AND
MATHEMATICAL STATISTICS

Vol. 11, Fase. 2 (1991}, pp. 291-304
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'OF RANDOM SUBSETS OF A METRIC SPACE
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Abstract. Let F be a closed, bounded, non - empty random subset
of a metric space (X, g). For some class of metric spaces we define in
terms of the metric ¢ {developing an idea of 8. Doss) mathematical
expectation and conditional mathematical expectation of F. We then
consider martingales of random subsets of a metric space and prove
theorems of convergence for such martingales.

0. Introduction and preliminaries. S. Doss has introduced in [3] a concept
“of mathematical expectation of a random variable with values in a metric space
(see also [1] and [4]). This and other concepts of mathematical expectation
were studied by M. Fréchet in [5] and [6].

In this paper we develop an idea of S. Doss and investigate notions of
mathematical expectation (Section 1), conditional mathematical expectation
(Section 2) and martingale (Section 3) of random subsets of a metric space.

Results of this paper were announced in [8] and [9].

Let (X, ¢) be 2 metric space. By (X, §) we denote the metric space of
closed, bounded and non -empty subsets of X, equipped with the Hausdorff
metric § defined as

6(F, F) = max {supo(x, F"), sup g(x', F)},
xeF x'eF’
where ¢(x, F) = inf{g(x, y): yeF} for xeX and FeX.
We put

F=LimF, iff lmg(F,, F)=0.
an "

For xeX and FeX, we set

5(x, F) = sup{o(x, y): yeF}.

A metric space (X, g) is called finitely compact iff every closed bounded
subset of X is compact. Let us note the following known
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Prorosrrion 0.1 ([11], Proposition 1.2.5). Let (X, g} be a finitely compacr

metric space and let {F,}2-, be a sequence of set elements of X such that U F,
=1
is a bounded subset of X. Suppose there exists a dense set D < X such fhm: Jor

every xe D the limit lim o(x, F,) exists and is finite. Then the sequence {F,}3,
converges in (X, g). !

Let (@2, &/, P) be a probability space. An event A € s is called negligible iff
P(4) = 0. For a collection # of subsets of 2 we denote by o(%) the o -field
generated by %.

A Borel measurable map F: @-» X is called an X -valued random set (r.s.)
and a Borel measurable map f: @— X is called an X - valued random variable
(r.v.). We shall frequently identify a random variable f with a random set {f}.
An rs. is called scalarly integrable iff

| 6(x, F(w))dP(w) < o0  for every xeX.
n

Throughout this paper (2, «, P) will be a fixed complete, non - atomic
probability space and all random sets will be defined on (@, ##, P).

1. Mathematical expectation.

DerFmTioN 1.1. Let (X, g) be a metric space and F an X - valued random
set. The set E[F] defined as .

E[F]= {a&X o(x, a) < jé(x, F(w))dP(w) < oo, VxeX}

is called a mathematical expectation of F.

For every X - valued r.s. F the set E[F] is evidently closed. If F is scalarly
integrable, then the set E[F] is also bounded.

We shall state now the condition imposed on a metric space (X, g) in
order that for every X -valued r.s. F the set E[F] is non-empty.

DEerFINITION 1.2. A metric space (X, g) is called convex in the sense of Doss
(or D - convex) iff for any two elements x,, x, € X there exists an element ae X
such that

o(x, a) < 3lolx, x)+olx, x;)], VxeX.

Remark 1.1. Tt is easily checked that every D -convex metric space is
metrically convex in the sense of Menger (see [2], Definition 14.1) but not
conversely (e.g, a circle in the Euclidean plane with an arc metric).

Remark 1.2. In ([7], Section 8) the authors have proved that the
hyperbolic plane (of Lobochevski) equipped with the geodesic metric is
a D-convex metric space (it can be proved that any simply connected
Riemannian manifold of non - positive curvature equipped with geodesic metric
. is a D-convex metric space).
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Remark 1.3. Suppose (¥, ||-|) is a Banach space and g(x, y) = ||x—yl| for
x, ye Y. Then for every Y-valued Bochner-integrable random variable the
Bochner integral | f(w)dP(w)eE[f].

L7
Doss has proved in ([3], Théoréme 1) that
E[f]= ‘§fdP} if dim¥Y=1.

