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Abstract. In this paper we study set valued random processes in
discrete time and with values in a separable Banach space. We start
with set valued martingales and prove various convergence and
regularity results. Then we turn our attention to larger classes of set
valued processes, So we introduce and study set valued amarts and set
valved martingales in the limit. Finally, we prove a useful property of
the set valued conditional expectation.

1. Introduction. In this paper we expand the work initiated in [26]-{28]
where we studied properties of the set valued conditional expectation and
proved various convergence theorems for set valued martingales and martin-
gale-like processes, with values in a separable Banach space.

Set valued random variables (random sets) have been studied recently by
many authors. We refer to the interesting works of Alo et al. [1], Bagchi [5],
Costé [10], Hiai [15], Hiai and Umegaki [16] and Luu [20] for details,
Furthermore, it was illustrated by the recent works of deKorvin and Kleyle
(187 and the author [29] that the theory of set valued martingale-like processes
is the natural tool in the study of certain problems in the theory of infor-
mation systems (see [18]) and in mathematical economics (see [29]). Further
applications can be found in the works of Artstein and Hart [2] and Giné
et al. [13].

In this paper, starting from the notion of a set valued martingale, we then
proceed and define broader classes of set valued random processes (set valued
quasimartingales, set valued amarts and set valued martingales—in the limit)
for which we prove various convergence results. Briefly, the structure of this
paper is as follows. In the next section we establish our notation and recall
some basic definitions and facts from the theory of measurable multifunctions
(random sets} and set valued measures (multimeasures). In Section 3, we
concentrate on set valued martingales and prove various convergence and
regularity results for them. In Section 4, we study various real-valued
processes related to a set valued martingale. Sections 5 and 6 are devoted to
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extensions of the notion of a set valued martingale. So in Section 5 we
introduce and study set valued amarts, while in Section 6 we study set valued
martingales —in the limit. Finally, in Section 7 we prove an interesting property
of the set valued conditional expectation.

2. Preliminaries. Throughout this work, (@, Z, ) will be a complete
probability space and X a separable Banach space. Additional hypotheses will
be introduced as needed. We will be using the following notation:

P;o(X) = {4 = X: nonempty, closed (convex)},
Pe(X) = {4 = X: nonempty, (w-)compact (convex)}.
Also, if 4e29\{@}, by |4] we will denote the “norm” of 4, ie.,
|4] = sup{||x|: xe4},
by o(-, A) the “support function” of 4, ie,
o(x*, A) = sup{(x*, x): xed}, x*eX*,
and by d(-, A) the “distance function” from 4, ie.,
d(z, A) = inf{||z—x|: xeA}.

A multifunction F: Q- P (X) is said to be measurable if one of the
following equivalent conditions holds:

(a) for every zeX, w—d(z, F(w)) is measurable;

(b) there exist measurable functions f,: 2- X such that F(w) = d{f,(@)}nz1,
weE L

(¢) GrF = {(o, x)eQx X: xeF(w)}eZ xB(X), B(X) being the Borel
g-field of X (graph measurability).

More details on the measurability of multifunctions can be found in the
survey paper of Wagner [35].

By S} we will denote the set of integrable selectors of F(-). So we have

Sk ={f()el'(X): f(@)eF(w) p-ae}.
Having S% we can define a set valued integral for F(-) by setting

£F={£f:fes%z}-’

Note that S} (and so [ F too) may be empty. It is easy to show that S} is

o
nonempty if and only if inf{|x||: xe F(w)}eL',. We will say that a multifunc-
tion F(-) is integrably bounded if and only if @ —|F(w)| is an L% - function. In
this case then Sk # @.

Let 2, < Z be a sub-o-field of ¥ and let F: Q- P (X) be a measurable
multifunction such that S} # @. Following Hiai and Umegaki [16], we define
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the set valued conditional expectation of F(-) with respect to X, to be the
Z,-measurable multifunction E*F: Q— P.(X) for which we have

Skeop = cl{E*f: feS}} (the closure in the L'(X)-norm),

If F(-) is integrably bounded (resp. convex valued), then so is E* F(-). Note that
in [16] the definition was given for integrably bounded F(-). However, it is
clear that it can be extended to the more general class of multifunctions F(-)
used here,

Let {Z },>; be an increasing sequence of sub-¢-fields of £ such that

o(lJ Z,)=2.
=%
Let F,: Q- P (X), n > 1, be measurable multifunctions adapted to {Z,},,.
We say that {F,, £ },>, is a set valued martingale (resp. supermartingale,
submartingale) if for every n > 1 we have

E*F,y1(0) = Fo() p-ae.
(resp, E*"F, (o) € F (w) p-ae., E*F,, (0) 2 F,(0) p-ae).
On P (X) we can define a (generalized) metric; known as the Hausdorff
metric, by setting
h(A, B) = max{sup(d(a, B): acA), sup(d(b, A): be B)}.

