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Abstract. Generalization of a conditioned functional central limit
theorem of Sznbarga and Szynal [6] is proved. It is shown that on
a natural condition for random index randomly selected partial sums
of independent, identically distributed random variables with zero
mean and finite variance, suitably scaled, normed and conditioned to
stay positive converge to the Brownian meander process.

1. Introduction. Let {£,, n > 1} be a sequence of independent, identically
distributed random variables with E¢, = 0 and E¢? = ¢?, 0 < 6% < c0. Put
Se=0and S,=¢,+...4+¢,, n= 1. For the random walk {S,, n> 0} let
T=inf{n > 0: S, < 0}, where the infimum of the empty set is taken to be + 0.
Since P{T > n} > 0 for each n, probabilities conditioned by this event are well
defined. Finally, let X, be the random element of the space D[0, 1] which is
endowed with the Skorokhod topology, defined by

X5 (0) = (Spy/on*? | T>n), 0<1<1,

where [x] is integer part of x.
Under the additional assumption

(1) E|,)P < o and &, is nonlattice or integer valued with span 1,

Iglehart [3} (Theorem 3.4) showed the weak convergence of the sequence
{X,},n>=1} to the Brownian meander process W™ defined by

W) = |W+p/p?, 0<i<],

where W is the Brownian process, © = sup{te[0, 1]: W(t) =0} and f = 1—1.
Bolthausen [2] (Theorem 3.2) demonstrated that the additional assumption (1)
is superfluous in the above-mentioned convergence.

The main result of this paper shows that the assumption (1) may also be
omitted in Theorem 4.8 of Iglehart [3] and in Theorem 3 of Szubarga and
Szynal [6]. The proof presented here is inspired by the method of random
change of time in Billingsley [1], Chapter 17, and it is simpler and more natural
than proofs already known.
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2. Main resuit. Let D0, co) be the space of real - valued right - continuous
functions on [0, cc) having left limits. This space is considered with Lindval’s
metric defined in [4]. We define the random element ¥, of the space D[0, co) by
setting

Y,(t) = Spyfon'?, 0<t < o0.
Let Y be a process defined as

_ W, 0<t<1,
re= ‘{W’*um We-1), 131,

where W* is a Brownian meander and W is an ordinary Brownian motion
independent of W™. By Donsker’s theorem and Bolthausen result (cf [2]) we
have ‘

(Y| T>n)=Y in DO, ),

where the symbol = means weak convergence. Now we formulate the main
result of this paper.

TueoreM 1. Let {N,,n =1} be a sequence of positive integer - valued
random varigbles, defined on the same probability space as the sequence
{éon= 1} If {a,, n>= 1} is a sequence of positive real numbers tending to
infinity, such that
(2) lim e} P{IN Jo,—o] 2 ¢} =0 for constant o >0,

R
then
(Yy,| T>N)=7Y in D[O, oo).

Let r,: D[0, 0)-+D[0, 1] be the restriction to [0, 1] defined for
xeD[0, oo) as r,(x)(t) = x(t), 0 < ¢ < L. This mapping is continuous for each
x€D[0, o) for which ¢ = 1 is a continuity point. Observe that r,(Y,) and r(Y)
are equal in distribution to X, and W, respectively. Thus from Theorem 5.1 in
[1] and our Theorem 1 we have a generalization of Theorem 3 from [6]
without the additional assumption (1). J

CorOLLARY 1. If the assumptions of Theorem 1 hold, then

(Xw | T>Ny=W" in D[0, 1].

3. Proof of Theorem 1. The proof of the main result requires two lemmas.
The first lemma is of technical character only. The second one is a conditioned
analogue of Theorem 17.1 in [1]

LEmMa 1. For the process Y and a sequence {a,;n = 1} of positive real
numbers tending to one, let

Z.(8)=al?¥(t/a) 0<t<oo.
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Then
Z,=Y in D[0, ). &
Proof. Denote by h,, n>1, mappings from D[0, co) into D[0, o)
defined as
‘ h(x) () = at?x(t/a,), 0<i< o0.
Let E be the set of points x such that &, (x,)— x fails to hold for some sequence
x, approaching x. Since for every x,— x with xe C[0, co) and for every r = 0
we have
im sup [h,(%) ()= x(t)] = 0
n=ro Q€IS
by P{YeC[0, o)} = 1 we get P{Ye E} = 0. Now using the relation Z, = h,(Y)
and Theorem 5.5 from [1] we get the assertion of the lemma. =

Let {v,, n = 1} be a sequence of positive integer - valued random variables
defined on the same probability space as the sequence {¥,, n > 1} and let
{A,, n > 1} be a sequence of events from this common probablhty space, with
positive probabilities.