In ([7], Theorem 1) the authors have proved (answering the question of Fréchet
[6]) that E[f] = {[ fdP} for any two-valued random variable f.
ﬂ

Remark 1.4. Suppose X is a closed, bounded, convex subset of a Banach
space Y. Then the metric space (X, ¢) is D-convex and the Bochner integral

[ faPeE[f] for any Bochner-integrable X -valued random variable f.

" The following example shows that the Bochner integral is not necessarily

the only element of E[f].
ExampLe 1.1. Let

X ={[o;,0,]: 0, 20,0, 20,0, +0, <1}
and

o(foy, oo, 815 Bod) = loty = Byl ey — B
Let f be an X -valued r.v. satisfying

P(f=[L0D=P(f=[0,1]) =
One checks easily that E[ /] = {[a, a,]6X: o, = a,}.

THEOREM 1.1. Let (X, o) be a finitely compact metric space. Then for every
X -valued vandom set F the set E[F] is non-empty iff (X, g) is a D -convex
metric space.

Proof. The necessity of D -convexity of a metric space (X, g) is evident,
since “D - convexity” means precisely that for every X -valued r.v. f satisfying
P(f = x,) = P(f = x,) = }, one has E[f] # @. ‘

We shall prove now that if a metric space (X, g) is D -convex, then for
every X -valued rs. F the set E[F] is non-empty.

If a random set F is not scalarly integrable, then E[F] =X # @.

If F is a scalarly integrable r.s, then any measurable selection f of
F (which always exists by [107) is a scalarly integrable r.v. and E[f] = E[F].

It is thus sufficient to prove that if a metric space (X, ¢) is D-convez,
then for every scalarly integrable X -valued r.v. f the set E[f] is non-
empty.

This will be proved in several steps.

(1°) If f is an X -valued r.v. with card f(Q) < 2, then E[f] # @.

10 — PAMS 112
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We have to prove that for every x,, x,€X and any pe[0, 1] there is an
element ae X such that

elx. @) < palx, x,)+(1—pla(x, x5, VxeX.

We shall prove this first for dyadic rationals p = k/2" (k= 1,..., 2 n=1,2,..)).
We shall proceed by induction; for n = 1 our statement is true by the definition
of D -convexity of a metric space (X, g). If forsomen> land 1 <k, 1< 2" one
has . :

k
o(x, a) < Fg(x,ﬁ X4) +(1 ——%) olx, x,), VxeX,
and
1 . I
Q(xz b) < zﬁg(xl xl)""(l#"z-;{) Q(JC, xz): VXEX,

then there exists ce X such that
w 1 k+1 - k4T
Q{x$ C} < i‘[g{x: ﬂ}+Q‘(JG, b)} = Wg(xa x1)+(1 mW) Q(xs xl)a

which completes the induction.
Let pe[0, 1] be arbitrary and let {p,}.>, be a sequence of dyadic rationals
converging to p. For every n=1,2,... there are elements a,e€ X such that

o(x, a) < po(x, x)+(1—pealx, x,), VxeX.
Since the sequence {a,};%; is bounded and (X, g) is finitely compact, we can
extract from {a,}%, a subsequence {a, };>,; converging to some acX. One
evidently has ,
Q(x, ﬂ) < p@(x” xl)+(1 mp) Q(JC, xz)s VxeX.

(29 If f is an X -valued r.v. with f(Q) finite, then E[f] # @.

We shall proceed by induction. By (1°), our statement is true if
card f(Q) < 2. .

Let f() = {xy, X5, ..., Xy X4} and P(f=x)=p; fori=12, ..., n+L
Let us consider the r.v. distributed as follows:

Pg=x)=p/ Y p; fori=12..,n.
J=1

Supposing that (2°) is true for an n-valued r.v. g we have E[g] # @. Let
acE[g] and let us consider the r.v. h distributed as follows:

Ph=a)= Z Pp P(h = Xp41) = Pns1-
i=1

Then by (1°) we infer that E[h] # @. It is easily checked that E[k] < E[f], and
thus E[f] # @.
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(3°) If f is an X -valued scalarly integrable r.v. with f () countable, then
E[f1#9.