Recall that (P ,(X), h) is a complete metric space. Similarly, on the space of
all P (X)-valued, integrably bounded multifunctions, we can define a metric
A(-, ) by setting

A(F, G) = !{‘h(F (0), G(w))dp(w).

As usual we identify F,(-) and F,(*) if F,(w) = F,(@) p-a.e. Again, the
space of P (X} - valued, integrably bounded multifunctions together with 4(, -)
is a complete metric space.

Next, let us recall a few basic definitions and facts from the theory of set
valued measures. A set valued measure (multimeasure) is a map M: X —2%\{0}
such that M(J) = {0} and for {4,},>, & Z pairwise disjoint we have

M(U 4) =Y. M(4,).

nzl nzl

Depending on the way we interpret this last sum, we get different notions of
multimeasures. So we say that M(-) is a normal multimeasure if

h{M(A), i M(A4))—0 as n—oo,
k=1
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where h(:, *) denotes the Hausdorff metric on P (X). Also we say that M(-) is
a weak multimeasure if, for all x* e X*, A—a(x*, M(A)) is a signed measure.
However, when M (') is P,,.(X)-valued, then all of them are equivalent. This
result is the set valued version of the Orlicz-Pettis theorem (see [14]). Since we
will be dealing only with P, (X)-valued multimeasures, we can say that M ()
is a set valued measure if, for all x*e X*, A—o(x*, M(4)) is a signed measure.
We will close this section by recalling the notions of convergence of sets
that we will be using in the sequel. So il {A,, 4},>1 = 2*\{D}, we set

s-lim4, = {xeX: x,>x, x,€4,,n>1},

w-lim A4, ={xeX: x, o x, x,€4,, k21}.

We say that the A,’s converge to A in the Kuratowski-Mosco sense,
denoted by

4,5 4,
if w—“limgfi,,-—-«- A=s5-limA,. When X is finite dimensional, the weak and
strong topologies coincide and then the Kuratowski-Mosco convergence of
sets is the well-known Kuratowski convergence denoted by 4,%+ 4 (see
Kuratowski [19] and Mosco [22]). We say that 4,2 4 if h(4,, A) 0. Finally,
A, A f for all x*eX*, a(x*, 4)—a(x¥, 4).

3. Set valued martingales. We start with a regularity result for set valued
martingales. Our result generalizes Theorem 6.5 of Hiai and Umegaki [16],
since we drop the separability hypothesis on X*.

In the sequel {Z,},»; will be an increasing sequence of complete
sub-o-fields of X such that

z=0(l) Z,)
nz1
Recall that X is always a separable Banach space.

A sequence {f,},>1 € L'(X) such that {f,, Z,},>, is a martingale and, for
each n= 1, f,(-) is a selector of F, ("), where {F,(*)},>; is a sequence of
P ;o(X)- valued, integrably bounded multifunctions, is said to be a martingale
selector of {F,(‘}},»1 and is denoted by {f,»eMS(F,).

THEOREM 3.1. If X has the RN.P. and F,: Q— P, (X) are X, - measurable
multifunctions such that

(1) {F,, Z,}u51 is a set valued martmgale,

(2) {IFJ}nz1 is uniformly integrable,
then there exists F: Q- P, (X) integrably bounded and such that

E*F(w) = F (@) p-ae, nzl.
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Proof Let M < L}(X) be defined by M = {fe }(X): E*feS; ,n=>1}.
As in the proof of Theorem 6.5 of [16], we can show that M is a closed, convex,
bounded and decomposable subset of L'(X) (to get these properties no
separability of X* is needed). Then combining Theorems 3.1, 3.2 and Corollary
1.6 of [16], we get F: Q- P,(X) integrably bounded and such that M = S}.
Qur claim is that this is the desired F(-).

