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FOB WIGENER FROCES IN R2 

BY 

F. SjeLEillK I~VARIRSZAWA) 

Abstract. The bitting Cjme af a two - dimensiu~lal Wiener process 
is studied. A distribution of bitting time of the, posjtive semi - axis in 
the plane as well as its Laplace transform is Pound 

Xn the theory of st~chwtie proass= ane important question is the 
&st~bution of krittiag time of the Wiener prams of some given sets. In the case 
of the one - dimensional Wiener process it is easy to find the exit time of an 
intend [a, b) or the half fine (a,  GO) and hence we get immediately the exit time 
aP a cube in R" for the a = dimensional Wiener process. .Also it i s  easy to 
compute the Laplace transform far the exit time from. the: ball md annwIus 
in R". 

h E3I Sathh Lgengar bas found the .distaibutian of exit time from the 
wedge in the p1an-s. 

En [4] LaUey has computed the expectatinn of exit llme from D, where D is 
a simply cssa~cted set in Rd. 

The purpose of tEs paper is to obtain a distibution of llitting time aF 
the two -dimensional Wiener process of the positiare semi -axis {(x, y): 
w > 0, y -: 0). 

b t  us consider a stwsehizslie process ((X,, V;), P,@f; , ,  (P,BPb),,bj,Rr), 
where (Xt,  Ft ,  (PJaER) and 'E'; , C;, , (Pl,IbeR) are one - dimeazsisaal independent 
Wviener procmses. 

Let us define a sequeac9 of Markov momcnts: 



In the sequel we will assume far simpliety: 

X,, if n is even, z, - 
Y,, if n is odd, 

a 1. Random v~avidks  2, form a Mmkot) chain. 

P T O Q ~ .  Shee T, g T ~ + ~ ,  we have Wtn E H =,,%. 
Random vwiables Z ,  are measurable with respect to H,, so by the strong 

Markov property for Wimes process we have 

which camplates the proof 

The strong Markov proprty far Wiener proms8 implies that h e  Markov 
chain Z ,  is time -homogeneous. 

For khe; density of the tsansiticln function ia one step [ [ l l j  Chapter 6.2) we 
can wets: 

and for the density of the initial distribudon we write 

NOW we are going to compute the distributions af randm variabks T,. 
We Bate t:clt~lat ief random variables (A?, , . . . , X,) have continuous common 



densjty, then. we can define cenditiona1 probabilities (If 1, Chapter 32) to be of 
the form 

p(Xi2~r15 x i 2 ~ T 2 $  - - = ,  X f h E r k  1 X j z ~ j , j =  I 3  .*., fi,j # f tVfsk)* 

L B M ~  2. Ramiom variables (z, , T~ - rl,  . . . , 2, - +re - Z1, . , . , 2,) have 
conkinucftds: cemrnon density and 

P o , b ( ~ l  -c t,, ..., z,-r,-.l < b, I Z ,  .= x l ,  ..., Ztg = x,] 

r - l  

' Pa,b(q  < tf I 5 - xi) Pfo,zi)(r ta+r  1 X, ~ I + I ) ,  
i= l 

Pro of. We apply the inductjon principle. For n = 2 we have to prove that 

By the ~troag Markov property we get 

Note that, rmldarn. vadaMas (q ,  Y,3 have cc-~nenuous joint density1 there- 
fm, presenting the intar81 as the intepal with respect EO SY, - clistribution 
we get 

The internand function is ~ontfnmous at x, &us derivating with respect to 
x, we obtain 



Wc trotice that {z, XJ have eontimorrsjoint density with respect to P,,3,,S. 
TErus we haw 

mivating wirh respect to x2 we haw 

- Pn,b (q  < t l  I 5 " "1)PfoUx,,(r +c. <z I X+ " x ~ ) B ~ , ~ ( - Y ~ ) P { x ~  xJ. 

Hence we conclude that (r,, 2 ,  -z,, Z , ,  2,) have cs~ntiauous joint density 
and 

Assume now hat the lemma is true for n- I, which means that ra~idern 
variables [z, , ' E ~  - 'tl . . ;r,, - -r,- z, Z,, . . . , 2, - ,) have continuaus joint 
density and 

Now we prove the lcmrna for a, We kl~clw that 

Pa,b(21 < f l s  -"1 -%--I -T ,~-Z  

< 5, - 1  1 51. - a - z  x r t - ~ ) P ~ x ~ _ ~ , n , ( ~  -i fa, < xn) 

if n is even, 
....' - 

P)e,bl(rI < tlr rn-1 % R - 2  

< t,,-1 12,, z s z ,  Z,-I).ESI(O.Y ,,_,, IT -'=t,, X,-=x,) 

if n i s  odd, 

The symmetry Pcx,o)(q < htt < xEI)  = PfaeXj(r < f,? X, e: xJ implies that 



which implies that IT, ,  T, - z, , . . , , z, - T,- Z . . . , Zn) have ~ ~ n t i n u ~ u s  
joint density and that 

This completes the proof of Lemma 2. 

