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_ Abstract In this work the approach to’ the redulte is made in

a s1mple and unified way. More precisely, we use the same probabilis-

tic technique to study the optimal stopping problem associated with
the reduite, to. prove the expression of the Snell envelope in terms of
the reduite under very general assumptions, and t6 show continuity
properties of the reduite. We finally describe the example of diffusion . |
processes with jumps.

0. INTRODUCTION

During the sixties and seventies, the problem of optimal stopping of
continuous time processes was the object of many papers. Without quoting all
of them let us stress the importance of Mertens’ works [21] and [22] which
deal with the ‘problem in its most general setting; in these articles, the Snell
envelope is systematically studied and is characterized as the smallest super-
martingale which is greater than or equal to the process. In this general setting,
the works of Bismut and Skalli [8], Maingueneau [19], and El Karoui [12]
describe ‘precisely ‘an” optimal stopping time (whenever it exists) as the
“beginning” of the set where the process is equal to its Snell envelope and, more
generally, give the exact default of optimality. ,

In the case of a Markov process (X,), a new question arises: if the process
one wants to stop depends only on the state of the process at time ¢, i.e., it can
be written as g(X J1lg<g, where { denotés the life-time of the process (X,), does
its Snell envelope have the same property? The function associated with this
stopping problem is called the reduite of g, and denoted by Rg. The “general
theory” of processes yields that the functions g and Rg are related by the
following -equation:

©1)  Rglx)= sup{E [g(X )1(s<c}] s st0ppmg tlme}

and that 'Rg is the smallest strongly supermedian-function, in the sense of
Mertens, which dominates g. In order to prove.that Rg exists and show its
main properties, two different points of view have been used in the literature:
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In potential theory, it is assumed that g is the difference of two excessive
functions. Then Ryg is set to be the smallest excessive function greater than or
equal to g, and checking that Ry satisfies equation (0.1) is not too difficult. This
point of view justifies the name of “reduite” given to the function Rg(-).

In [22], Mertens starts from the opposite point of view: He studies the
right-hand side of (0.1) when ¥y is the 1nd1cator functlon of some set A and he
shows easily that : : :

R(IA)(X) P.(D, <C)

where D, = inf{t > 0; X, e A} is the beginning of the set A. Then he extends his
result to step functions and to arbitrary measurable functions g. However, the
arguments required to show that (0.1) holds are more and more difficult.

In [23], Meyer solves the problem by using the dual point of view (in the
sense of convex analysis) of that of potent1a1 theory namely he 1ntroduces the
family M(x) of measures u which satisfy

M(x) = {y, )< f(x) for excesswe functions f},

and he uses'the function
Rg(x) = sup{u(g); ne M(x)}.
Clearly, for any stopping time T, the measure p? defined by
u'g=E [9(X7); T <{]

belongs to M (x), and hence Rg(x) Rg(x)

The converse inequality is much more difficult to prove it depends on
a theorem of Rost [27] which gives a complete character1zat1on of the set M (x)},
at least in the transient case.

The interest of this formulation is to 1ntroduce a functlonal analys1s settmg
which is well suited for solving the optimal stopping problem: under mild
hypotheses, the set M(x) as well as its graph are shown to be weakly compact..

Our point of view is quite similar to this last one: we introduce the set

. A (x)={u; p=u" for some stopping time T}

wh1ch will be endowed w1th the topology induced by that of Baxter and
Chacon [3] on processes; this topology is stronger than the topology of
convergence in law. More precisely, let %(x) denote the set of stopping rules
starting' from x, which are: measures . on the set of processes (Y (w);
(w, )eQ xR, ), defined by

Re%(x) < there exists a stopping time T such that R(Y) =E(Y,),

and let Z(x) be endowed with the Baxter¥ChaCOh't0pology defined as follows:
R" converges to R if and only if R*(Y) converges to R(Y) for every continuous
process Y. The set «/(x) is' convex compact in the induced topology.
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It is easy to see that the graphs of the multivalued mapping x » %(x) and
x ~» o/ (x) are Borel subsets of products of compact spaces. Furthermore, if the
map x+— P, is weakly continuous, then these graphs are closed.. _
Ifgis measurable then the function sup{u(g); pe #(x)} is also measura-
ble, ‘and it is identified with the reduite Rg of g (in the sense of Snell’s envelope).
" The same arguments show the continuity of Ry if g and X are continuous
and if the map x— P, is weakly continuous. - '
Hence the novelty of the present method lies in the fact that the restriction

. of a topology, defined on a set of probabilities acting on a set of processes, to

the set of stopping measures yields a “good” convex compact topology.
“ The paper is organized as follows. In the first section we define the optimal

' stopping problem and we show that the reduite is independent of the realization.

In the second section we define and characterize the set of stopping rules; we also
prove (0.1). Section 3 establishes the expression of the Snell envelope in terms of -
the reduite Rg. In the fourth section we study the continuity properties of the
reduite, and the example of diffusion processes with jumps on R? is described in
the fifth section. Finally, in the Appendix, we prove the weak continuity of the
map x+— P, for Feller processes on a compact state space. :

1. FIRST PROPERTIES OF THE OPTIMAL STOPPING PROBLEM

1.1. The Markov process. We consider a Markov process (X,) taking on
values in a metrizable Lusin space E; in some cases E is supposed to be LCCB.
We denote its semigroup by (P,) and its resolvent by (U?%). We suppose that the
semigroup is conservative, i.e., P,1 = 1 for every t. Notice that this assumption
is not restrictive. Indeed, if the semigroup (P,) is sub-Markovian, we extend it to
a Markovian semigroup over E4 = E U {4}, where 4 is a coffin-state (see,
e.g., [9] or [28]). Let II(E) denote the set of probabilities on E.

In the paper we will make various assumptions on the semigroup (P,);
however, they all imply the existence of a strong Markov realization of (P,) (see,
e.g, [9], [28]). There is no uniqueness of strong Markov realizations of
a semigroup (P,). Thus on a given space there exists a realization which is the
smallest one.