From Luu [20] we know that

SkZ) =cl{fi: {feMS(F)), k=1
Let feSt. Then

(E®f> e MS(F,) = E* St = Skeup < Sb..
On the other hand, given {f,> e MS(F,), since X has the R.N.P,, there exists
fe LX) such that

' E¥f=f = fe M =8k < Shouy.
Therefore we conciw:le that
St = Skonp = F (@) = E**F(w) p-ae qed.
We can relax the R.IN.P. assumption on X by imposing additional

hypotheses on the random sets F,(*), n = 1.

THEOREM 3.2. If F : Q— P, (X) are X, - measurable multifunctions such that

(1) {F,, Z,}.21 is a set valued martingale,

(2) F(w) = Glw) p-ae with G: Q- P, (X) integrably bounded,
then there exists a wmeasurable multifunction F: Q- P, (X) such that
F{w) < G(w) p-ae. and E*F(w) = F (0) p-ae, n= 1.

Proof. Let M € LY{X) be as in the proof of Theorem 3.1. We saw that
M = S with F: Q— P, (X) integrably bounded. Also for all fe S}, from the
definition of M we have E*f(w)eF,(w) < G(w) u-ae. From Proposition
V-2-6 of Neveu [24] we know that

E*xf(w)5s f(w) p-ae = f(w)eG(w) p-ae = Flo) € Glw) u-ae.
As in the proof of Theorem 3.1, through Luu’s representation result [20],
we get
Si:’?;up = S%'“.

On the other hand, given {g,},5; € MS(F,), from Proposition 4.4 of Chatterji
[9] we know that g,(w)* g(w) p-ae., gel!(X) Note that g, = E™g (see
Metivier [21], p. 62). So since

Sl%u(‘zk) = C].{f;{. (f;r> EMS(FW)}
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(see Luu [20]), we have
Sk, S Skonp=> Sk, = Shsup = F (0) = E*F(w) p-ae. qed.
Having those regularity results, we can now prove a convergence theorem
for set valued martingales.

THEOREM 3.3. If X has the R.N.P., X* is separable and F,: Q- P, (X) are
Z, - measurable multifunctions such that

(1) {F,, Z,}uz1 is a set valued martingale,

@) IF(@) < $(@) p-ae, $()eLl,
then F ()XY Flw) p-ae.

Proof From Theorem 3.1 we know that there exists F: Q- P (X)
Z -measurable and integrably bounded by ¢(-) and such that E**F{w) = F,(w)
u-ae. Then for fe S} we have E* feS},, n = 1. From Proposition V-2-6 of

Neveu [24] we have E* f(w)%s f(w) p-ae. Hence we get
(1) Flw) & s-lim F,(w) p-ae.
On the other hand, from Proposition 1.4 of Luu [20] we know that there

exists {f*>eMS(F,), k=1, such that for all n2 1, F (w)=cl{ff{o}s=:-
Then, given‘x*eX*, we have

o(x%, F,()) = sup (x*, f4(@)

k=1
But note that {(x* f¥()), £,},>: is an R-valued martingale and

sup | sup (x*, f¥())" du(w) < |x*| sup [|F,| < co.

nzlQkz1 nzif

Also from Corollary 11.8 of Metivier [21] we know that thére exist f*e L}(X)
such that

E*nft = fk= fheSt.
Apply Lemma V-2-9 of Neveu [24] to get

sup (x*, f¥(w))»sup (x*, fH(®), we\N(x*), y(N(x*)=0 as n—co0,

k21 k=1
which implies
lim o(x*, F,(0) < o(x*, F(@), oeQ\Nx*, p(N(x*)=0.
Given that X* is separable and |F, ()| < ¢(w) p-ae for all n>1,
a simple density argument gives us

lim o (x*, F,(0) € o(x*, F(w)) p-ae.




Set valued random processes 259

From Proposition 4.1 of [31] we deduce that
#) w-lim F,(w) < F(o) p-ae.

Combining (1) and (2) above, we conclude that

F (@)X M F(w) p-ae, qed

We can have the same convergence reguﬁ, but with the hypotheses of
Theorem 3.2,

TureOREM 3.4. If the hypotheses of Theorem 3.2 hold, then there exists
F: Q- P (X) integrably bounded and such that

F(w) = G(w) p-ae. and F,(0)E F(w) u-ae.

Proof. The proof is the same as that of Theorem 3.3, using this time
Theorem 3.2. Also instead of Corollary 11.8 of Metivier [21] (which requires
X to have the R.N.P.}, we use Proposition 4.4 of Chatterji [9] and Corollary 2,
p. 126, of Diestel and Uhl [12]. Finally, note that there exists {x*},>; < X*
which is dense in X* for the Mackey topology m(X*, X) and recall that the
support function of weakly compact, convex set is m(X*, X) - continuous, ¢.e.d.

