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ESTIMATES FOR TAIL PROBABILITIES
OF QUADRATIC AND BILINEAR FORMS
IN SUBGAUSSIAN RANDOM VARIABLES
WITH APPLICATIONS TO THE LAW OF THE ITERATED LOGARITHM
BY
T. MIKOSCH (DrESDEN)

Abstract. We prove upper estimates for the tail probabilities of
quadratic and bilinear forms in independent subgaussian random
variables. These inequalities are used to get upper estimates in the law
of iterated logarithm. It is shown that iterated logarithm behaviour in
the class of random quadratic and bilinear forms is heterogeneous.
Examples show that the results are sharp.

0. Introduction. We start with some notation and definitions. Let 4 = (ay),
i,j=12,..., be an array of reals, 4, =(ay), i,j=1,...,n, and (X)), (Y)
be independent sequences of independent random variables (r.v.s). Put
X,=(X,,..., X),, ¥, =(Y,, ..., ¥)¥ and define the quadratic forms (q.f’s)
Q, = XT A, X, and the bilinear forms (b.{’s) T, = XT A4, ¥,. In the case of g.f’s Q,
we may without loss of generality assume that A is symmetric. For a matrix
B=(by),i,j=1,..., n [|B] and u(B) denote the Frobenius and spectral norms
of B, respectively, ie.
IBI> = 3 bj

ij=1
and u*(B) is the largest eigenvalue of B B. Moreover, tr B and rk B stand for
trace of B and rank of B, respectively, and diag(a,, ..., a,) denotes the diagonal
matrix with diagonal elements a,, ..., a,. For some further theory of matrices
we refer to [4].

An ry. X is called subgaussian if there exists a constant a > 0 such that
Ee"* < exp(o®*u?/2) for all real u. The minimum of such numbers « is denoted
by a(X). Special cases of subgaussian r.v.’s include Gaussian r.v.’s with EX = 0
and centered r.v.’s which are bounded almost surely (a.s.) by a constant. These
are two important classes of r.v.’s. A subgaussian r.v. X always satisfies the
relations EX =0, and EX* < o«*(X). If even EX? = o¢*(X) then X is called
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strictly subgaussian. Further information about subgaussian r.v’s is e.g.
contained in [3].

Exponential estimates for q.f’s in Gaussian r.v.’s are proved in [1, 2, 6-8,
11-13].

One of the main tools of these works is the representation

n
Q.= ¥ #'P,

where (A4{");~,,.. are the eigenvalues of g, 4,, g, is the covariance matrix of X,
and (Z{);~,,.. . are independent identically distributed (iid.) Gaussian r.v.’s
with EZ{ =0, E(Z?)* = 1 (in short, N(0, 1) r.v.’s). Such a representation is
not valid for q.f’s in non - Gaussian 1.v.’s, but for q.f’s in subgaussian r.v.’s one
can estimate the moment generating function of @, by that of an appropriate
qf in Gaussian r.v.’s. This enables one to derive exponential estimates for
P(Q, > x) and P(T, > x). These inequalities will be applied then to obtain
results of bounded iterated logarithm type, ie.
limb, Y(Q,—c,) <! as. and limb;'|Q,—c,|<1 as.

for suitable constants b,, c,.

1. Exponential estimates for tail pmhahilities; Throughout (X,) is a se-
quence of independent subgaussian r.v.’s. Put o = a(X), ¥, = diag(ay, ..., ),
B, =2V, A V% 1, = n(V,A,V), O = Q,—tr(V,4, V).

ProPoSITION 1.1. Assume that (A,) is a sequence of positive semidefinite
symmetric matrices. Given 5¢(0, 1), the following inequalities are true for all n:

yz 22yu. (. 2ypy, -1
L — Je— : L | 1
(A) PQF >y < ex.p( ZBN(11 3 B, (1 B, ) ‘

Jor 0 <y <((1—-0)/2u,)B,,

‘ \ 1—46) 21—
(B) POF > ) < exp<“y(4ﬂf)(l -2 "“gé))
for y> (1=3)/2)B,s | |
() Hﬁ>ﬂ36@ﬂ4}ﬂ§§)

for some constant C(0) >0 and all y > 0.

