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BY
PETER SCHATTE (FREBERG)

Abstract. Let S, be the partial sums of iid.r.v’s with zero means
and varfance one and let a{x) be a real function. In this paper,
sufficient conditions are given under which a(5,/./n) converges almost

- I .

surely to | a(x)dP(x). Two variants of convergence are considered:
L )

limitation of a(S‘,,,l’\fH) by logarithmic means and limitation of

a(S,,/r/my) by arithmetic means, where n, = ¢, x> 0, ¢ > 1. Under

the same assumptions in the same sense, a( max S,ﬂ,(‘;‘f”iﬁ) CONVETges

1ZmEn

almost surely to 2 | a{x)d®(x).
0

1. Introduction and results. Let X,, X,, ... be a sequence of independent
and identically distributed random variables. Suppose that EX, = 0, EX% =1,

‘and let S, =X, +X,+...4+X,. Then S;,/\/—r; converges in distribution to the
standard normal distribution @(x). In what follows the almost sure convergen-

ce of S,,/\/ﬁ shall be considered. If the sums S, are reduced mod 1 to the
interval 0 < §, < 1, then under certain assumptions the relation

N 1
0 3 2 als)~fatdx (<o)

holds almost surely (see [5], [3], [7] add [97]). Unfortunately, because of the
normalizing factor 1/.\/15, an analogous statement fails for the customary sums
S,,/ﬁ (see [6], Theorem 1, and [8], Theorem 1). In order to overcome the
strong dependencies among the S,/./n, logarithmic means are applied.
THEOREM 1. Let a(x) be a real function which is a.e. continuous and for which
la(x)| < €™, y < 1/4. Then under the assumption E|X,|>*% < co, § > 0, we have

L2}

) 1 X1 - R
@ P {hm m";;ﬂisn/ﬁ) = ;fmﬂ(X)d@(x)} =1.

N-roo ©




238 P. Schatte

CoroLLARY 1. Let EIX,P"% < o0, 6> 0, and ¢ > 0. Then
¢ . 1 N’ —~1-g W 1 @ 1 ‘ |

N- a0 n=1

eg.
1 X /5)\
(3a) V P {;lﬂ logN nz:l ( n ) | }

Another way to remove the strong dependencies among the Sn/ﬁ
consists in the consideration of subsequences n, = ¢®, © >0, ¢ > 1.

THeOREM 2. Under the assumptions of Theorem 1 we have

. 1 X ; ‘ « :
@) P{ lim z Y a(Su//m) = | a(x)dcb(x)} = 1.
Ko ™M k=1 -
CoroLLARY 2. Under the assumptions of Corollary 1 we have
1 X 1 1\|
b) P<{lim = ¥ ngtls, |* :wzﬂr(gﬂu—)} = 1.
© {K"MoKk=1 Y~ S

Theorems 1 and 2 can be found in [6] and Theorem 1 in [13]-[15] for
bounded a(x) only, of course without the corollaries. The proofs given here are
straightforward and simpler than in [6]. The corollaries can be compared with
Strassen’s [12] result

N
6 P {iim supN~17¢(2loglogN)™® ¥ |S,1*
1

N+ n=

112

] ""22
:2(2g+2)g*1(2g)~ﬂ(} At Z) }m 1,

where ¢ > 1/2 (cf. also [11], p. 296).

For the special case a(x) = 1, (x), where 1._, (") is the indicator
function of the interval — o0 < x < u, the rate of convergence in (4) is estimated
in [8]. Note that

F () = ;E 1 oo, (Suun/ 1)

is the empirical distribution function of the weakly dependent random
variables S,,k/\/n;. Further assertions on 11‘-«m1u)($.u’g/;;)‘ can be found in [10].
In [6] an example is given that shows that Theorems 1 and 2 do not hold in
general if a(x) is only measurable.
Under the assumptions concerning X,, the sequence M,,/\/;z,
M,= max S,,
1EmEn

converges in distribution to 2®(x)—1. Also for this fact two almost sure
variants can be given.
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THEOREM 3. Under the assumptions of Theorem 1 we have

) {hm Jm z a(Mn/J ) =2 j a(x) ddi(x}} =1
N"*m nﬁl
and
(8) P{lim Ly a(M,,k/\/rg) 2§ a(x}ddi(x}} =1.
Ko Kk 1

2. Proof of Theorem 1. We shall repeatedly assume that the X, are
normally distributed. In this case we denote their partial sums X, +...+ X, by
W,. Then W,,/ﬁ is also normally distributed. The proof of Theorem 1 is -
performed in three steps.