Remark. Under stronger hypotheses, Daures [117 and Neveu [25]
- proved convergence in the metric A4(:, -).

If X is finite dimensional, then we have the following convergence result:
CoroLLARY L If the hypotheses of Theorem 3.3 hold, then there exists
F: Q- P (X) integrably bounded and such that
F ()% F(w) u-ae.
Proof. The corollary follows from Theorem 3.3 above and Corollary 3A
of Salinetti and Wets [33], ged.

Remark. A more general finite - dimensional convergence result can be
found in van Cutsem [34]. The result of van Cutsem was extended to set
valued quasimartingales by the author in [28] (Theorem 2.3).

Another consequence of the convergence theorems is the following result:

Cororrary IL If the hypotheses of Theorem 3.2 hold, then there exists
F: Q- P (X) measurable and such that

F(w) < G(w) p-ae. and Sh XM, 8L

Proof. The corollary follows from Theorem 3.4 aﬁbve and Theorem 4.4 of
[31], qed.

4. Related R-valued processes. In this section we examine certain R-valued
processes associated with a set valued martingale.
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THEOREM 4.1. Ij F,: Q- P.(X) are Z,-measurable multifunctions such
that

(1) {F,, Z,}az1 is a set valued martingale,

(2) sup“[F l]; < oo,

then there emsn o(-)e L', such that |F (o) — dlw) p-ae.

Proof From Proposition 1.4 of Luu [20] we know that there exisis
{fFyeMS(F,), k = 1, such that F (o) = c{/¥{w)}i>: p-ae Then we have

[F ()] = sup [| (@)l p-ae.

kz1

Note that, for all k = 1, E¥ || f%, ()| = |E* ff (@) = || ff(@)] u-ae. Sowe
see that, for every k= 1, {| f¥(). Z,}uzy is a submarmgale and

sup | sup || @) du(w) = sup [ |F (@) du(w) < oo.
n210Rk21 rzl1 0
So we can apply Lemma V-2-9 of Neveu [24] and we infer that there exists
¢(-)e L', such that
sup || fi¥@)| = iFﬂ(wﬂ—wb(w) p-ae, ged.
k=1
Another R-valued, martingale-like process associated to {F,(*) },T;.1 is
that of the distance functions. Namely, we have

Turorem 4.2 If F,: Q— P{(X) are X, - measurable multifunctions such that
(1) {F,, Z,}uz1 is a set valued martinagle,

(2) sup|||F,l|l;, < oo,
nel
then, given any ze X, {d(z, F (")), Z,}n>1 is a submartingale which converges a.c.

to a function Y(-)e L.

Proof Let geSk Note that E* 1jz—g(w)| = [z—E™ 'g(w)] u-ae.
From the definition of the set valued conditional expectation we see that
E-tgeSgra-1, . So we can write that

Bt Jz—g(@)] > d{z, B Fofw)) p-ace.

Hence for all AeZ,., we have

A

[ E=tllz—g(@)] dp@) = [ |z—g(@) dp(@) 2 [d(z, EF, (@) du(w)
= inf {[ |z—g(@)| du(w): geSt,} > [d(z, B F,(0))dp(w)

= [ iof |z—x|dp(w)= [d(z, F,(w)du(w) j'd(z, E™ -t F (@) dp(w)

A xeF o) A
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§ Pt h(F (o), G,())du(w)

A

> [ sup |o(x* E*'F,(w)—o(x* E* G, () du(w)
4ll=*=t

= j‘h(EanlFﬂ(w)la ES""‘G,,(Q))) dﬁ{w) = jh(F,,-l((!)). anl(m))dﬁ(m}s
4 } 4
which implies
E* - h(F (@), G,(@)) 2 h(Fy- (@), G,-1(w)) p-ae.,
and this proves that {k(F,("), G,(*)), Z,},>1 is a submartingale.

Since
sup | h(F (), G,(@))dp(w) < sup [ |F, (o) + s‘g@i g;lﬁn (@)} < 0
nz16 , B2l 2 n

from Doob’s theorem we see that there exists #(-)el', such that
h(F,(w), G (m))»«a-n(m) p-ae., qed.