Proof We start with an auxiliary result.
LemMa 1.2. Assume that A, is positive semidefinite and «, = 1 for all i. Then

Eexp(hQ,) < exp(—-%; Y. In(1 —-«-2h,1,~))
“i=1

for 0 h < 1/2u,, where 14, ..., 4, are the eigenvalues of A,.
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Proof of Lemma 1.2. Assume that tk4, =k > 0. There exists an
orthogonal matrix U such that 4, = U"TLU, L=diag(4,,..., 4,.0,...,0),
where Ay, ..., 4, are positive eigenvalues of A4,. Then

XTAX, = VL,V
with
V = ((UX” 19 =ney (UXﬁ)k)T, ,Lﬂ = diag(ilgx PR ik)a

For a positive definite matrix B of dimension kxk the relation
"2TBz = | e¥2=Trg(y)dy, zeRt h>0,
R :
is satisfied, where g(y) is the density of a k-dimensional Gaussian vector with
expectation zero and variance matrix B. Hence
I=Eexp(hQ,) = | Ee/ *q(y)dy
Rk‘
for sufficiently small & > 0, where
q(y) = (detLo)™'?(2m) *?exp(—3y"Ls'y), yeR-
Using the subgaussivity of X, with o, =1 we get

EeV2WTy Hl Eexp‘(\/ﬂ:Xj(‘zlyiuﬁ))
j= =
" k .
< [T exp(a( Y, yiuy)?) < ™,
j=1 :

1< [ q(y)e™>dy
ik

k
—m(dﬁtLo)‘-Uz{zTE —ki2 j‘ exp(_i Z 21 )2}1) )d}

r‘f«l b3

for 0 < 2Zhmax 4; < 1. The matrix

isk
I Ay A
B= d‘ag(lmz\m; 1-2;1;@,‘)

is positive definite. It follows that

dﬁtﬁy"‘? rp-1
[<{——] (detB)y""2@m)~¥2 e o8 324y

detB\¥?* k
= f = [T (1~2h1) 12,
(dan) ;'{-ﬂ( )

which proves the lemma.
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Now we start the proof of the proposition. In virtue of the transformation
X, > X /o, we may assume that o; =1 for all i.
By Lemma 1.2,
# 1 k
PQ* > y)<e WEe" g exp(-h{y+tm1n)—§ Y In(1 WEM-}),

i=1

Eexp(—3In(1 —2hi) —hi) < exp(A2h? (1 +3(2hp, +2hp, + .. )

2 Zhu
- 2p2l e TR
= exXp (.lu h (1 +3 1-2h,u,,))'
for 0 < h < 1/2p,. Hence

k*B, 2 2hp,
* ~ ) < ey -
PO¥F>y < exp( hy+—— 5 (H—3 1M,}h#n))

where
B,=2 Z A, A, = Z A

Put h=y/B, or h=(1—8)f2u, according as y <((1—-8)/2n,)B, or
y = ((1—9)/2p,)B,. Then (A) is immediate. In (B) take h = (1—9)/\/2B,. Then

2hp, = -0
M 11
and
B.[. 2 2hu {lmé)z 21-38\
2Py ht n =
h 2<1+3]—2h ) p 1~{~3 3 InC(d).

This proves the proposition.
The following is immediate from (A}

COROLLARY 1.3. Let (4,) be as in Proposition 1.1. If (y,) is a sequence of
positive reals with (y,u,/B,)—0, then, given 6&(0, 1), :

Jfor sufficiently large n.
Putting 6 =% in (A) we get
COROLLARY 1.4. Let (A4,) be as in Proposition 1.1. Then

. y 1y
* < 2Xpl —r1 RS ] .
POF>y) ﬁﬂ?( mm<m ~’63)) for all y>0

Remarks. 1. Lower estimates for P(Q¥ > x) with Gaussian X, show that
the inequalities of Proposition 1.1, Corollaries 1.3 and 1.4 are sharp [2, 7, 12].
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2. It should be noted that the inequalities of (A) in Proposition 1.1 are very
much like the upper estimates for tail probabilities of sums of mdependem Iv.’s
in Kolmogorovs LIL [10].

