if w{n) = o(1),

< i+ F?j_;ﬂ\" i vy
Bw l(n)(l— n) if w(n)— o,

where A and B are some constanis. Then we obtain the conclusion. =m

From the above estimation many particular results can be obtained.
For example, if

o(n) = logn+rloglogn+x+o(l),
then e, (n}— e~ */r! and from the Corollary we infer that X,, asymptotically has
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the Poisson distribution with mean e™/r! (see [3]). Palka [5] showed that if
w(n) = logn—Ploglogn+o(loglogn) for r=0 '
and if
logn— ,Bloglog n+o(loglogn) € w(n) < logn+(1—y)rloglogn+o(loglogn)
for r ,>,-_ii,

where 0 < f < o0 and 0 < y < 1, then (X,,—x,(m))/{x,(n)*/* asymptotically has
the N(0, 1) distribution. It is easy to see that if u, (n) — oo, then the msult follows
from our Corollary.

A similar result can be obtained in the earlier moments of the evolutwn,
e.g., when w(n)— 0. In particular, if w(n) = n*~ 1", where r > 1 is a constant and
0 < &< 1/{r(r+1)), then for all 1 < s < r we have a,(n)— co and, consequently,
(X u—at,(m)){ex,(m)) "/ has approximately the N(0, 1) distribution. This fact gives
an answer for the guestion 1 from [4].

This method may be generalized for a more general case, where probabili-
ties of occurrence for different edges are not obviously the same. Such a general
case and a more detailed discussion for particular cases, e.g, for K, ,,
K,.np and, generally, k-partities random graphs and some other regular
graphs, will be a subject of another paper.

Remark. After this work was completed, I have received the proof of the
paper by M. Karonski and A, Rucifiski, Poisson convergence and semi - induced
properties of random graphs, Math. Proc. Cambridge Philos. Soc. 101 (1987),
pp. 291-300, Theorem 3 from that paper gives our Corollary.
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