PROBABILITY
AND
MATHEMATICAL STATISTICS
Vol. 13, Fasc. 1 (1992), pp. 39-58

WEAK CONVERGENCE UNDER MAPPING

Władysław Szczotka

Abstract: For a given random element X of a metric space S and a measurable mapping h of S into a metric space S_1 such that $P\{X \in D_h\} > 0$ we give the conditions for a sequence of random elements $X_n, n \geq 1$, of the space S under which the convergence $X_n \stackrel{D}{\longrightarrow} X$ implies $h(X_n) \stackrel{D}{\longrightarrow} h(X)$ (Lemma 1) and stronger conditions for $\{X_n\}$ under which the convergence $X_n \stackrel{D}{\longrightarrow} X$ implies $(X_n, h(X_n)) \stackrel{D}{\longrightarrow} (X, h(X))$ (Theorem 3). Here D_h is the set of discontinuities of h. The case $S = D[0, \infty)$, $h(x) = \sup_{0 \leq t \leq \infty} x(t)$ is considered in detail.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -; **Key words and phrases:** -

THE FULL TEXT IS AVAILABLE HERE