Remark. Note that if for all n > 1 and all we®, G,(w)= {0}, then
h(F,(®), G,(w)) = |F,(®)l, and so Theorem 4.3 produces Theorem 4.1 as
a special case, with the additional hypothesis that X* is separabie.

5. Set valued amarts. In this section, we turn our attention to a larger class
of set valued processes, namely we examine set valued amarts.

Following Bagchi [5] and in the single valued case Bellow [6], we say that
a sequence of multifunctions F,: Q@ — P (X) adapted to {E, },», is a set valued
amart if there exists K &Py (X) such that

limh(f F,, K) =0,

wl 2
where T is the set of bounded stopping times. Note that T with the usual
pointwise ordaring < is a directed set filtering to the right. Clearly, a set valued
martingale is a set valued amart,

We start with a convergence theorem ﬂlat partially extends Theorem 2.2
of Bagchi [5]. In that theorem, Bagchi considered a broader class of set valued
processes, which he called w* - amarts, which however take values in a separ-
able, dual Banach space. Here we restrict ourselves to the smaller class of set
valued amarts, but we drop the requirement that they take their values in
a dual Banach space.

TueoreM 5.1. If both X and X* are separable, X has the R.N.P. and
F,: Q=P (X) are Z,-measurable multifunctions such that

(1) {F,, Z,}un1 is a set valued amart with A-limit K€ P ;. (X),

(2) sup [|F] < oo (i.e. {F,, Z,}nz1 is of class B),

- el 2
then there exists F: Q— P (X) integrably bounded such that F,{w)= F(w) for
all we\N, p(N)=0.
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Proof. We claim that for fixed k > 1 and all A€ X, the h-limit h-lim | F,
’ wT A
exists in P(X). So let & > 0 be given. Then there exists 6, € T, 6, > k, such that
if o, 1€ T(og) = {0'eT: 0y < o'}, then

h|F, [F)<e.

Let o, te T(o,) and define 4, © as follows: Let n; > max(o, 7) and set 6 = g,
f=1 on A4, while 6 =% =n, on 4% It is easy to see that ¢, e T and

W[ F,, [F)=h(]F;, [F)<e.

A A

So lim | F, exists in (P(X), h) and the convergence is uniform in A e X;. Since
el 4

k > 1 was arbitrary, we deduce that the above k- limit exists for all A€ | ] Z,.
Recall that k>1
Z=0o(lJ 2
k=1

ie., Z is generated by | Z,. So given A€ X, there exists A'e | ] Z, such that
kel k21
u(AAA") < e Then
h{F. [F)<efu,

A A' Q2
where as in Chacon and Sucheston [8], p. 57, we may assume, without any loss
of generality, that

sup |F () < u(w) p-ae, u(-)ell.

nzl

Then, using the triangle inequality, it is easy to check that h-lim | F_ exists for
all AeZ. Set (see [26]) wT 4

M(A4)= [F,ePu(X) and M(A)=h-lim|F,.
A weT A

Then o(x* M (A))—o(x* M(4)) uniformly on the unit ball B* in X*
But x*—o(x* M/(4)) is a signed measure. So by Nikodym’s theorem
A - a(x* M(A))is also signed measure. Also, by hypothesis (2), M(£2)€ P, (X),
while we saw that M(4)eP.(X) for all AeZ. Since

M(Q) = M(A)+ M(Q\A),
we deduce that M(A4)e P, (X) for all Ae 2. Hence M()is a set valued measure
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with values in P, (X). Apply Theorem 2 of Costé [10] to get F: Q- P, (X)
integrably bounded and such that M(4) = | F for all AeZ. Now note that, for
A

fixed x*e X*, the process {o(x*, F,(*)), Z,}u>1 is an L' -bounded, real amart.
From Theorem 2 of Austin et al. [4] and since

o(x*, M,(A) ~alx*, M(4)) = | o(x*, F(w))du(w),
A
we see that cr(x’*, F ,,{w))u—)a(x*, F (m)) for all we Q\N(x*), u(N (x*)) = (. Let
{xk}mz1 be dense in X* and set