DerINITION 1.1. Let & =(Q, %,, X,, 0,, P,; xeE) be a strong Markov
realization of (P,). The canonical realization associated with ¥ is defined on
Q with the filtration (%) deduced from #°=o0(X,; s<t) by standard
regularization procedures (completeness and rlght-contmulty) say €{%) = (2,
%, X,,0;, P,; xeE). S . -

1.2. Definition of the optimal stopping problem. Let # = (2, %,, X,, 6,, P
x € E) be a strong Markov realization of the semigroup (P,). Extend the process
X)toR, =R, u{+o0} by settmg X, = 4, and let (%) denote the canonical
ﬁltratlon of A (9l" ). ' .
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DermNITION 1.2. Let 7(%) denote the set of stopping times (finite or not)
with respect to the filtration (g,) (1e TeT (%) = Vt {T < t}eg,) For the
canonical filtration, simply set J = J(£).- :

“Letubea probablhty on E. The a1m is to stop the evolution of a reward
process (Y) at a stopping t1rne T*c T (%) which maximizes the expected
reward, ie., such that ' ' ' ‘

E, (Yn)= sup{E iYT) Te T(9)}. - |

 The definition of the optlmal stopping problem obv1ously requires
integrability cond1t1ons on Y. The simplest condition, whrch will be often used,
is to suppose that () is bounded. The ¢ ‘good” hypothes1s is to assume that (¥)
is of class (D) with respect to the filtration (%), ie.,is umformly integrable over
the set of stoppmg tlmes un1formly ‘with respect to the initial condltlon

llm [sup sup E,(Yrllgyp>9)] = 0
: 5 c—>+ao uell(E) Tei(g) :

' A process of class (D) with respect to the canonical ﬁltratlon will s1mp1y be sald

to be of class (D). : ' :

We will study thoroughly the partlcular case of a process (Y) whlch

depends only on the state of the process (X))

VieR,, Y=e""g(X); ¥,=0,

where o >0,g: E— R is borellan and either bounded or of class (D ) ie., such‘

that (Y) is of class (D). We will also study the case where Y, =g(X,) and.
o = lim supg(X,) as in [29]. We refer to these situations by the following
notation: ' o : .

Yo>0, g“—'e_“‘ (X) or g(Xt)‘_‘gts
with the conventlon that gqu = lim sup gt for o > 0 e =0 1foc >0 (e a0 _ |
if « =0), and g(4) = :

DEFINITION 1.3. Let Y be a reward process of class (D) with respect to (g,)
The reduite of Y is the maximal payoff function :

H ol(x, Y) = sup{E,(Yy); TeT (&)}
IfYy ;‘g? (oc 0) we will denote the reduite v(x, Y) by R“‘g(x)

Remark. This last definition refers to that in potential theory where the
reduite of a function g is the smallest a-excessive function which is greater than
g. One of the aims of this paper is to show that both notions coincide by means
of probabilistic arguments, which are substantially simpler than the usual ones
when g does not have any regularity property (cf, eg, [12]).

1.3. Randomized stopping times. A classical approach of such problems
consists.jn introducing a convex set of randomized stopping times containing
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7 (%)-and extending the optimal stopping problem. This technique is indeed
.natural to-study the relationship between the reduite and the realization of the
semigroup. '

DEFINITION 1.4. Let 4 = (Q @,, X, 0, P ; xeE) be a strong Markov
realization of (P,). A randomized stopping time is an increasing, (%,)-adapted,
rlght-contlnuous process (A) such that A, =1 P, as. for every initial
probability pe IT(E). Let /(%) denote the set of randomlzed stopping times.
For the canonical filtration, simply set oA = .szl(ﬁ ). -

The set 7 (%) can be embedded in <7 (¥); indeed, for T e 7 (%) and EER+,
set 4, = l;r<,. Changes of time describe the connection between stopping
times and randomized stopping times (see also [3], [24]). Indeed, let
r,=inf{s: A, >t} denote the pseudoinverse of (4,)," with the convention
inf@ = + oo; then each r, is a stopping time. The following proposition shows
that the maximal expected values are the same over the sets 7 and /. It is
essentially shown in [24], p. 419.

PROPOSITION 1.5. Let Y be a process of class (D) with respect to the filtration
(%). Then

(i) The family of random variables {Y; = (j0+ o1 Y, dA;; A€t (%)} is
uniformly integrable, uniformly with respect to the initial probability.

(i) The reduite of Y is the same over the sets 7 (%) and sZ(%). More precisely,

(L1) v, Y) = sup{E,(Yy); Te (%)} = sup{E,(Y,); Ac (@)}
for every pell(E). ‘

Finally, the following theorem shows that the reduite of an (%)-adapted
process is independent of the realization. It is a consequence of Property (K),
which holds for the filtrations (%) and (%)) (see [20]). We need first the
following result: =~ - ' ’ : v

PrOPOSITION 1.6. Let ¥ = (2, %,, X,, 0,, P,; xe E) be a strong Markov
realization of (P,) and let (%) denote its canonical filtration. Given any stopping
time T with respect to the filtration (%)), there exists a randomized stopping time
(AN)est such that E(Z;)=E(Zr) for every pell(E) and  every
(Fo ®Q(R+))—measurable process Z which is positive (respectzvely, bounded)

Proof For every te[0, + 0], let AT =E,(I;r<y| #,) be the version
independent of u. The Markov property yields that ’

E (N r<yl F,) =E,(I;r<4| F) P, as.,

and therefore that (A7) is P, as. (#)-adapted, 1ncreas1ng and such that
AL =1 P as. Let (4T) denote its increasing, right-continuous, (%)-adapted
regularlzatlon such that AT =1 P, as. The definition of AT shows that, given
any positive, %, -measurable random variable H and any interval Js, t],

(H(AT AT)) E (Hl(s< T<t})
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The monotone class theorem shows that this equality extends to p0s1t1ve
processes Z which are (#,®%(R,))-measurable and yields
| Z,dA] =E,Z;|7, )P as. =
: [0,+ ]

TaeoREM 1.7. Let ¥ =(2,%,, X,; 0,, P,; xeE) be a strong Markov
realization  of (P?,), with canomcal f ltratlon (#). Let' Y be an
(7., ®B(R ,))-measurable reward process of class (D) (with respect to (%)). Then
Y is of class (D) with respect to (%,) and the reduites of Y over both f ltratlons (%)
and (g,) coincide, i.e., for every uell(E), .

(12)  sup{E(Yy); T €T (%)} =sup{E,(Yy); Te T (F)}.

Proof It is well known (see, e.g, [10], t. 1, p. 38) that the uniform
integrability condition is equivalent to the existence of a' convex function

‘¢: R, - R, such that

lim M = and  sup supE,[¢(Y7)] < +oo .

tow L well(E) TeT

" Let TeJ (%) and pucII(E); then if AT¢ M is the i 1ncreas1ng process constructed

in Proposition 1.6, then

E,[¢(Y:)] = E[ | ¢(YDd4S]

[0, + 0]
<sup{E,[¢(Y;)]; TeT} < +o
by. Proposition 1.5.

