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ON THE DISTRIBUTION OF A USEFUL MAXIMAL INVARIANT 

ADAM CMIEL M D  ZBIGNEW SZKUTNIK (KRAKOW) 

Ahstroct. The Wijsman theorem and a characterization of a quo- 
hent measure by invariance, due to Andersson, are used to describe 
exact distributions of some maximal invariants especially useful in the 
context of testing multivariate normality. Some possible applications 
are indicated. ' 

1. Introduction. Let X be a (p, n)-matrix. In some statistical testing 
problems (cf, [8]) it is of interest to study the group G* of transformations 
acting on Rm according to gX = CX i- bl;, C E UT(p) being the group of upper 
triangular Ip, p)-matrices with positive diagonal, b E RP, 1: = ( I ,  . . , 1) E Rn. 
Since, under mild restrictions, each invariant test has a factorization through 
the so-called maximal invariant (see [6]) ,  the construction of maximal 
invariants and the derivation of their distributions are important in the context 
of invariant testing problems. Moreov~r, most powerful invariant tests are 
maximin in the cases where the Hunt-Stein theorem is applicable. This is the 
case of G*: For applications see [9 ] .  

In this paper, we construct some maximal invariants under G*, derive 
their distributions and indicate some practical applications. 

2. A maximal invariant and its distribution. Let M ,  = XA(XA)=,  where 
A is an (a, PI - 1)-matrix given by 

If X is a random matrix with a probability distribution absolutely 
continuous with respect to the Lebesgue measure on RPn, n > p, then M ,  is a.s. 
nonsingular (see [2]). Thus the matrix L, E UT(9) satisfying M ,  = L,L; is as .  
uniquely determined. Let B, = L i l X A .  

~ O P O S I ~ O N  1. B, is a maximal invariant under G*. 
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P r o  of. A maximal invariant under G* can be constructed in two steps. 
First, note that XA is a maximal invariant under translations and that the 
action of UT(p) on X induces an action of UTlp) on XA. Hence it suffices to 
show that a maximal invariant under the action Y 4 CY of UT(p) on RP'"~", 

T p , n  - 1) E W ~ ( ~ ~ ) ,  CfUT(p), is By = L i l y ,  where L,EUT(~)  and YYT = L,LT. 
This follows easily from the following consideration. Take Z = CY, C EUTC~). 
Then 

ZZT = C Y YT CT = CL, (CLJT and L, = CL,, 

by the uniqueness of the Cholesky decomposition. Hence we have 
B, = L; C - I  C Y  = B, and B, is an invariant. In order to show that B, is also 
a maximal invariant assume that By = 3,. This implies L; 9 = L; Z and 
Y = CZ with C = L,LL1 E UT(p), which completes the proof. 

The Ip, n - 1)-matrix 3, forms a part of an (n - 1, n - 1)-orthogonal 
matrix. Denote by. v t h ~  probabilistic Haar measure on the group SO(n- 1) of 
orthogonal matrices with determinant 1. Each element of SO(n- 1) can be 
identified with a point of an [(n- l)(n-2)j2]-dimensional Riemannian mani- 
fold ilJ1,, and each matrix B, can be identified with a point of 
a [p(2n -p- 31121-dimensional Riemannian submanifold of !Illo. Let t be 
a transformation m, -, 93 given by 

Bi being row vectors in R n - I  ( i  = 1, . . . , n - 1), and let us define a measure p on 
lgZ by p = tv. It is clear that p remains invariant under the transformations 

It is (up to multiplication by a constant) the unique measure on with such 
a property. This is a consequence of the well-known'weil theorem on the 
existence and uniqueness of relatively invariant measures on left-homogeneous 
spaces (cf. [2], Theorem 6.3 and Example 6.16, or [7], p. 138, Theorem 1). 

. Let P denote the distribution of the random matrix X, absolutely 
continuous with respect to the Lebesgue measure ,Inp on RP", p = dP/dllnp, 
p" a density of the distribution of XA with respect to ;l{n-l,p,  17: R P n  + 93 the 
orbit projection n(X) = B,, and n(P) the distribution of the maximal 
invariant. 