2.1. Flrstly, we assume that a(x) = L ,,(x) is the indicator function of
the interval —o0 < x <. We estimate the quantities

Iin = E {1 s (Wy//D— Ba) (L= o Wi/ 1) — D)}

for j < n Then

W/ = (WY Difn+ (Wil /n =) /=),
where W, = X, +...+ X, is independent of W, and normally distributed.
Therefore

f e (T e ax- e
= el e ¥ dytdx—d*(u
J“ S
1 % _ , \/ﬁu ij N
=— [ e ﬂfg{@( ) @(u)}dx.
\/ﬂ-m N
Since /n/s/(n—j)—1 < /j//n—j, we obtain

) lginl € 5 ;zij ﬂ' (] + |x]) e=**2dx < €,

-

with a constant C,. Moreover, we have triwaﬂy lgml < 1, and it follows that

N
E{Z LI T @(u)}} <2y 3o

ml p=1 j=1 J”

Y, 1211 1 a1 &1

<2, 3 1y,

a=1 M j=1 J(“ J) w= 1M =2y J

If we apply the simple estimate

1 il dt

jn—j) < uﬁjwn el --t],
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we arrive at

R 1
—@ <C N,
Now we put N, = 2" Then, by using standard arguments, we conclude from
Chebyshev’s inequality and the Borel-Cantelli lemma that

1 N9

logN, zln - muJ(W/\//—) di'(u) 0 (k—w)

with probability one. On the other hand,

1 N
— ECE—=0 (k—co0)
log N, Nm%-ﬂ o (

for N, < N < Ny, and, consequently,

1 X1
NﬁmlugNnEl (1o, (Wy//m)— B(u)) = 0 as.

Thus the first step is completed if the X, are normally distributed. If not,
we approximate and obtain .

(10) S,— W, = g (w)n'/2+9),
where g,(w)— 0 as n— oo for almost all @ (see [2], Theorem 2.6.3, or [4]). But
then
1~ w,u)(S,.fﬁ} < 1{—m.u+m,.)(Wufw/;1}m
where
M = Sup (@) JTP*E+9 50 as n>oo.
ji=n
It follows that

1 M- 11 N
D oS/ < { S+ Y ~1~1.:m.u+w)(wxﬁ)}

iﬂgNn 1"’ B= ln n=M

< —{--lug, M)log N+ @(u+1,,)+e/2 < Pu)+e

for sufficiently large N and suitalile M = M(N). Correspondingly the left-hand
sum can be bounded below, and (2) is also established for X, with a general
distribution for our special a(x).

2.2. Secondly, we comsider a(x)=e"™, y<1/4. We remark that

Ea(W,/\/n) = 1/,/1=2y and consider
hy = E{(a(W)/D—1//1=29) (a(W,//m)— 1//1—27)}
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for j < n. Then

hjn = ,ﬁf T exp {px2+y(cn/n-+y /I —ynf — x*f2— y*/2} dxdy

—1/(1-2y)
=7 T exp 2( j+2xy f(n—f)%yzf)-—i
o, e n
1
X eXp ((y— 5) (x*+ yz)) dxdy,
(1) Iyl < C, |——
m 4 n__j’
since |e®—1] < |al(e”+ 1) and
(12) x2j+2xy\[in—j)—y* < x*n
Thus as in the first step we arrive at
L (exp(szfn)*l/ﬂ/I 2y) =—+0 (k— c0)
iﬂgNkr: 17

with probability one. On the other hand, by the law of the iterated logarithm,
we have
(13 exp(yW/n) < (logn)**1* as.
for sufficiently large n and, consequently,
1 Ni+1
log N, :&Zﬂ (exp(?W"/n —1/3/1=2y) = O(k* =)0,

Thus the second step is also completed if the X, are normally distributed. In
the general case we conclude from (10) and from the law of the iterated
logarithm that

XD (S3/m)—exp W/l < 2218, Wy max (5, exp (3l W, exps2/m)

< dyle (@) n~ 422+ _floglogn-logn = O(n™9,
where & > 0, Thus (2) is established again for the special a(x).

2.3. Finally, we let a(x) fulfil the assumptions of Theorem 1. We introduce
an auxiliary function a,(x) which vanishes for |x| > K and is in each of the
intervals ~ K+ 2iK/L< x < —~K+2(i+1)K/L,i=0, 1, ..., L—1, equal to the
supremuom of a(x)—e”™” in these intervals. We put a,(x) = a,(x)+e™ and
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choose first K and then L large enough such that

T a,()do(x) < f a(x) dP(x) +5/2.

This is possible since a(x) is continuous a.e. and, consequently, Riemann-
Stieltjes integrable with respect to ®(x). Obviously, a(x) < a,(x) for all real x.
On the other hand, a,(x) is a finite linear combination of the special functions
considered in the first and second steps, respectively. Therefore

~a(S,/\/n) < azis,./\/‘

logN,,_m m;"
< [ a,()ddx)+&2< | a(x)dd)+e

for almost all w and sufficiently large N. Replacing a(x) by — a(x) we obtain the
assertion of Theorem 1. &

3. Proof of Theorem 2. The proof of Theorem 2 is quite analogous to that
of Theorem 1.

3.1. We assume that a(x) = 1-, w(x) From (9) it follows that

E{Z (1= cou(Wa/n/m) — D)} < 2 z 2 |Gl

k=1 j=
K k-1 j“

<2, Y [ gept 2CHK.
k=1 j=

In the case of 0 <a <1 we apply the simple estimate

¢t <1 ke
c®—¢” " aloge k—j

and obtain

K 2
E{E‘E y (1,1.@,@](%%%-@@))} = O(K*1ogK).