To show the equality of the reduites, we use a similar argument; 1ndeed by
Proposition 1.5, we only need to compare the suprema over the sets o and

T (%). Let Te I (%), ueIl(E), and let AT e o be the process defined as above.

Then , v .
' E,(Y;) = E,(Y,r) < sup{E,(Y,); Aesl].
Since &# < ¥, the converse inequality is obvious. =

This last result shows that we can work w1th the canomcal ﬁltratlon
whose topologlcal propertles we use.

2. STOPPING RULES AND REDUITE

_ 2.1. Stopping rules. Following Baxter and Chacon [3], Bismut [6], and
Meyer [24], we introduce the “good” set of parameters to solve the op-
timization problem, ie., probabilities on @x R, which can be written as
P (dw)A(w, dt), where the process A,(w)= A(w, [0,£]) is a randomized
stopplng time for the canomcal filtration. These are Meyer’s “temps d’arrét
flous™. :
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DEFINITIONZ 1. Let ueII(F); a stopping rule starting from pis a probablhty
R on QxR which can be desintegrated with respect to P, as :

R(dw, dt)=P (dw)A(w dt)
w1th a randomlzed stoppmg t1me Aesz/

Let .@(u) denote the set of stoppmg rules startrng from . When u is a Dirac
measure ., we write %(x) for SlmphClty Baxter and Chacon [3] and Meyer [24]
have given characterizations of stopping rules in the case of an abstract
measurable space endowed with one probability. Our setting ‘will be slight-
ly different since we are working with' the canonical realization, and thus
with a topologlcal space Q of tra_]ectorles endowed w1th vanous probablh-
ties P

leen an #, _-measurable random ‘variable h and a Borel functlon f on

R, , set h®f (o, t) = h(w) f (t).

THEOREM 2.2. Let ueIl(E); a stopping rule startlng from u isa probabllzty
on Qx R, satisfying the following conditions: =
(i) For any bounded random variable h, R(h®1) E u(R).
' (ii) For any bounded random vartable h and any tin a countable dense
subset D of R,, : :

R(h®1,) = R(E,(h| 9;)@1[041)- '

Remark. Condition (i) ensures that the projection of R on Q is P,, and
condition (ii) gives the suitable adaptatlon property of the desmtegratlon of
R with' respect- to P,. : :

Proof A probablhty R e R(u) clearly satisfies (1) and (ii). We prove only
the converse implication. Condition (i) shows that the projection of R on Qis
P,, and hence that R can be desintegrated in the form R(dw, dt)
=P, (dw)A(o, dt), where A is a transition probability from @ to R, , with
repartltron function 4, = A(-, [0, t]). This fact has already been used in [15],
p. 541, and in [24], p. 411; it comes from general results concerning the
desintegration of measures ([10],t l,p 125). Condition (i) shows that, for ¥ach
aeD, A, is P, as. #-measurable. Let A, bean Z, -measurable random variable
P, as. equal to A,. Set A, =1 and let (4, be an increasing right-continu-
ous extension of (Aa, aeD) Since both processes A and A are right-
-continuous, they are P, indistinguishable, and R(dw, dt) = ,,(dw)A(w dt)
Furthermore, the right- contlnulty of the filtration (%) shows that (A,) is
(Z)- adapted |

Baxter and Chacon, and Meyer have endowed the - set .%(p) with
a compact topology. Since we work with a. topological space 2 and several
probabilities P,eII(§2); our definition of the topology on #Z(u) will look
different from theirs, For a fixed probability P,, both topologies coincide.

L&
A
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THEOREM 2.3. Let #(u) be endowed with the Baxter—Chacon- topology, i.e.,
the coarsest topology -such that the maps - : .

ReR(u)—R(X)=E,( ' | X,dA,) "~with R(dw, dt) = P, (dw)A(w, dt)
[0, + o] ) :

are continuous for every bounded'(J' ®$(E‘+)’) measurable process (X, L(a))') with

continuous: trajectories on R, (ie, Vo, t— X, (o) is contmuous) Then the set

.%(p) is compact in ‘the Baxter—Chacon topology

. Proof. We brleﬂy sketch the argument and refer to [3] and [24] for
details. Theorem 2.2 and approximations of 14 by continuous functions
clearly show that Z(u) is closed in IT(2 x R+) To show that R i is relat1vely
compact, we use a criterion of Jacod and Memin [15] and we prove that the set
of projections of 2(u) on 2 and R, are both weakly relatively compact. This is
obvious since {R?; Re Z(w)} = {P#} and {R®+; Re % ()} is a set of probabili-
t1es on a compact set. =

2 2 Dependence on the m1t1al condltlon T he characterlzatlon of stoppmg
rules given in Theorem 2.2 allows us to precise the dependence of the reduite of
a (not necessarily adapted) process Y on the initial condition. The proof
depends on the properties of the graph of the multivalued mapping x » 2(x).
It is easy under an addltlonal hypothesis. We consider at first the following
particular case:

‘We suppose that the state space E is Polish. Let-Q° = D([0, + 0], E)

‘denote the. set” of right-continuous and left-limited - (cad-lag) -maps from

[0, + o] into E. The set Q° is a Polish space (ie., separable, complete
metrizable when it is endowed with the Skorokhod topology). Let #° denote
its canomcal - algebra and let C(E) denote the set of contlnuous funct1ons
on E.

- Inthe sequel we will denote by # a countable famrly of bounded random
variables which is stable by product, and ‘generates the o-algebra FO = o(X,;
seR,). Dependmg on the special assumption made on the Markov process
(Feller right, ...) we w111 mainly consider several sets H, Wthh w1ll be the best
suited for the part1cular problem under study.

Let’ #,(I) denote the set of random variables -

(PR3] h= J] fiX), wherek>1,t <t,<...<tnel, -
: CI<igk. : T : ' -
and the functions f, are bounded and measurable. We suppose that (z,) belong
to a countable dense subset ] < R, and that () belong to a countable set
generatlng B(E).