PROPOSI~ON 2. In the notation above: 

where the integration is performed with respect to the elements of 

L = [Iij] E UT(p) and c,, = ~ - P ~ ( I + P - - Z ~ ) / ~  fi =("+I. 
j =  1 
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Proof.  It  is seen from the proof of Proposition 1 that B, is a maximal 
invariant for UT(p) acting on the space of matrices Y = XA. The modular 
function of UT(p) is 

,I1,- is relatively invariant with multiplier (det L)"- l under the action of 
UT@) on Rptn-I): Y + L Y  and o! defined by 

is a left Haar measure on UT(p). Using the Wijsman theorem ([I], [ll]) we get 
easily 

where 3, is a measure on Itp1"-l) such that 

p is a right Haar masure on UT(p), and A/,lB is the s o - d e d  quotient measure. 
In view of our previous remarks on the measure p, to show the proportionality 
of A/p  and p it suffices to prove that ,?,//I remains invariant under transfor- 
mations (1). This may easily be deduced from the results contained in Section 
5 of [I]. Consider the group K = HG with G = UT(p) and H = SO(n- 1) 
acting on the space Rptn-') of (P I  n- 1) real matrices according to kY = AYB, 
A E UTlp), B E  SO(n - I), k = (3, A) E K. Since the actions of H and G com- 
mute, the automorphism @,: g + hgh-I is the identity mapping and 
mod@, = 1. Elementary calculations show that A is relatively invariant under 
the action of K with multiplier A; l .  By virtue of Proposition 2 in [I] this is 
equivalent to the invariance of A//3 under the action (1) of H = SO(n- 1). In 
order to find c,, take 

p(Z)  =  IT)-^(" - ' ) I 2  exp { - 0.5 Tr ZZT] , 

the density of the multivariate Ip, n- 1) normal distribution, and integrate the 
right-hand side of (2) over !Dl with respect to p. We have 8, = LL1Z, where 
ZZT = L,L;, L,E UTb)  and Tr LB,(LB,)T = Tr LI?, since B,BT = I. Con- 
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sequently, 

Making use of the equality y ( m )  = 1 and computing the integral we get the 
value of c,,. A more explicit form of c,, is given in Section 4. 

3. The normal case. Let X be distributed as N ( M ,  C 8 1,). Because of the 
invariance we may assume M = 0 and E = I , .  Then 

p"(Y) = (2~) -P("-~~1~(det  11)d2 exp { -0.5 Tr YA YT) , 

where A-I = [iij], di j= 1 for i # j  and Lii=2. Since detA = n - l  and 
A = 1 - n - l l , l ; f ,  we get, using 3,B: = I ,  

where b = [ b , ,  . . . , b,lT = B,1,- l .  Define Lo E UT(p) by I-n- l bbT = L,L:. 
Taking T = LL, as a new variable in the integral with 

P 

dLI8T = n (L,),' 
i =  1 

we have the following 

COROLLARY 1. r f  X is distributed as N ( M ,  CBI,), then 

If p = 2, then 

For p > 2 the formula becomes more complicated. It still depends, 
however, only on the vector b. 

4. Parametrization by Euler's angles. Let Rij (1 < i < n - 1, 1 < j< n - 1, 
i < j) be a rotation matrix from SO(n- 1) defined as follows: 

(R..). = (Rij)jj = cos Bij, (R..).. = sineij, zj a El U 

( R )  = i n  0 ,  (Rij)kk = 1 

for k # i and k # j  and all the remaining elements are equal to zero. It is easy to 
check (cf. 1441 and [lo]) that for every matrix GE SO(n- 1) the following 
decomposition is valid: 
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where G(') = Ri . , - l . .  . Ri,i+l with suitabIy chosen Okl. Denote by ei (i = ' I ,  
. . . , n - 1) the i-th vector of the usual canonical basis of Rn-l. The vector of 
BuIer's angles 

can be interpreted in the following way: B12, . . . , Ol,n - are spherical coor- 
dinates of 