Let f(Q) ={x,,x,,...} and P(f=x)=p, for i=1,2,... By (2°, for
every n=1, 2,... there are elements a,€X such that

Q(xa au) < z Q(x9 xa’)qgr VXEX:
i=1
where
Q?“"‘”F.fz pj’ imlyg,.‘,.,ﬁ.
Jj=1

For every xe X we have
N o
lim ) o(x, x)gf = 3, o(x, x)p; < 0.
mog=1 s i=1

This implies that the sequence {a,};>, is bounded, and since the metric space
(X, g) is finitely compact, we can extract from {a,},>, a subsequence {ay,};-,
convergent to some a€X. Then for every xeX we have
Fow ) o
o(x, @) = lim o(x, a) < lim . ox, x)4* = ¥ e(x, X7,
n =1 i=

which means that aeE[f].

(4°) If f is an arbitrary scalarly integrable X - valued r.v., then E[ f] # @.
Since the metric space (X, g} is separable, for every n = 1, 2, ... there exists
an X -valued rv. f, such that f (£2) is countable and

olf@) f@)<1n,  Voeo,
which implies that
o(x. fi(m) < olx, f(@)+1/n, YweQ VxeX, Vnz1.

By (3°) there exists a sequence {a,}s=; of elements of X such that

olx, a,) < };Q(x,f,,}dP < sj;g(x,f)d}"%—lfn, VxeX, Vnz1.
Thus the sequence {a,},-; is bounded and we can extract from it a subse-
quence {a }-, convergent to some aeX. Since

ofx, f(w)) < o(x, f(w)+1/n  for xeX, weQ n=12 ...,
by Lebesgue’s bounded convergence theorem we have

olx, ) =limg(x, @) < lim { o(x, f,)dP = [o(x, [)dP, VxeX,
n n o0 0

which means that ae E[f].
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2. Conditional mathematical expectation. Throughout this section we shall
assume that (X, g) is a finitely compact, D - convex metric space and F is an
X -valued scalarly integrable random set.

Suppose # is a finite subfield of ./ with non - negligible atoms (through-
out this paper we shall always assume that finite subfields of ./ have
non-negligible atoms). Let us define the following random set:

E¥[Fl{w) = E[F|A] for weA, an atom of &,
where

E[F|A] *{a&’-X o(x, a) fé(x F)dP, \E’xEX}

Lemma 2.1, Let {ﬁ w2, be an increasing sequence of finite subfields of .
Then:

(19 U E%» [Fl{(w) is a bounded subset of X for almost every we Q.
n=1
(2°) For every xe X the sequence of reals {g(x, EZ"[F](»))}n-1 converges

to a finite limit for almost every wefl.

Proof (1°) Let x be some element of X. For every we{l and every
ae EZ*[F]{w) we have

§ 0(x, F)dP, where weA,, an atom of #,.

Aw
{ (A‘ }n=1

converges almost surely to a ﬁmte limit ([12], Proposition I11-2-11). Thus for
almost every we2

olx, a) < P(I! )

The real martingale

supsupg(x, a) < co, where F, = E*"[F]{w),

n aeFy

bev]
which proves that the set | ] E¥*[F]{w) is bounded for almost every we (.
n=1
(2°) Let x be some element of X. Denote by {£,}7=, the sequence of real
random variables defined as
E (o) = o(x, EZ"[Fl(w)) for weQ (n=1,2,..).
It is sufficient to prove that {£,, #,}.%; is a submartingale satisfying Doob’s
condition ([12], Theorem IV.1.2):

sup [ £,dP < 0.
n 2
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For every 4, an atom of &,, we have

[udP = [ o(x, E*"[F1)dP = P(4)o(x, E[F| A]) < [ 5(x, F)dP.
A 4 A

Hence

§&,dP < [ 8(x, F)dP < w
i3 a2

and Doob’s condition is satisfied.
For every n=1, 2, ..., {, is evidently &, - measurable. Thus we have to
check that for every n=1,2,... and every atom 4 of #, the inequality

5‘: dP génvl-ldp
holds, that is
(2.1) P(A)olx, E[F|A] < [eo(x, EF**:[F])dP (n=1,2,..).
A

Let Ay, ..., 4, be (disjoint} atoms of &,,, such that
A= U A,
i=1

Since every set E[F|A;] is non -empty and compact, we can find the elements
a;€ E[F|A;] such that ‘

olx, a) = @(x, E[F|4]) fori=1,.. k.
Let g be an X -valued r.v. distributed as follows:

P(4)
It is easily checked that E[g] < E[F|A]. Hence for évery ae E[g] we have
olx, E[F|A]) < ¢(x, a).