From Lemma 2 and by the strong Markov property we cancIude that 

. $A(@, b ,  4 = --6t,(e-" MI = 4, 4nlCx, Y )  = q o , , ) k - k r  I fX ,  =Y)? 

c-mizl = Elo,&@ 9. 
The caaditional density of r, under the condition Z ,  = x,, ,. ., Zn.-l 

= x I t - ~  i~ e;iV~n by 



where fonb,(o is the conditional density of g uoder the condition xt = x, g,,,(z) 
is the conditional density of r under the condition X, = y, and 

WE: are going to find the a n d y t i ~ d  forms of the functions q,, $,, Jand g. 
We know (C3]p Chapter 6.2) that P , , ( y l ~  [ 19 - t)  =: P,(I~;ES$, which implies 
that the joint density of (q, XJ is 

the density of Y;, is 
1 lot - -- 
TC n2++x-bf" 

and the density of q under the condition Y, = x is 

We will find the conditional. Kaplace transform 

We know g23, Section 7.2) that 

where 'K,(x) =: 5 e ""n'h'$it. 
Thus 

a a2 -1- (x - S)" 
E,,h(e-Xf I = xx) = R j eJ ""ep dt: 

0 Zt 



It is known. that 

Therefore 

Findly, we obtain the derrsiry of r,: 

+a + m  1 
(1) j ... j- Fa.,CtS- --- 

I # I . I x ~  I . .  - Ix,*- 21 - - -  dxlEf,X ,... dx,-  1 ,  
- C O  -bo %"I-' fa2+(x, -b)")Ax:+x$)...(x~-,+dc~-,> 

Now we study the bittixtg time of the semi -axis ([x, y): x B 0, y = 0). 
Let rn = rnilz(b: - 0, X, ;. 0). Let n 4 0. Then 



For n 3 1 we have 

P@,*(M > t r  ~ l r p  < t r  t )  

In this integral the variaREes x,,E(- m, O), x,,-, E(- a, -t- U X ~ )  
(k = 1 ,  , . . , rz3; a ~ d  all vanables which have even indices appear in the second 
power crr in modules, Thus 

LEMMA 3. RunttOm wetoss (Z,,, .eJ jbsm a Markou chain. 

Proof, We have 

We note that 
fl,= if 1% is even, 

Za+3 O,,,X, if n is odd. 

Agplyilrg the symmetl-y as in Lemma 2 we haare 

This coalpletcs the: prooE 

Frnm Idemma 3 we conclude that the characteristic Funetiori of the 
tras~sitiolr function is 

Consequently, the density sf the transition functirsn in one step of $ha: 
Markav ehain [Z,, T,) is 



2 implies that Ithe ral~dam vadab1m 

Thus 

4 m  1 
Paba(w > t)  = Fa,b(r2 3 t)+ I ( P e s ~ ( ~ z d  '1)-P,,(r2.+2 f)) 

n= 1 

The series which amears an the rdght side a d  the series of the derivatives 
of its kf"gl~ Canverge ungonnly (the densitks sf z,, are mlifarmly bounded), 



Therefore 
4-m 1 

En this way we have computed a distribution and its Laplace transbrm of 
h-ittiag: time of the positive $4 - axis under the conditian that itwe start from 
the. left semi - plane, 

Let a O now. Without loss of generality we. can assume that b 3 0. Let 
PIS note thEt 

It is e;sy to compute the fint of the comonenh appearing on the right 
side aS the above equality Because 2 and g are independent. Thus 

It is wastb to &serve that E , , ~ ( ~ - " X , , , ~ )  -: v(a, b) i s  a solution d 
a dBerentia1 equation boundd at + oo : 

Now we shall study the second component of eqmiion (21, We see that 



This means that the distribution of IT, q) is symmetric oa (z < g )  with 
respect to the first coordinate. Thus for y > 0 we haw 

Der iva t i~  the expression above with respect to y and t we get 

and for y G 0 awe have 

( 1  
Thus 

The function ii' 

is the joint de~lsity of' (v,  PJ, where denotes the Wiener proce~s with 
absorbing screen at the paint 0, By the independence of' q and we condude 
(see [I], Cfiapiss 6, Section 2) that the density of rf is 



Therefore 
fC1/27Ct2)t:-~zf2t.(e'-(~ -bj2I2r -, - t~+tr)~/2r) 

-- 
( a / ~ ) ( [ a ~ - t - I y - b ) ~ ] - '  - ta%f -~ -b - t .~ ] - l )  

is a condi~onal density af q under the condifion of x. Thus we have 

and, finally, 

The Lapface transform of distrlbation r;rs on the set {tq < z) is as fallows: 



Bn this way we have computed the distribution and its Laplace tt-a~asform 
of Ilittillg time of the pasitiye semi - axis far the two - dima~sional Wiener 
process. 111 other words, we have proved the lfolfowing 

TPIWEOREM. The distribution r j  hisriag [rime of the positinre semi-axis 
{(x. y): x == 0,  j9 = 0) is 

ttlhere qt, are randlorrl vmiables wJzich haw densities (1) und 

Ths Lnplace transfirm qf hirtirzg time of the Wener process a f the  positiue 
semi - axis is 
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