G-I e, = (cos 61,R- 1 . . . cos O I 2 ,  . . . , cos 81,n- 1 sin 0 ,,,- 2, sin 81,n- ,IT, 

where 0 G 012 < 2n, -n/2 S ells < ~ / 2 ,  3 < k < n-1. 
In the same way the angles 8i , i+ l ,  . . . , Bi,#2-l are spherical coordinates of 

where 0 G Oi,i+l < 2n, -n/2 < Oik < x/2, i + 2  < k < n-1. 
This interpretation of Euler's angles indicates an easy way of obtaining E ,  

for a given matrix G E SO (n - l) ,  Passing from EG to G may easily be performed 
according to (3) 

Note that inequalities for Okt given above determine them uniquely and we 
have a 1-1 correspondence between matrices G E SO(n- 1) and vectors E,. We 
will denote by the same letter v the Haar measure on SO(n- 1) and the 
corresponding measure on the space of Eder's angles. Taking into account the 
above representation of G € S O ( n -  1) we are able to express the density of 
v with respect to the Lebesgue measure A,, on the space of Euler's angles in the 
form 

n - 2  n - 2  

dv/dAEG = n Anj n c0s'-j0~,~ + , , where Anj = r [(n - j3/2]/(2n("- J ) / ~ ) .  
j = 1  i = j  

There is also a 1-1 correspondence between matrices B,€fgZ and subvec- 
tors Ex = (012, . . . , el , , - ; ,  . . . , O,,,+ , , . . . , t3,,n- ,) of Euler's angles and we will ' 

I again denote by the same letter p the measure tv and the corresponding 
measure on the space of vectors Ex.  

As a consequence of the above considerations we get finally for p < n- 1 

which can be expressed in a more explicit form as 
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where 

cn, 

2 - ~ ~ ~ ( 2 n ) p ( ~ - ~ ~ - p ~ ~ ~ ( n - p - l ) ! ( n - ~ +  I)! .. . ( n - 3 ) ! ,  p even, =I 2(1-p-fl)l2~2~~(p+1"-2npl/4r-1(n/2)(n-p-l)!(n-p+l)! ...( n-2)! ,  p odd. 

Note that exactly the same constant c,, occurs in Proposition 2. It is 
clear that Ex also forms a maximal invariant under G*. A density of the 
distribution of E, with respect to the Lebesgue measure on Rp(2n-p-3)12 
containing Ex is determined by (2) and (4). To find its value the matrix 3, 
corresponding to E, is needed. Such a B, can easily be obtained according to 
(3) with E ,  = (Ex ,  0, . . . ,0) after applying the transformation t to the resulting 
matrix G. 

5. Another maximal invariant and its distrikdo~ In some cases it is useful 
to consider another maximal invariant for G* defined in [g]. Let 
S, = (x-X)(X-X)~, where B = n - l X I , I $ .  If X is a random matrix with 
a probability distribution absolutely continuous with respect to the Lebesgue 
measure on RPn and n > p, then S,  is nonsingular almost surely and we may 
define E UT (3) by 

s,=E,E and &=Z;l(x-S). 
B, is another maximal invariant for G*. 

Let A = I- n - l l , l ;  and D be an orthogonal (n, n)-matrix with the last 
row of the form (n-1/2, . . . , nP1l2) .  The first n -  1 rows of D form a matrix D". 
Choose and fix such a D" and note that Dfi = A,  X-R = X A  and D" is 
a full-rank matrix. This implies that there exists a unique matrix U ( p , n - l l ,  
namely U = x ~ ,  such that X - X  = uD". This equality establishes a 1-1 
transformation from the space of Ip, n)-matrices with rows orthogonal to In to 
the space of (p, n -  1)-matrices. Denote by & the matrix constructed from U in 
the same way as was constructed from X-X. 

The uniqueness of the Cholesky decomposition and the fact that A is 
idempotent imply that Ex = 2, and we have - 
(5 )  B, = BUD", 
which establishes a 1-1 correspondence between a, and 4. This enables us to 
apply the results of Section 2 and describe the distribution of indirectly 
through the distribution of Bu and the transformation (5). The distribution of 
& is given by Proposition 2 with the replacement of 3, by & and of p(-) by the 
density of the distribution of U. 