'If E is compact, let 5 .(I) denote the subset of 3#,(I) correspondmg to
functions (f}) that belong to a countable dense subset of C(E). When no
confusion is possible, simply set J#, and #,. ,
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- By the Markov property, for every pelI(E) and for every he;f,,,

@2 . h=Exelhr)]
is a version of E,(h| F); wh_ere the trajectory co/t/w is defined by (cf,, e.g., [28])

<t
x (co/t/w) {X (‘i’()w) ;f j jﬁ

The assumptlons we make in the followmg proposmon ensure . the
measurability of the map x> P,

PROPOSITION 2.4. Let (P,) be a Borel semigroup on E. We suppose that there
exists a family (P,; x€E) of probabilities on (2°, F°) such that & = (Q°, F?,
X,, 0, P,; xeE) is a strong Markov realization of the semigroup (P,). Then, for
each reward process Y of class (D), the redulte

‘ v(x, Y) = sup{E,(Yy); Te T}
is an analytic function and, for each jelII(E),

23) - [v(x, Vu(dx) = sup{R(Y); ReR(W)} = sup{E,(Y,); TeT}.

Proof. We study the graph G = {(x, R); Re Z(x)}. The map x+—P,_ is
Borel from E into IT1(Q2°), since the Borel s-algebra on IT1(€2°) is generated by
. the maps u> u(Z), where Z is #°-measurable. . The monotone class theorem
shows that in the characterization of %(x) given in Theorem 2.2 it suffices to
consider the maps R(h®1), E,(h), R(h®lp,) and R(E.(h|Z)®110.m)
= R(1,®1.q) for he #,, and a in a countable dense subset of R, . Under our
assumptlons all these functions are Borel on EQII(Q2°x R ). Hence the graph
G is a Borel subset of the product space EQII(Q°xR,)." .

Suppose at first that Y is bounded. Since Y is (# °®.@(R+))-measurab1e
the map R— R(Y) is Borel from I7(Q° x R,) into R, and the theory of analytic
functlons ([10] t. 1, p. 119 theoreme 62) 1mp11es that the functlon

v(x, Y)—sup{R(Y) Regi’(x)}

is analytlc We follow the proof of lemme 17 in [10] chapltre X The functlon
v is umversally measurable and, consequently, we can find a-Borel function
w(x), majorlzed by v(x, Y), and Has. equal to v(x, Y). Given & > 0, the set

G = {(x, R); R(Y)+& > w(x), ReR(x)}

is Borel, and its sectlon along a fixed x, say GS,is non-empty From the section
theorem ([101], t. 1, chapitre III. 44-45) there exists a Borel set A carrying p, and
a Borel section R*(x, -) of G° defined on 4. We set Ré(x, )-— &, on A°. Since
j'R*(x )u(dx) belongs to %(u) by Theorem 22 ‘we deduce that

fv(x, Y)u(dx) < sup{R(Y), Re.%(u)}.
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Conversely, let R = P, (dw)* dA,(w)e #(w). Since (4,) is a randomized stopping
time, we have

‘ Ver P (dcu) dA (a))e%(x)
Then
R(Y) = { p(dx) | P,(do) Y,(w)dA, (w) § u(dx)v(x Y)

Let Y be of class (D); we compare v(x, Y) and v(x, Y°), where Y is the
(bounded) truncated process (Y A ¢) v (—¢). Set

g(c) = sup{E IYT11{|YT|>C}) TeT }
for fixed er Then, for every TGJ 7 A _
|E(Yr)—E (YD) = |E, [(YT C)l{}’r>c}+(YT+C)1(YT< all

= Ex[(] T[—c)l([}'-rl>c}] = G(C)s
and - ‘ .

[o(x, ¥)—v(x, Y| < sup{IE,(¥)—E,(¥; Te T} <s(c).

Hence (-, Y) is the pointwise limit of v(:, Y) as ¢ — oo, and the Lebesgue
theorem implies that the first equality in (2 3) holds for Y. Finally, Proposi-
tion 1.5 concludes the proof ® ' ,

2.3. Measurability of the redmte for right processes.’ We now con51der
a right semigroup (P,) on a Lusin space E. The Ray compactification of a right
semigroup is very long to be described completely, and we refer systematically -
to the notation and proofs of Getoor [14] (see also [28]). Let E denote the
Ray—Knight compactification of E; the extension of (P,) to E is denoted by (P,).
The relations between X and the Ray process associated w1th (P,) are descnbed
in ‘the following theorem: :

‘THEOREM 2.5. Let W be the set of applzcatlons w: R, —» E which are
right-continuous both in the initial topology and in the Ray topology, and which
have left limits in E in the Ray topology. Let (X,) denote the coordinate process
and set F? = ¢ X, s < t). Then for each probability y on E, P, is the measure
constructed on (W, F°) by using (P),and P, is the correspondmg one constructed
by means of (P). These probabzhttes P, and P, are equal, and (X,, #?, P ) is
a Markov process with semigroup (P) (resp (P,)) lf we consider E (resp. E) as
a state space. .

Following the remark of Getoor ([14] p- 80), by changing the topology on
E into the Ray topology, the resolvent and the semigroup become Borel, and
we Can apply the argument above. The kind of measurability will be the
following: a function v defined on E w1ll be analytic if it is the restriction to E of
a function ¢ which is analytlc on the Ray—nght compactlﬁcatlon E endowed
with the metric o.
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- THEOREM 2.6. With the notation above, let € = (Q, #°*, X,, 0,, P,; xc E)
denote the canonical realization of a right semigroup (P,). For each
(#F °"®£(R+))-measurable process Y of class (D), the map

v(x, Y)= sup{E (Yp); Ted ”—}
is unwersally measurable on E, and

(2.4) | fu(dx)v(x, Y) = sup{E (Yy); Te T }.

Proof. If ¥, = g(X)), let B denote the set of branching points, and D = B. If -
w(B) = 0, then (X o) behaves like a right process taking on values in D. The reduite
v can be defined on D and extended to R by setting v = P,v. Given any probability
p on E, the probability uP, does not charge B, and hence (see, e.g., [8])

fudx)Pyo(x, g(X)) = sup{EﬂPO(g(XT)); TeJ} = sup{Eu(g(X,)); TeJ}.