Thus, taking an arbitrary element ac E[g], we obtain

P(4)o(x, E[F] A]) < P(A)o(x, a) < P(4) z ) o, )

Plg=a)= fori=1,.. k.

Z P(4)o(x, E[F|4]) = I o(x, E»+1[F)dP,

i=1
which proves (2.1) and completes the proof of the lemma.
TueOREM 2.1. Let {F,};% ; be an increasing sequence of finite subfields of .

Then the sequence {E*"[F1}%., of X -valued random sets converges almost
surely.
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Proof Let D be a countable dense set in (X, g). By Lemma 2.1 there
v (223
exists a negligible event N such that for every we Q\N the set | ] E¥"[F](w)is

n=1

bounded in X and lim ¢(x, E#~[F](w)) exists and is finite for every x&D. Thus

by Lemma 0.1 it follows that the sequence {E“"[F](w)};%, is convergent in
(X, 6) for every we Q\N.

We shall now define conditional mathematical expectation of F relative to
an arbitrary sub-o-field # of «.

Let L, be a space of (equivalence classes of) X valued random sets
aqu:ipped with topology of convergence in probability with respect to the
Hausdorff metric ¢ in. X. This topology is metrizable by the metric:

bo(F, F) = inf{e > 0: P(3(F, F) > &) < &}

and the metric space (L,, §,) is complete.

Let us remark that, as in the real case, almost sure convergence of F, to
F implies that §,(F,, F)—0 as n— co.

Let # be an arbitrary (not necessarily finite) sub-o¢-field of & and let
F (#) be the collection of all finite subfields of # downward directed by
inclusion. Theorem 2.1 states that, for any increasing sequence {#,}%, of
elements in the directed set # (%), the sequence {E*"[F]}&., converges in
a complete metric space (L,, d,). This implies ([12], Lemma V-1-1) that the
net {E¥ [F1}scs@ is convergent in (Lq, 0,)-

DerNITION 2.1. Any random set from the equivalence class y?@ig?m E*[F]
is called a (version of the) conditional marhematical expectation of F relative
to 2.

We shall prove now the following metric analogous of a theorem of
P. Lévy.

TuEOREM 2.2, Let {#,}5 ; be an increasing sequence of countably generated
sub-o-fields of . Then the sequence {E*[F1}2., of X -valued random sets
converges almost surely and

Lim E®»[F] < E*=[F] as, where &, =o0o() 4,).

Before proving Theorem 2.2 let us state two lemmas.

Lemma 2.2. Let {4,}% o be a sequence of non-negligible events in o such
that P(A,AA)—0 as n— oo (A stands for symmetric difference of sets). If
a sequence a,c€E[F|A,] (n=1,2,..)) is convergent, then lima,e E[F|A,].
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Proof. For every n=1, 2, ...

e(x, a,) < 3] { 6(x, F)dP, VxeX.

P (&H

Hence, for every xe X,

o(x, lima,) = limg(x, a,) < [ &(x, F)dP,

€ —
P(n

which means that lima, e E[F|A4,].

LemMa 2.3. Let {Z,};4 be an increasing sequence of finite subfields of /.
Then

Lim B%[F] c E*[F] as, where , =o(|) %).

n=1

Proof. Since E*=[F] is a limit in (Ly, do) of a net {E#[F1} ges(s., » there
exists an increasing sequence {#,},L, of finite subﬁalds of #, such that

(22) lLimgy(E®"[F], E*[F])=0 and &,c& forn=12, ...
"
By Theorem 2.1, both sequences {E*~ [F]} .1 and {Eﬁ "[F]}"" L converge
almost surely. By Egoroff's theorem (which is just as va,hd for r.v/s with values .
in a metric space as for real r.v.’s) and by the density of U . in %, we infer

that for every ¢ > 0 there is a positive integer n(¢) and a set B, € %, such that

P(B) > 1—¢ and both sequences {E*[F]}, and {E®"[F]}%, converge
uniformly on B,. Thus there exists a subsequence {p,},>, of positive integers
with p, = n(g) and such that