In the normal case, the distribution of X being N ( M ,  Z Q I,), we may 
take, because of invariance, M = 0 and Z = I,. Then the distribution of U is 
N(0 ,  I p @ I , - , ) .  An inspection of the last part of the proof of Proposi- 
tion 2 leads to the following 



A usduf maximal inuariant 63 

COROLLARY 2. If the distribution o t  X is N ( M ,  E @ I , J ,  then the dis- 
tribution of B,, is p = tv with the density given by (4). 

The computation of & given Euler's angles of the corresponding fiu is 
performed in two steps: 

1. compute a, given Euler's angles as described at the end of Section 4 in 
the context of 3,; 

2. compute B, given BU according to B, = BUD". 
6. Some spechl cases and possible rspplicatioms. In Section 5 we described 

the distribution of the maximal invariant B, for normal X through the 
marginal distribution of the subvector Ex of E,, with E ,  being distributed 
according to the probabilistic Haar measure. In this section the distribution of 
Ex for p = 2 and two other distributions of X will be given. 

Denote by 9, the transformation family of distributions of X = UY 
-k mP:, where U E UT(2); m E R2 and the columns of (2, n) random matrix Y are 
independently and identically distributed according to the probability density 
function c2) = exp{ - (C1 +[,)I for c,, c2 2 0 and zero otherwise. Analo- 
gously we define the family of distributions B, taking $(., .) to be an indicator 
function of the unit square. Because of the invariance, the distribution of Bx 
does not depend on the particular choice of P E ~ P E .  The same is true for 
P,EB,. So we can take P, and P, corresponding to U = I and m = (0,  OlT. 
Put pE = IT(PB), p, = L!(P,) and recall that p = njP,), P ,  = N ( M ,  E 8  I , ) .  

In 191 two functions I , ( - )  and I , ( - )  were found such that 

where bzmin and bzmx are the minimal and maximal elements, respectively, of 
the second row of &. This and the results of Section 5 yield the distributions of 
B;, when the distribution of X belongs to the family 9, or 9,. 

The constants c, and cu are not given explicitly in [9] but can easily be 
derived and are of the form 

[(n - 2)!12 ( 2 ~ ) ~  - (2n)A - cE = and 
(n - 2)(r1")~ " = n2(n- 1 ) ~ ( n - 2 ) '  

The results obtained in this paper can be applied to the analysis of small 
sample behaviour of G*-invariant tests for mu>tinormality which are functions 
of & (see 181 and [9j). This includes, e.g., finding a-critical values, say c,, for 
tests of the form 4(X) = I{T(R',) < c ) ,  where I is the indicator function, and 
T denotes any of G*-invariant test statistics studied in 181 and [9]. This is 
equivalent to solving with respect to c, the equation 

where p is given by (4). 
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The last part of Section 5 provides a way of computing a,(@ for a given 
vector B of Euler's angles. 

The power fmctions of the most powerful G*-invariant tests for binor- 
mality (see [9]) can be written in the parametric form as follows: 

where T, 2;1 are TZ, dpE/dp or T,*, dp,/dfl, respectively. The test statistics 
T,* and T$ are given explicitly in [9]. x ( t )  and y(t)  are the size and the power, 
respectively, d the test corresponding to the critical value t  (cf. also [5 ] ) .  
Calculation of these power functions is particularly interesting since G* satisfies 
the Hunt-Stein assumptions. Thus the most powerful invariant tests are 
maximin and it is possible to construct maximin tests for approximate 
normality taking suitably defined neighbourhoods of the hypotheses and using 
results of [9] and 151: 

The integrals in (6) and (7) must be computed numerically because the 
regions in which the indicator functions are nonzero are complicated and do 
not admit an analytical description. Some results of the above type will be 
published separately. 

Such results can, of course, also be obtained by classical Monte-Carlo 
methods. Note, however, that finding, e.g., critical values in a Monte-Carlo 
simulation is, in fact, equivalent to computing by a Monte-Carlo method the 
value of an integral over a pn-dimensional space and that the quality of 
generating pseudorandom numbers from the normal and alternative dis- 
tributions is equally crucial as difficult to control. Our approach reduces the 
dimension to p(2n-p-3)/2 and puts the whole problem in a more explicit 
form. For small sample sizes, which are interesting in the context of Tg and g, 
it is even possible to apply nonstochastic procedures of numerical integration, 
which makes the control of accuracy more reliable. 
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