LemMa 2. Let {0,, n = 1} be a sequence of positive real numbers tending to
infinity such that

(3) lim P{lv,/0,—01 = & 4g,} =0
e
Jor some constant 6 > 0. Furthermore, let
4 (Y,14,)=K.
Then /
(Y, | Ag) =K, where K(t) =0 12K(0f). =

Proof As in the proof of Theorem 17.1 in [1] we may assume without

restriction that 6,, n > 1, are integer and define the random change of time

di(z)ﬁai‘-, 0<t< oo,

From the equality

, lo,
Et —0t] = e|Aﬂn} P{O

n

9 Bﬁlﬁgn}

and from the assumption (3) we get the convergence
(Y., @) | 4s,) = (K, ®),

P{ sup
0=ty

L}




250 K. Topolski

where @(t) = 0t, 0 < t < oo. Therefore, from [1], Chapter 17, p. 144, we obtain
(5) (5,09, 14p)=Ko® as n—o0.

Now from the assumption (3) and from (5) we have

=8 l/jan}
1

r»S owt] — Szunz]
B [iESES3 \/ﬁﬁ'

mnP{Al Wﬁg ! r14%} 0,
e U8 VO

Sivnﬂ

which implies (¥, |4g)=0"Y2Ko® = K. This completes the proof. m

Notice that for the assertion of Lemma 2 it is not necessary for {£,, n > 1}
to "be the sequence of independent random variables. It suffices that the
assumption (4) holds for this sequence.

Using Lemma 2 with 4, = P{T > n} from Bolthausen’s result [2] and the
asymptoticity of P{T > n} (see (8)) we get

CorROLLARY 2. If the conditions of Theorem 1 with a =1 hold, then

(Xy,| T>n)=W* inD[0,1]. =

Ly 0a,0-¥,

NL o

lim P{ sup

nyon O=t=xp

= lim P{ sup

Zé Me,}

]l

sup |
0<t<r |0

+

Proof of Theorem 1. There is no loss of generality in assuming that a,
are integer and that o = 1, since this can be arranged by passing to new
constants o, if necessary. Applying Lemama 2 with 6, = o, and Ay, = {T> N,},
for the proof of our theorem it is enough to show that the following conditions
hold:

(6) | lim P{|N fo,—1]|>¢e| T>N,} =0
“and V
) : (Y%, | T>N,) =Y.

From (2) and from the asymptoticity

(8) lim n'?P{T>n}=c¢c, ¢>0

=t o0

(see [5]) we get

©® lim af2P{T> N} = ¢

A+

(see [6]). Hence the convergence (6) is a consequence of the assumption (2). By
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Theorem 2.1 in [1] the convergence in (7) is equivalent to the condition that for
all closed F of the space D[0, o)
(10) | limsup P{Y, €F | T> N,} < P{YeF}.

H=r oo

For fixed & O<e<1, set a,=[(1—8a] b,=[(1+ex] and A, = {k:
a, <k < b,}. From (6) and the inequality .

P{Y, eF, T>N,} = P{Y, €F, T> N,, N,e4,}
+P{Y, eF, T> N,, N,c A}
< P{Y, eF, T>a,}+P{N,ed;, T> N,}
we get k

. N o P{T>a,}
\ T> N} < limsup =t — 20)
hgts;lpP{I;ﬂEFi > N,} h?igpf’{?":} N

It follows from (8) and (9) that
. P{T>a} |1
ot e AR S
Applying Lemma 2 with v, = «,, 6, =a, and 4y, = {T>a,} we get
(Y| T>a,)=7Y?,

where Y4(z) = (1 —¢)*/? Y(t/(1 —e)) but from Lemma 1 we know that ¥*=Y as
e—+{. Thus

P{Y, €F|T>a,}.

limsup P{Y, e F| T> N,} < limsuplimsup./1/(1 mhér:}P{I‘;ner T>a,}

g s] g0 Bt o

< limsup P{Y*eF} < P{YeF}.
B dadt] .

This completes the proof of the theorem. m : )
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