2.3) Q‘Q{EﬁE[F} (@), E™[F] (@)<1/m, VoweB, Vnz1, Vi jz

Let us fix arbitrary w,€B,. We shall prove that

2.4 Lim E#"[F}(w,) = Lim E**[F](w,).

If x ELim E#"[F]{(w,), then there exists a subsequence {p, }={ of {p,}, and

a gequence {xptnry of elements x,eE "'“[F] (wg) (m=1,2,..) such that

= lim x,,.
L]

For every n =1, 2, ... and every we B, let us denote by 4,() and 4,(w)
the atoms of #, and ?’ - respectively, such that we 4, (w) and we 4;(w).
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Since &, is generated by the #,’s, for every n = 1, 2, ... there is a sequence
of sets {B,u}m=1 such that Bym€Z, for m=1,2,... and

hfl P(Aj{wo)AB, ) = 0.
Since, by (2.2), Al(w,) = A,{w,), we can and shall assume that B, ,, < A, .{wy)
for n,m=1,2, ... From (2.3) we have
(2.5) o(xp E[F|Afwo)]) < 1/n, Vnz1, Vizn.
Since A;(w) = A;(wy) for every we Aj(wy) (j =1, 2,...), from (2.5) we obtain
(2.6) o(x,, E[F|Aj@)]) < 1/n, Vnz1, Vjzn, Voed;o)

Since &, (k = 1, 2, ...) are finite subfields of o/, there are finite sets of indices
I=Inm) (n,m=1,2,..) such that

Bn,m = U Aﬂ*m(wi) and An +m(wi) m An+m(ﬂ01) = @ fOI‘ l # l, i, !E:I.

il

By (2.6) there exist elements al € E[F| A,4.(w)] such that g(x,, @) < 1/n.
Since the metric space (X, g) is D-convex, there exist elements b, ,eX
(n,m=1,2,..) such that

0%, bym) < EWQ(% afngm;)? Vx eX.
It is easily checked that
27  bumeE[F[B,,] and o(x, bu)<ln (nm=12..).

Since (X, g) is finitely compact, for every n=1,2,... the bounded
sequence {b,nm)=-, contains a convergent subsequence {b,, }m-1. Put

b, = ﬁ;ﬂbmm n=12..).
Since for n =1, 2, ... we have P(B,;, A4 (w,))—0 as m— co, we infer from
(2.7) and Lemma 2.1 that
(28)  b,eE[F|A{wy)] and glx,,b)<l/m forn=12,...
Thus
x = lim x, = limb, & Lim E [F| A{we)] = Lim EZn[F{e,),

which proves (24) and completes the proof of Lemma 2.3.

Proof of Theorem 2.2. Since each 4, is countably generated, for each
n=1,2,... there exists an increasing sequence {%,,}m=1 of finite subfields
of 4, which generates %,. Since each E#[F] is a limit in L, of a net
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{E”[Fl}¢es@, and B, < B,,;, we can and shall assume that
lim go(EF»~[F], E*[F)=0 and %, ,cF . 1n foram=12,...
m

Let us fix an arbitrary & > 0. By Egoroff’s theorem there are sets B, €%,
such that P(B) > 1—¢/2" (n=1,2,...) and

Lim E#»=[F] = E®[F] upiformly on B, (=1,2,..).

Thus there exists a subsequence {m,} of positive integers such that

(2.9) sup do(EZ = [F](w), E*[F](w))»0 as n— oo,
wel
whem
B= ﬂ B,.
n=1

Defining &, = %, , we obtain an increasing sequence {%,};>; of finite
subfields of #,, which generates #,. By Lemma 2.3 we have

Lim E*»[F] < E#=[F] as.

Let B,e#,, B, %, be a set with P(B,)> 1—2¢ and such that E¥-[F]
converges uniformly on B,. It follows from (2.9) that E®"[F] converges
uniformly on B, and

Lim E#*[F](w) = Lim E**[F](w) < B®*=[F](w), VweB,,

which completes the proof since P(B,) > 1—2¢ and &> 0 was chosen arbi-
trarily.

3. Martingales. Throughout this section (X, g) is a finitely compact,
D-convex metric space and all random sets take values in X.

If F is a random set and & a sub - o -field of &7, then we denote by S(F; %)
the collection of all #-measurable selections of F.

DerFiNimion 3.1, Let {#,}°-; be an increasing sequence of sub - ¢ - fields of
s and {F,};~, a sequence of scalarly integrable, 48, - measurable random sets.
We say that {F,, #,}i-, is a martingale iff \ ’

E®[f1=F, as. for every feS(Fus1; Bora), n=12 ...