For a general process Y, let ueII(E); Q is not Lusin, but we can restrict
ourselves to a Borel subset Q' of Q included in W = D(R,, E), where E is
endowed with the Ray topology. Then replace E by a Borel subset E’ such that
M(E) =1 and P.(2) =1 for xeE', and replace Y by a (°®%(R.,))-measura-
ble process Y’ which is P, indistinguishable of ¥. The proof of Proposition 2.4
shows that v(x, Y’) is g-analytic on E’, and (2.4) holds by a selection theorem. &

3. REDUITE AND SNELL'S ENVELOPE

*'The most important application of Theorem 2.6 is the connection between
the reduite and the Snell envelope for homogeneous processes and, more
precisely, for processes of the form gf = e *g(X,), te R, (a > 0), where g is
a fixed nearly: Borel function of class (D,). We recall the conventions we made
in Section. 1: : : : ‘

X,=4, g% =Ilimsupgf, g(A) = g?o; ,
t—* o

set
R“g(x)—v(x g°) for xeE and R“g(A)

‘We at ﬁrst apply Theorem 2.6 to prove that R“g is an a-strongly supermedlan
function. :

PROPOSITION 3.1. Let 4 = (Q, Z, X,, 0,, P_; x € E) be the canonical realiza-
tion of a right semigroup (P,). For each stopping time S€ 9 and each probability
ueIl(E) the following holds:

(1) E(e"R'g(Xy) < sup{E,(g%); T =S, TeJ} < {u, R%D.
Proof Fix Se7, and let S“‘ denote the measure on E defined by
Sﬁ(dl)— u(e "“s¢(Xs)1(s<+m;)
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Theorem 2.6 applied to the probab111ty Ry (1)'1S"‘ and the strong Markov
property show that - : .

S%(R*g) = jv(x,.kg»“)S".(dx') = snp {[E, (g“}' S2(dx); Te 9“}
= SuP{Ett( GSEXS(gr)l(s< +uo]) Teg a-}
= Sup{E, (e “C*T%)gs, 1op; S < +0); TeT}
< sup{E (e™"gs; S < +o0); T> S, TeT}. -

On the set {S = + oo} for T =8 the random varlables é"”s R"‘g(X s) and gT are
both null if >0 and equal to g% if a =0. Hence

E,(e”R*g(Xg)) < sup{E,(g7; S<o); T>285,Ted 0‘}
+E, (e"SR°g(4); S = + ). |
<Sup{E 9%); T> S, Ted 0’} {u, R“g> =

Remark Inequahty (3.1) shows that the reduite R*g is the smallest
o~ supermedlan function greater than or equal to g Its oz-excesswe regularlza-
tion R%g is defined by : : '

R*g =lime™™P, R“g < R“g on E  and ﬁ“g(A) =g%.
=0 - - S :
The converse inequality of (3.1) is established in lemme 2.7.1 of [12]. It is clear

if g is Ls.c. on trajectories, since R“g =g yrelds that R“g R“g Let (ﬁ 0) denote
the ﬁltratlon generated by (X; s<9)..

LeMMA'3.2. Let € = Q, #, X,, 0,, P,; xeE) be the canonical realization of
a right semigroup (P,). Then, for all stoppmg times T > S with Te#>"
= o> Fiv, and S T(FY),

(32) E, (%) < E;(e"aéxug(xs)).

Proof. We denote by 7° (resp. 7 °) the set of stopping times with respect
to' %? (resp. #.>*). Let'S (resp. T) be a stopping time in F° (resp. J °), with
S < T By a slight modification of a theorem of Courrege-Priouret (cf. [10], t. 1,
p. 237) there exists an (FL ®FL)-measurable random variable U: Qx Q
— [0, + 0] such that . o o

(i) U(w, w) =0 if S(cu) +oo or if S(w)< + o0 and X,(w) # Xg(w).

(ii) U(w, *) belongs to F°.

(iii) T(w) = S(w)+ U{w, O5(w)). :

The proof is similar to that in [10], using. the Galmarmo test for
%% stopping times ([10], t. 1, p. 234, théoréme 101) instead of the Galmarino
test for #° stopping times ([10, t. 1, p. 234, théoréme 100). By the strong
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Markov property,- ‘
(3.3) E, (@5 S < +o0) = E,(e"Ex,{gh); S@) < +0)
'S E,(e"®Rg(Xg); § < + ).
Since g% and e”*R*g(X;) coincide on {§ = + oo}, this concludes the proof
of 32). = : :

Hence, if g is Ls.c. on trajectories, approximating any stopping time S by
a decreasing sequence in 7, yields that inequality (3.2) holds for any Se€ .. The
following lemma gives a more prec:se inequality for any arbitrary nearly Borel
function g.

LEMMA 33. Let ¢ = (2, £, X e 0, Px, er) be the canonical reahzatzon of
a right ‘semigroup (P,): Then; for.all stoppmg times T > S in 7, :

(34) - _m@ﬁ__rﬁmwvmam
and R"g g v Reg. '

Proof. At first we extend mequallty (3 2) to stopping times Se 7 °, Apply
32).to S=¢>0,and T = sup(V a), where V is a strlctly posmve stoppmg
time in 4 0 Then

E (gsu;:(l/ o) S ( —uRug(X ))

Since g7 is of class (D), we can let ¢ » 0, and obtain E, (g%) < R*g(x). If we
suppose that T > Se 7, on {T < oo}, then the stopping tlme U((u ) is strictly
positive, and we have

E (g% S < +0) < E,(e"*R*g(Xy); § < +o).

_ le Sed°, T> S on {T< +o0}, and approximate it by a strlctly
decreasing sequence (S, ). of Z.° stopping times. Let (T,) be a sequence in 4 o
defined by L ,

T,=Ton {T>S5,} and T,= +oo otherwise.

The sequence (7;) decreases to T in a stationary way (i.e., for. every o there _
exists an integer N(w) such that T,(w)= T(w) for all n > N(w)), and since
T,> S, on {T, < oo}, we have ’

E,(g%,; S, < +0) SE,(e"R*g(Xg); S, < +0)..
We use the right-continuity of the process e”*R*g(X,) to deduce that
Elgh S < +00) < E(e"*R*g(Xg); § < + )

by letting n— o0, ' o :
Suppose at last that 7> S belongs to 7, 'and»set

T=Ton {S<T} and T=+ + 00 o'th‘erwirse/, '
S=Son{S<T} and § =+ otherwise.
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Then
E,(¢%; (S < +0) = E,(g%; {S<T}n {S< +oo})
+Ep(e Sg(X)ls=m; S < +oo)

=E,(g% S < +0)+E, (e g(Xs)lis=1); S< +00) : -

<E(eSRg(Xy); § < +)

g +E( asg(Xs)l{s =T} S < +00) o

=E,(e “S[REG(X ) s<y+g(Xs) L5 r;], s< +o)
SE,(e"*(Rg v 9)(Xy); S < +00).