N=|J NG,

m=21

for which clearly we have u(N)=0. Given x*eX* we can find {x}};>,
< {x¥},>; such that x> x*. Then for all we2\N we have

o(xf, F(@)—~o(xf, F(w) as n—a.
Also from the continuity of ¢(-, F(w)) we have
a(xf, F(w)—»a(x*, F(w) as k—oo.
Through a diagoﬁalizatiﬂn process we get
o (XE Folw))—o(x*, F(w)) as n—oco.
Then for we\N and for any x*eX* we have
lo(x*, F,(@))—o(x*, F))| < [o(x*, F,(@)—0o(xfm, F.()
+ o (5, Fol@))—o(xin, Fl@)|+|o(xks, Fl@)—o(x*, Fw).
Note that the second and the third terms of the sum in the right - hand side
of the inequality above tend to zero. Also
lo(x*, F,(@))—o(xEum, Fo)] < IF (@) |x* x| >0 as n—-c0.
Thus finally we have
o(x*, F,()—o(x* F@) asn—-o
for all we@\N, u(N)=0 and all x*eX* Therefore we conclude that
F (w)™ F(w) p-ae. :
As before, in the finite-dimensional case, we can say more.
CoroLLARY. If dim X < oo and the hypotheses of Theorem 5.1 hold, then
there exists F: Q- P,.(X) integrably bounded and such that F,(w)%> F(w) p-ae.
Proof. From Theorem 5.1 we know that there exists F: Q— P, (X)

integrably bounded and such that for all x*e X* and all we @Q\N, u(N) =0 we
have o(x*, F,(w))— o(x*, F(w)). Then Corollary 2C of Salinetti and Wets [32]
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and Theorem 3.1 of Mosco [22] tell us that F,(w) %> F(w) p-a.e. But since F is
compact and convex valued, we conclude that F (w) 5 Flw) p-ae.

6. Set valued martingales—in the limit. In this section, we examine another
large class of set valued stochastic processes that includes set valued martin-
gales and is analogous to the family of single valued processes studied by Blake
[7] and Mucci [23]. The results in this section generalize those of Daures [11],
Hiai and Umegaki [16], Hiai [15], Neveu [25] and van Cutsem [34].

Let F,: Q- P (X) be measurable multifunctions adapted to {Z,},>,. We
will say that {F,. Z.}nz1 is a set valued martingale —in the limit (abbreviated as
sv-mil) if for every £ > 0 we have

ploeQ: h(E™F (w), F (@) >e -0 asazm—oc0.

Clearly, every set valued martingale or, more generally, every set valued -
quasimartingale (see [287]) is an sv-mil.

We start with a “Riesz decomposition™ type theorem for such set valued
processes.

TueoreMm 6.1. If F: Q= P;(X) are X, -measurable multifunctions such
that

(1) {F,, Z,}u>1 is an sv-mil,

(2) {IF.}a>1 is uniformly integrable,
then there exists a unique set valued martingale {G,, X, },>; with values in P;.(X)
such that A(F,, G,)—-0.

Proof. Note that for n > m we have

WE®"F,, F,) = h(E*F_, E*F,).
But from the proof of Theorem 4.3 we know that
h(E*=F,, E*F ) < E*h(F,, F,) p-ae.

and

[ E*h(F,, F,) = [ W(F,, F,) < [(F,|+|F,).
2 n n

Therefore from hypothesis (2) we deduce that {h(E™F,, F )},5n is
uniformly integrable. Also, since by hypothesis (1) we have h(E*F,, F,)£+0 as
n 2 m-+ oo, from the dominated convergence theorem (see Ash [3], p. 295) we
get A(E*F,, F,)—0 as n>m— .

Now fix m = 1 and consider the sequence {E*F,},m. From the triangle
inequality for the metric 4(-, ) we have for n, k > m:

A(E*nF,, E*"F,) < A(E*F,, F,)+ A(F,, E*F)),

which implies that {E*F },., is a Cauchy sequence for the metric A(:, *).




266 N. S. Papageorgiou

Thus, Theorem 3.3 of Hiai and Umegaki [16] tells us that there exists an
integrably bounded multifunction G,,: @— P (X) such that E*F,%+G,, as
n-+ oo, We claim that {G,,, Z,,}.>, is 2 set valued martingale. So let n > m. We
have

AE*G,, G,) € A(E*G,, E*E*F 1)+ A(E*E*F ., G,)
< MG, E¥F, )+ 4(E*"F,h, G)—0 as k-0,
which implies that E*~G,(w) = G,,(w) p-ae. and, consequently, {G,,, Z,}ms1
is a set valued martingale.
Finally fote that for n > m we have '
A(F,,, G,) < A(F,,, E*F )+ A(E*"F,, G,)=0 as n=m- o,