3. It is an immediate consequence of (B) and of one-sided versions of
maximal inequalities with quasi-superadditive structure (e.g. [8, 9]) that

v i y(1~5))
P{maxQF > y) < C{(dexp| ——
(maxQf > ) < C(9) p( o
for each fixed 6€(0, 1), some C(3), all y>0 and n>1
4, By the martingale maximal inequality we get

P(max(Q,—EQ) > y) < ¢ ™ Eexp(h(Q,— EQ.) y>0,

i€n

fof sufficiently small h > 0. Thus, modifying the proof of Proposition 1.1, we
get

v (22, 2y, Y
P(f?g{(g EQ)>y)<exp( 5B (1 1B, 1 B, +B Ly

for 0 < y < ((1-8)/2u,)B,, and

1-8)/. 21-8\ 1-5
(max(Q EQ)>y) < exp( y(41,1,, )(1-§ 5 )+2 - t,,)
for y = ((1—46)/2u,)B,, where

i
t,= Y aglo}—0?), of=EX? forall n.

i=1

Note that t, = 0 for strictly subgaussian X,.

5. We could not prove sharp estimates for P(—Q¥ > y) if 4, is positive
semidefinite and for general symmetric matrices 4,. But following the ideas of
Wright [14] and Hanson and Wright [5] one can derive the estimate

(o )
P(max|Q,— EQ/ > 2exp| —Cmin
(eI Bl > 9 < p( (u(IVA,, 7y AT
for some C > 0, all y > 0 and symmetric 4, where |V, 4, V| = (xlayla)i =1,

The estimates of Hcmson and Wright are appllcable to independent r.v.’s
X; satisfying

PlX]>»n< Mj e " dt
¥

for all i, y > 0 and some y, M > 0. For subgaussian X, with o; = 1 this estimate
is true with 0 <y < 1/2 and some M > 0.
Note that p(|V,4,V,))< |V, 4, V.|| such that

P(f?gfﬁlQ; EQl>y < anp( WA i) y >0,
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and )
P(max|0.—EQ| > y) < 2ex S L —
(maxi0—FQ1 > y) <2050 ~C 2 )

for sufficiently large n and pnsitive y, satisfying the condition
(lVA Vi
l% A7,

As another consequence of Proposition 1.1 we obtain exponential es-
timates for b.f’s T,. In this case the symmetry assumption about 4 would be
restrictive. Assume that (¥)) is a sequence of independent subgaussian r.v.’s. Put

C, = diag(a(Yy), ..., (X)), S, =V, 4,Cl% v, = u,4,C,).
PROPOSITION 1.5, Given § (0, 1), the following inequalities are true for all n:

(&) PmaxT;>y) <EKP< 3; (1“%('5'1 ”")2(1_%%)2)%1))
for y < ((1-0)/v,)S,, y =0, |
_ « 1 _5 2 Y
P(maxT, > ) < SKP( a o 5)3"(1 _ETgﬁ—gﬁﬁ))
for y = ((1=8)/v,)S,,
(B) P(maxT > ( < _5)y)
) < C(d)exp

Jor some constant C(6)> 0 and all y >0,
(C) (A) and (B) remain true if P(maxi‘} > y) is replaced by
‘LP(de!TI > y).

i€n

Proof Without loss of generality assume that ¢; = 1 and a(¥) =1 for
all i. By the martingale maximal inequality for sufficiently small i > 0,

P(max T, > y) < e""Eexp(hT,).

i<n

By the subgaussivity of X, ¥, and by Lemma 1.2, for 0 € h? < 1/u(A] 4,)
we obtain

Eexp(hT,) = E E(exp(h i X, iﬂu Y, ..., ¥)

%Eem( 5 (3 ay ))

=1 j=1

-Eexp(h ¥ ATA,,I*;) <exp( Z (1— hzj,))
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where A,,..., 4, are the eigenvalues of A7 A,. Note that vZ = u(A;A,).
Proceeding as in the proof of Proposition 1.1 we get

exp(—3In(l —h?A)) < exp (h 5 (1 +3((w,) + (o)t + )))

B h*2; 1 (hw,) |
‘“e"p‘( P (H‘ﬁn (Fwﬂ)z))

h* 1 (w)?
< ¥t _—
P(g}gf{?‘ >y < exp( hy+ 3 S (1—%—21 o )2>)

where S, = [ A,]1* =trA] 4,.
Now put h=y/S, or h=(1-8)v, according as y < {(1—d)/v,)S, or
= ((1—8)/v,)S,. Then (A) is immediate. For (B) put & = (1 -5)/\/;5:,. In order
to obtain (C) note that

P(max|T| > y) < P(maxT; > y)+ P(max(=T) > y)
and that (A) remains true for P’(max(ﬂ?}] > y) instead of

P{maxT > ).