Since (R°g v 9)(4) = g‘m on {S = + o0}, the proof of (3.4} is complete Fmally,
(3.4) applied with S =0 yields that R*g < R“‘g vg<Ry =

The main consequence of those two results is the description of the Snell
envelope in terms of the redulte Let &° denote the a-algebra generated by
excessive functions: :

'THEOREM 34. Let ¥ =(Q, g” X,, 0, Px;'er) be a strong “Markov

- realization of a right semigroup (P,) and let g be a universally measurable function

of class (D,). Then, if g is &°-measurable, the process
R*=:e"®R°g(X,) if t <o, R% =g%

isa stroﬁg supermartingale which is the Snell envelopé J @) of (g7, te[0, + QO]),‘
ie., ’
- R§ =esssup{E,(¢519s); S<TeT (%)}

Proof. Theorem 1.7 shows that we can use the canonical realization of
(P)). By Proposition 3.1 and Lemma 3.3, we see that, given Se 7 and ueII(E),

sup{E,(g7); S<TeT} <E (e‘?‘sR“g(Xs))
- <sup{E,(¢7); S<TeT}
= E, (J(9)s)

where the last equality is deduced from the prbperty of decreasing filtrations
for the set (E,(97), T = S, TeT) (cf, e.g, [22]). Therefore,

(3.5) e SR*g(X;) = eSSsup{E"(g"}l.g"sj; S<TeJ} on {S< +oo}

Since R*g is obviously &°-measurable, the e’qgation R°g = R*g v g shows
that R*g is £°-measurable, and hernce the process R*g is optional (cf,, e.g., [10],
t. 3, or [28]). Thus, equation (3.5) concludes the proof. a

Remark 3.5. (1) The Snell envelope is a crucial tool in the theory of
optimal. stoppmg Thus it is very important to relate the reduite and the Snell
envelope. For example, optimal stopping times of a process (Y, can be char-

-

2
g
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acterized in terms of the Snell envelope J(Y) of Y as follows (see e.g,; [12])
A stoppmg time T%* is optzmal if and only ‘if: .

® YT* = J(Y)T*7 .

® the process (J(Y)e 1t ) is a martmgale :

~ The Snell envelope also glves an exp11c1t construction of optimal stopping
times under u.s.c. assumptions on the process (cf, e.g., [12]). More precisely, let

(Y,) be an optlonal ‘process. of class (D). Then:

® If Y is usc. on trajectorles then mf{t Y J (Y),} is the smallest
optimal stopplng time. '

@ If Y is us.c. in expectatlon (i.e., EYy > limsup E Yy, for every sequence
(T;) of stopping times converging to T), let J(Y), = M,— A, be the Doob
decomposition of the supermartingale J (Y) Then inf {t Y J(Y)} and

inf{t: J(Y), # M,} are opt1mal

.(2) Given an arbltrary funct1on g, the redu1te R“g we ‘have studied is the.
smallest strongly a-supermedian function greater than or equal to g. Then:

@ For fixed o > 0, the optlmal stopping time for the process g* and the.
probab111ty P, is the entrance time in a subset of E Wl‘llCh does not depend on
the initial law H

® If g is Ls.c. or, more generally, Ls.c. on tra_]ectones g, the dlﬂ'erence of
two excessive functions), then R*g is excessive, and hence it is the “excessive”
reduite in the sense of potenual theory (cf., e. g [10] t. 3).

4 CONTINUITY PROPERTIES OF THE REDUITE

In this section we prove continuity results on the reduite when both the
function f and the 'semigroup (P,) have “continuity” properties, e.g., f is
continuous and (P,) is Feller. Thus we generalize some known results about the
reduite, but the novelty lies mainly in the method which we develop. Instead of
the penalization iterative method (cf. [26], [12]) or a discretization method
(cf. [18], [7], [31]) we use the more probabilistic notion of stopping rule, which
also yields functional results. Furthermore, our method depends only on the
weak continuity of the map x+ P, which is well known for diffusion Markov,
processes (cf., e.g., [25]). In the Appendix, we prove that this continuity
property also holds for Feller processes on a compact state space E_. -

Since the initial condition xeE will not be fixed, we cannot use the
Baxter—Chacon topology on # = Ug?(x) indeed, ‘this would 1mply that the
laws of the processes are’ strongly continuous.

_ Throughout this section we suppose that the state space is Polish and that
sometimes it is compact metrizable. Let Q = D([0, + ], E) denote the
canonical set of right-continuous and left-limited maps from [0, + c0] into E,

~and let o, denote the coordinate maps. The set @ is endowed with the

Skorokhod topology for which it is metrizable, complete and separable (cf, e.g.,
[4], [16]). We recall some well-known :properties of this topology on Q.
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PROPOSITION 4.1. (a) For évery bounded continuous function f on E, every
x>0 and 0<t; <t, < +00, the map o (i, i.1e” *f (w)ds is continuous.
(b) For every given probability P on (Q, #2 ), almost every t (with respect to
- Lebesgue measure), there exists a P-null set N such that the map mn—»wt is
continuous for -every wé¢N;. :

‘In this section we will assume that the followmg assumptlons (Ha) and
(Hb) hold:

(Ha) One can deﬁne on Qa famlly of probablhtles Py er) such that_
Q, #, Q, 0, P,; xeE) is a strong Markov realization of the semigroup (P,).

(Hb) The map x+— P, is weakly continuous.- :
‘Note that the assumption (I-ib) is satisfied wheﬂ E=R’ and (PQ is

solution of a “good” martingale problem. The following theorem shows that =

(Hb) also holds for an arbitrary Feller process on a compact state space E (i.e.,
such that P,(C(E)) = C(E) for each t >0, and P, f— f pointwise as t —» 0 for
each f e C(E)), or Feller in the following weaker sense: U*(C(E)) = C(E) for
each o > 0, and aU*f— f pointwise as o — + oo for each fe C(E) Its proof is
given in the Appendlx

THEOREM 4 2. Let (Q, Z,, co,, 6,, P xEE) be the canomcal realization of
a Feller semigroup (P,) on a compact metric space E. Then the map x»—»P is
continuous when I1(Q) is endowed with the weak topology