Now for the uniqueness of {G,, Z,},>; suppose that there was another
such set valued martingale {G,, X}, for which we had A(F,, G;)—0 as
n-—+co. Then from Hiai and Umegaki [16] we have

A(‘Gm G;i) = A(EE"G!!*Pka EE"G;:-H&)‘ < A{Gn+k= G;+k)
‘<5 A{G:z‘+ka Fn-!-lx)%‘A(Fn%ki G;—A)_}O as k-» 0a,
which implies- that A(G
This leads us to the following regularity result for sv-mils:

THEOREM 6.2. If X has the R.N.P. and the hypotheses of Theorem 6.1 hold,
then there exists an integrably bounded multifunction F: Q— P (X) such that
A(F,, E*F)—0 as n— 0.

Proof. Apply Theorem 6.1 to get X, -measurable multifunctions
G, Q-Pp(X) such that {G, Z,},>; is a set valued martingale and
4A(F,, G,)—0 as n—o0. Note that
G| = h(G,, 0) < h(G,, F))+h(F,, 0) = h(G,, F)+|F,|

and, consequently, {|G,|},>, is uniformly integrable. Use Theorem 3.1 to see
that F: Q- P(X) is integrably bounded and such that E*F = G, p-ae.
Then A(F,, E*F) = A(F,, G,)—0 as n— o0, g.e.d.

Again, if X is finite dimensional, we can say more.

COROLLARY. If dim X < oo and the hypotheses of Theorem 6.1 hold, then
there exists F: - P (X) integrably bounded and such that A(F,, F)—0.

Proof Use Theorem 6.2 to get F: Q— P, (X) integrably bounded and
such that A(F,, E**F)—0. Then note that

A(F,, F) < A(F,, E>F)+ A(E*F, F)»0 as n— o, ged.

7. Set valued conditional expectation. In this section we present an
interesting observation concerning set valued conditional expectations. Namely,

G,) =0, and so G,(w) = G,(w) u-ae., qed.

nr
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we show that the set valued conditional expectation of a P, (X)-valued,
integrably bounded multifunction is still a P, (X)-valued multifunction (i.e.
we have preservation of the weak compactness of the values).

Treorem 7.1. If X and X* are separable, £, = Z is a sub-o-field of Z,

F: Q- Py (X) is integrably bounded and every vector measure m: Z,— X such

that m(A)e M(A) = | F(w)du(w) has a Pettis integrable density, then E* F(w)
4

eP (X)) p-ae.
Proof Let

M(4) = J{F(m)dﬁ{m) = {if(m)du(w): feSt), AeZ,. |

Note that for every x*eX* we have (see [30])
o(x*, M(4)) = | o(x*, F(o))du(w),
; 4
which implies that 4 —o{x* M(A)) is a signed measure on X, for every
x* E‘X*. .
From the Corollary to Proposition 3.1 in [26] we know that, for all

AeZ,, M(A)e Py (X). So M(*)is a set valued measure on Z,. Apply Theorem
3 of Costé [10] and get G: - P, (X) integrably bounded and such that

M(4) = | G(w)dp(w).
A

From Theorem 5.4(i) of Hiai and Umegaki [16] we have
cl{E*F=[F={G
A 4 A
and, consequently,
{o(x*, E*F) = [o(x* G),
A A - .
which implies o(x*, E**F(w)) = o(x*, G(w)) for all we Q\N(x*), x(N{x*) = 0.
Let {x}h}m>1 & X* be dense in X* and set

N={J NxH.

mE1
Then p(N) = 0. For every x*eX* and every weQ\N, we have
{xF iz & {(XE}mz 1 2 x*
and

|lo(x*, E*F(w))—o(x*, G(o))] < |o(x*, E*F(w))—o(x§, E*F())
+|o(x¥, E*F(w)—o(xf, Glw))|+|o(xF, G(w)—o(x*, Glw).
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Note that since weQ\N, we obtain o(xf¥, E*F(w)) = o(x¥, G(w)) for all
k > 1. Also since o(*, E**F(w)) and o(-, G(w)) are both strongly continuous, we
have
o{x¥, E®F(w))— a(x*, EFF (o))
and «
o(x¥, G(@)—o(x*, G(w) as k—co.
Therefore for all x*eX* and all e Q\N we have
o(x*, E*F(w)) = o(x*, G(w));
hence
E*F(w) = G(w) u-ae.
and, consequently,
E*F(w)eP . (X) p-ae., ged.
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