CoroLLARY 1.6. If (y,) is a sequence of positive reals with (y,v,/S,) =0, then,

given 6€(0, 1),
P(max|T} > y,) < 2exp(—y4/25,)

for sufficiently large n.
CoroLLarY 1.7. For all y>0

. {5y 5y
P(max|T| > y) < 26XP(“1’H (24 *12 S))

2. Some applications to the LIL. Maximal inequalities of exponential type
permit to derive results of bounded LIL -type. The proofs of such results are
standard, and therefore omitted (see [107], Chapter 10, for some foundations).

We consider sequences (X,) and (Y} of subgaussian r.vs and use the
notation of Section 1. Put

Xa{n) = (2B,)"*log3" B,
with log,x = loglogx, logx = max(1, Inx) for x > 0 and ae{1, 2}.

ProposITION 2.1. Assume that (A,) is a sequence of positive semidefinite

symmetric matrices and that B,— co. Then

— )
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Moreover, if

2.1 1, = o((B,/log, B,)*?)
and
22 t, = 0{(B,/log; B)'"?)
then
ﬁ% €1 as
xa2(n)

Remarks. 1. Condition (2.2) is satisfied for strictly subgaussian r.v.’s. In
this case, ¢, =0 for all n. It should be noted that (2.1) is very similar to
Kolmogorov’s LIL -condition [10].

2. Proposition 2.1 is a consequence of Remarks 3 and 4 in Section 1. In
fact, by Remark 3,

P(max 0F > dy, (m) < C(9)(logB,)~** ~?

for each 6€(0, 1), 4 >0, and by Remark 4, (2.1) and (2.2),
P (maK(Q."‘”EQ;} > d}gz(n)) < (logB,)~41-9
isn

for each 6€(0, 1), d > 0 and sufficiently large n.
3. In virtue of Remark 5, in the same way one gets

fim (22— 2l o5 4,
21(m)

and if, in addition, p(|V,4,V,)) = o((B,/log,B,)'"*), then
10, —EQ,|

Iim———== < w0 as.
%2}
4. The estimates of Proposition 2.1 are sharp. This is shown by the
examples
im ¥ (X7 —1)/(2%nlog,n)? = 1 as.
i=1

and

ﬂi(i X.P/(2nlog,n) =1 as.

i=1
for iid. N(O, 1) r.v)s.
Next we consider bf’s T,. Put
Uy (n) = (S)'7log,S,,  ¥a(n) = (25,)"*logh? S,
From Proposition 1.5, (B) and (C), and Corollary 1.6 we get the following
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PROPOSITION 2.2. Assume that S, co. Then

|7

lim <1 as.
'1’1(“)
Moreover, if
23) b, = 0((S,/log; S,)+?)
then
— |T]
Im-—— <1 as.
Ya(n)

Remarks. 5. The sharpness of the inequalities in Proposition 2.2 is shown
by such examples as

hm(i Xi)(i Y)/(nlog,n) =1 as.

and

n

lim Y, X,Y/(2nlog,n)** =1 as.
P=1
for iid. N(0, 1) rv's X, and ¥,.
6. As an immediate consequence of Proposition 2.2 it follows that
if X<l as. and |Y|<1 as for all i then o<1, «(¥)<! and
S, = [V, 4,C,I% < |14,]% Hence

—_ 17l
i g, 14,1

and if, in addition, (2.3) is satisfied, then

i Tl <
f I 4,1l Qlog, 1 4,1)"

=1 as.

1 as.

In particular, these relations are true for i.i.d. Rademacher r.v.’s X; and ¥,
(ie. P(X, = +1)=1/2), since o, =1 in this case.
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