We now prove regularity properties of the sets Z(u) of stopping rules ‘when
Q = D([0, + o], E) under the assumptions (Ha) and (Hb) on the semigroup. The
set 2 = | Juenan #(p) is included in IT(Q x [0, + c0]), and is endowed with the
weak-star topology. Note that for fixed peII(E), the restriction to #(u) of the
weak-star topology is the same as the Baxter—Chacon topology on (), since
u, —u in the Baxter-Chacon topology if u,(X)— u(X) as n— +oo for every
bounded continuous process X (see [3] or [24], p. 419). Indeed, for fixed p choose
a countable dense subset I < R, and a subset N Q such that P (N) 0, and
ww— o, is continuous for each tel and w¢N (cf Proposition 4 1). Then the
raridom variables he (I) and h, = E Xt(h(co/t/ )) are “contmuous” on Qif tel

THEGREM 4. 3 Let Q= D([O + oo] E), let K be a compact subset of E such
that the map x— P, is continuous on K. Then:
~ (a) The graph GK ={(x, R); xeK, ReZ(x)} is a ‘compact subset of
K xH(Qx[0, +]), where T1(Q x (o, +oo]) is endowed with the weak-star
topology. . N
 (b) Theset Ry =)k B(x)is a weakly compact subset of II(Q x [0, + 0]).
Proof. First we check that G is closed. Let (x,, R,) be such that x, — x
and R, — R. The sequence (P,,) of projections of R, on Q converges weakly to
P, which is hence the projection: of R on Q. To show that R e %(x), it suffices
to prove that the second condition in Theorem 2.2 is satisfied. Let I = (a,) be
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acountable dense subset of [0, + oo] such that the maps w+ X, (w) are continuous
excepton a P,-null set N of Q. Let ae I, he #,(I), and ¢ be a continuous function on
[0 + oo] with support included in [0, a]. Then" by Theorem 2.2 we have

R (h®¢) R,(5,®4), Vn>

Since the functions h and ﬁ are continuous except on N x [0, +o00], which is -
an R-null set, letting n — + o0 ylelds that R(h®¢) R(h, ®¢) and hence that
Gy is “closed. . : _
Since Gy is closed it sufﬁces to prove that &y is weakly compact and
hence that the sets #§ and #%+ of projections of %, on II(2) and
- II([0, + o0]), respectively, are tight. The continuity assumption made on the
map x+> P, shows that #2 = | ).k P, is a compact subset of IT(Q). Since
[0, + o] is compact, the tightness of Zg* is obvious, and %y is compact. Since
Gy is a closed subset of K x %y, it is clearly compact. m

The following lemma gives sufficient conditions for the upper semicon-
tinuity of a map defined in terms. of suprema of continuous functions. ‘The
lower semicontinuity of such maps is intuitively expected. Similar results can be
found in the more general setting of set-valued maps (cf. [2]).

LeEMMA 44. Let X be metrizable and let R be compact metrizable. Let
F: X x ® — R be bounded u.s.c., and for every xe X let R(x) < R be such that
G= {(x R) xeX, ReR(x)} is closed in X x R. Then S

v(x) = sup{F(x, R) Reg?(x)}
is u.s.c.

Thus we obtain the upper sem1contmu1ty of the redmte of a us.c. process
Y which is not necessarily a function of X.

THEOREM 4.5. Let Q = D([O + 00}, E) and suppose that E is LCCB and
that the map x+ P, is continuous from E to I1(R). Let Y be an (FIQA(R.,))-
-measurable process of class (D). If the map (o, t)> Y (@) is us.c. on Q
x [0, +00], then the reduite v(x, Y) = sup{R(Y); Re&(x)} is u.s.c.

Proof. Fix Xo €E and let K be a compact neighbourhood of x,. First we
suppose that Y is bounded. Set F(x, R) = R(Y); then the map R+—R(Y) is
us.c., and hence F is u.s.c. Therefore, Lemma 4.4 applied with: X K and
R = Ry(= Uxexﬂ(x)) shows that v is us.c. at x,. ,

Suppose that Y is of class (D) and fix ¢ > 0. Let Y° be the truncated process
(=) v (Y A ¢). Then F(R) = R(Y") converges uniformly to F as ¢ — + c0; indeed,

lim sup sup |R(Y)— R(Y")| < lim ‘sup R(|Y|1{|y|>c})
.. .¢ . Re®R- e ¢ Regl~

=1lim sup supE (|YT|1{|Yr|>c))" i
¢ pell(E) Ted . .

Hence the map v(-, Y) is also us.c. =

8 — PAMS 131 -
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- .. The extension of the optimal stopping problem to a larger convex
compact set has yielded the upper semicontinuity of v. As might be expected,
the lower semicontinuity of v is easier; it is‘obtained by restricting the study to .
the smaller class 7 of I -valued simple stopping tlmes T (i.e., taking on fnitely
many values in I < R,).

THEOREM 4.6. Let Q= D([0, + 0], E) and let Y be a measurable (not
necessarily adapted) process of class (D). Then:

(@) If (Y) has lower semicontinuous tra]ectorles then for every yeﬂ (E) and
any dense subset I =R, v

o(u, ¥):= sup{R(Y); ReR(w)} = sup{E, (B Te):

- (b) Suppose that the map x— P, is continuous ﬁ'om EinIl (Q) and lét (Y) be
lsc on QxR,; then v(-,'Y) is lsc B . ‘

Proof. We suppose first that Y is bounded:

(@) Let TeJ and'let I be a countable dense subset of R,. Let T, be
a decreasing sequence of I-valued simple stopping times convergmg to T Then
since Y has lcs trajectones we - obtain - ,,

; _ E (YT) llmme (Y ) < sup{E (1@), Se./,}
so that sup {E (Yp); TeT} < sup{E,(Yy); Te, 1}; the converse 1nequa11ty is

obv1ous and Theorem 1.7 concludes the proof. ,

(b) Let (x,) be a sequence in E converging to x. Let I be a countable dense
subset of R, and N be a P_-null subset of Q such that for every te I the map
wn—»a), is contmuous on N° Let

l | T= Ztl{r u}EJI
<k

and fix ¢ > 0 For each i < k choose an %, -measurable random vanable H;
such that (Ul-—>H (a)) is contmuous except on N, and ‘

E, (YT) E (YA)I - for A(w, dt) = Z H(cu)é,i(dt)eﬁ
k .
Slnce the map Y is lsc on x R+, the map w— YA(w) is lsc except on N.
Therefore, for x, — x

hm info(x,, Y) 11m inf Ex"(YA) ( )= (YT) e.

This clearly shows that lim inf v(x,, Y) = sup{E (YT); Te T } = v(x, Y),
and hence that the map v(-, Y) is ls.c.