We put K, = [kP], § = 8/(4y+3) > 2, and arrive at
1 K
7 2 (- wn(Ffy/m)— W) 0 (k=)
kk=1
with probability one. In the case of a > 1 we have
/ e 1

= S
c—ef T aloge(k—j)

and we can reason as in the case o = 1. Further



Central limit theorem

1 K 1 C
—_ K —=0 (k- o)
‘ K;,; j= xzk-r—l k
and, consequently,
1
lim — Z (1{ o u)(ij‘\,/-k) @(M) 0 as.
Ko Ki=y

The transition from W, to §,, can be performed as in the first step of the proof
of Theorem 1.

3.2. We assume that a(x) = ¢"". From (11) it follows that
1 K

X, la(%/\/“ n)=1/\/1=2y) =0 (ko)
-

with probability one. Further by (13) we have

1 Eies

- (a(w;,ﬂ/f )—1/4/1-2y) = O(P&+ 1141y 50

Kk i= Kk'i*!

and, consequently,

z (@(Wf/m n,‘) D)) =0 as,

K-—*kaE

The transition from W, to §,, can be performed as in the second step of the
proof of Theorem 1.

3.3. In the general case there are only minor differences to the third step of
.the proof of Theorem 1 which can be suppressed here.

4. Proof of Theorem 3. We put

Vn' = sup W(tjs

UESEY ]
where W(t) is a Wiener process.
4.1. We assume that a(x) = 1(- ,,4(x), u > 0, and estimate the quantities

35 = B{{L- o (/n/ D28+ 1) (L= o, (F/ /M)~ 20)+ 1)}

for j <n. Then
V, =max{V,, W(j)+V,,}, where V,,= sup {W(®)—W(j)}.

j€t1<n
Now the random vector (Vj\/j, W{ }')/wfj“) is distributed with the density
2 (2x—y)exp{—(2x—y*/2} f x>0, y<x,

plx, y) = 75;

0 otherwise
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(cf. [17, equality (11.11), p. 79). Hence (Vy/s/js W)/l Vialn/n—J) is distrib-
uted with the density

(Zx —y)exp{—{2x—y2—242} if x=0,y < x, z=0,
p(x, y, 2) =
0 otherwise.

But if Vj/\ﬁ =x, W( ﬁfJ} =, Viun/n—j =2z, then
V, = max {x\/j, y\,/}+z\/-i’;?j},

and therefore
« % (an—ypa—j
ghi=1 | ) p(x, y, 2)dx dy dz— (20 (w)— 1)

x=0 p=-wm z=0

PR &M)_ }
ZXLFJZM {@( ﬁ:} @ (u) ¢ p(x, y)dxdy,

|
(14 oH < Cs [
We obtain
1 Xt ,
m N 2l (L= (VW) —20@)+1) = 0 as.

Now we have

max sup {Wik+1)—W(k) < 2./logn

O%hk<sn 05151

for sufficiently large n (cf, e.g,, [2], Theorem 1.2.1); choose ay = 1. From this
and from (10) we find that

as M,~V, = g#(@)n*e+9
holds, where g#(w)—0 as n— o for almost all @. Thus we can finish as in 2.1.
4.2. We assume that a(x) = ¢’ and remark that Ea(V,,/\/;i} =1/ /1-2y.
We consider
= B {(a(V/ /D) —Us/T=29) (a(V//n)— 1/ /T—20)}

for j < n. Clearly,

{xj et = —)/ifm=p,
.\/F+z~/’n —-j fz>z
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Thus we get
= 5}53’ exp{ (P Y2+ 2yz/j(n—j)+ zz(n——.ﬂ)} p(x, y, z)dx
“*'i!{ exp{ '*’(n+ﬁ} (5 3> dr—1/1-2)
= 1 foxp (L0 4 252 =270 1 s, .

+ [If e (@i —e™) plx, y, 2)dr,

2\2

where dt = dxdydz. It follows that

. . j '
(16) Ehn.l 6.,/ ;,;:}

on account of |e’—1] < |a|(e’+1), (12), and

o X m

[ [ Jo*+29exp{y(32 +y*+2%)} plx, y, 2)dt < 0,

0 = O
where the last estimate holds since y* < (2x—y)? in the domain of integration.
If the law of the iterated logarithm for V, is applied, then we arrive at

lim z (Bxp(;VZ/n) —14/1-2y) =0 as.

NﬁmiDgNm IR

In the general case we must apply (15) and the law of the iterated logarithm for
the M,.

4.3. For general a(x) we can conclude as in 2.3. Thus (7) is proved. In order
to prove (8) we can proceed as in the proof of Theorem 2 (cf. Section 3).
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