Lemma 3.1. Let F be a scalarly integrable random set, # a sub-o -field of
& and {F,}7-, an increasing sequence of finite subfields of % such that

E®[F] = Lim E*~[F] as.
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Then for every xeX there exists a negligible event N such that for every
we\N and ae E*[F(w) we have

o(x, @) < E¥=[d(x, F)](w), where F, =0 G Fo)e
m=1

Proof. Let N’ be a negligible event such that

E?[F](w) = Lim E*~[F](w),  YoeR\N'.

Let ae E?[F](w) for some we Q\N'. Thus there exists a sequence {a,}m=; Of
elements of X converging to a and such that a, € E*"[Fl(w) (m=1,2,...),
which means that for every xe X the following inequality holds:

{ 8(x, F), where we4,, an atom of

m?

o(x, a,) < P(A,,,)

The real martingale

{P(AWJ},,.&(” F)ap. , }1

converges to E¥=[d(x, F)] outside some negligible event N ([12], Propo-

sition 11.2.11). Thus for every xe X there is a negligible event N = N’ u N"such
that

olx, @) = Mm olx, a,) < E®[8(x, F)l(w), Vwe\N.

Tueorem 3.1. Let F be a scalarly integrable random set and {#,}3-1 an
increasing sequence of sub- o -fields of of. Then {E®*[F], 8}, is a martingale.

Proof Let n > 1 be fixed and feS(E®+:[F]; #,.,). Let {Fp}m-, and
{grt1 = . be two increasing sequences of finite subfields of %, and #,.,,
respectively, such that £'c Z"! for m=1,2,... and satisfying

E%[f1(w) = LmE*[f1(w), E®[Fl(w)= Lim EF%[F],

E#n1[F] = LimE™* '[Fl(w), VYweQ\N,

for some negligible event N.

Let ae E®[ f](w) for some e \N. There is then a sequence {a,}m=1 of
elements of X converging to a such that a,e E**[f](w) for m=1,2, ...,
which means that far every xe X the following inequality holds:

[} Q(:va3 f)dP, where weA,, an atom of £~

o(x, am)“—P(Am)
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Since f(w)e E®»+1[F](w) for every weQ, by Lemma 3.1 we have

o(x, a,,,)\\P(A 7} f EZ*'[8(x, F)1dP, VxeX,

where

ﬁmn-ﬂ. — 0.( U ?-;'”n%i)_
m=1
But #£"c ™ for m=1,2,..., and thus we have

olx, a,) € —— j é(x, F)dP, VxeX, m>=1,

P(A

which means that a, e E¥*[F](w) for m=1,2, ..., and thus
a = lima, € E*[F(w).

The theorem is proved.
Tueorem 3.2. Let {F,, #,}", be a martingale and suppose that:

(a) The set (J F.(o) is a bounded subset of X for almost every weQ.
n=1

(b) sup [ o(x, F,)dP < 0, ¥xeX.

o :
(¢) The o-fields B, are countably generated for n=1,2,...
Then the sequence {F,}x., of random sets converges almost surely.

Proof. We shall show first that {g(x, F,), #,}5=; is a (real) submartingale
for every xe X,
Let n =1 be fixed and let feS(F,+; #B,+.1) satisfy

(x,f(ﬁ}) (x, 1l ﬂ})) YVwel.

Since {F,, #,}7= is a martingale, for every xe X we have

olx, F,) < e(x, E™[f]) as.
Thus for every A€, we have

ig(x, F)dP < [ olx, E*[f])dP.
A

Since the o-field %, is countably generated, from Lemma 3.1 we obtain

fols, B[/ dP < | E*(of, /4P
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But '
J B [00s, /11dP = [ ol )P = {0005 Fi 1) dP,
A

A

which proves that {o(x, F,), #,}s=1 is a submartingale.
By (b), the submartingale {o(x, F,), #,}:=, converges almost surely ([12],
Theorem IV.1.2) for every xe X. Let D be a countable dense subset of X. There

exists a negligible event N such that for every weQ\N the set | | F,(w) is

- n=1
a bounded subset of X and the sequence of reals {p(x, F,(w))},=, converges for
every xeD. Hence, by Proposition 0.1, the sequence {F,(w)};%, converges in
(X, ) for every me Q\N.
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