The standard truncation argument used in the proof of Theorem 4.5 yields
the lower semicontinuity of v(-, Y) for processes Y of class (D). =

Theorems 4.5 and 4.6 imply the continuity of the reduite in the particular
case of continuous processes or of continuous functions of (X)).
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COROLLARY 4.7. Let E be compact metrizable and let Q = D([0; + ], E).
Suppose that the map x+— P_is weakly continuous and that Y is a process of class
(D) which is continuous on QxR.. Then the reduite v(x, Y) = sup{E(Yy);
TeJ} is continuous.

Thus we obtain the contmulty of the redulte q* of a continuous functlon of
a Feller process (see;:e.g., [12], théoréme 2.82).: =~ = e o

COROLLARY 4.8. Let ¥ =(2, %, X,, 0,, P_; xcE) be a strong M arkov
realization of a Feller semigroup (P,) on a compact set E Then for every g € C (E)
and o> 0,

R*g(x) = Sup'{Ex[e_“Tg(X T)]; TeT (59)}»
is continuous.

Proof. We suppose at first that g is the oc-potentlal of a continuous
function f. Then for each TeJ and x€E, by the strong Markov property,

CE(TUSX)=E( [ '”fCXJdﬂ
[T,+ o] ]
The map (w, t)— Y(co)' j'[, +w]e asf (a) )ds is contmuous Indeed smce f is
bounded, the map t— Y,(w) is. continuous uniformly in w, and for fixed ¢
Proposition 4.1 (a) implies that the map o~ Y,(w) is continuous. Hence
Corollary 4.7 shows that R*g=uv(-, Y) is continuous. The unlform ap-
proximation of continuous functions by‘ potentials'conclludes the proof. m

Remark. Suppose that the assumptions of Corollary 4.8 are satlsﬁed and
let g, h be continuous functlons on E. Then the map’

"(x)—sup{E [e” “Tg(XT)+ j' e‘“"h(X )du] Teﬂ'(g)}V

is continuous. Indeed

@) =EJ[ [ e ™h(X)du]+sup{E,[e *T(g—Uh)(X)]; TeT}

. [o, +,°°] ,
= U*h(x)— R*(g— U*h)(x).

Since the maps h and g are continuous and (P is Feller, U“he C(E) and
R*(g— U“h)eC(E) B '

5. EXAMPLE: OPTIMAL STOPPING
FOR DlFFUSION PROCESSES WITH JUMPS

“In this section, we prove that in the case of a “good” diffusion' with jumps
the reduite of a continuous function in also continuous. We use the continuity
results established in the previous section for potentials of continuous functions
and an exponential estimation to conclude the proof.
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5.1. Hypothesns and notatlon Let L be an integro-differential operator of
the forn . '
Lf (t, x) = [3a,D] f+ D; f+D, f1, x)
+ [ [f (X+u)—f (%) — Ly <1y <5 7F (2, )18, x, du)
e . Rd {0} -
where we assume that the followmg assumptlons (H1) and (H2) hold (cf [17]
for details): .
(H1) oft, x) = (al,, b,)(t x) is Borel bounded by K, Q(t X) is continuous
for each t, and (a,,) is strictly positive. ‘
(H2) S(t, x, du) is a positive kernel on RI— {0} such that

sup{S(t, x, lul* A 1); t, x} <

Furthermore for each bounded continuous functmn f and each t, S(t, , f )
is continuous. ~

Then by [30], for each xeR? the martlngale problem correspondmg to
(x, a, b, S) is “well-set”, i.e., there exists a unique probability P, on the space
Q = D([0, +o0], R% endowed w1th the canonical filtration (9?') such that

L) PX,=x)=1;

(i) VfeCy 2(R xR%), f(t, X)— f(0 XD) j'[o,]Lf(s X)ds is a P,-mar-
tingale. -

The assumptlons made on a, b, and S 1mp1y that Lf (t,")is contlnuous for
every function feC} 2(R x R%). .

'5.2. Continuity propertles We use 'the followmg result Wthh can be
deduced from the exponential majorization' in the settlng of differential
operators ([17], théoréme '13).

LeMMA 5.1. Given A ER and positive numbers A, 1, K there exzsts a constant
k which depends -only on K such that :

P (sup{|X,— Xo| >n; 0<s<1}) o
| S2dexp|:——(n Kt—A)+}‘ kt(1+e"')]+£<A—

. The following result generahzes a class1cal result for contlnuous dlffllSlOIlS
(see e.g., [25)): :

Lemma 5.2. Under the assumptions (H1) and (H2), the map x+—» P is weakly
continuous from R’ to I1(Q).

Sketch of the proof The techmque used in [17], théoréme 20, shows
at first that the family (P,; x e R%) is weakly relatively compact. Let x, — x; the
sequence (P,,) is weakly compact, and let P be one of its cluster pomts Given
feC% (R, xR") set » '

f(t Xt) f(0 Xo)- J LfG, Xs)dS-

[0,7] .
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The set {X,, = x} is closed in the Skorokhod topology, and P(X, = x) = 1. On
the other hand, the right-continuity of (X,) and the definition of P, show that,
in order to prove that P = P, it suffices to check that E, (¢HY)— E (¢H{) for
t in a countable dense subset of R, such that the maps wr X, (w) are

continuous except on a P,-null subset of 2, for feC}?(R, xR, and for.

a bounded F.-measurable random vanable ¢. This last convergence is a direct
conscquence of the contlnulty of Hf .| :

- Let feCy(R%) and « > 0; we want to prove that

- R*f (x) = sup{E,(e"*"f (X p)); Te T}
is a bounded continuous function. We suppose at first that f= U%*g with

g€ Cy(RY. Then Lemma 5.2 and Corollary 4.7 show that R*f € C,(R9). In order

to deduce the general result, we need the following technical lemma:

LemMMA 5.3. Let feC,(R%. Then for each &€ >0 and each compact set
K = R? there exists a C®-function g% with compact support such that

(i) sup{|f(x)—gk); xeK}<a
(i) gkl < [flls+e

This yields the main result of this section.

THEOREM 5.4. Under the assumptlons (H1) and (H2), given’ oc > 0 and
a bounded continuous function g, the reduite R%g is continuous. '

- Proof. The contmmty of the reduite is true for’ C°°-funct10ns w1th

compact support, since they are the a-potentials of some continuous functlons
For every n, let K, denote the closure of the ball B(0, n), and let g, = g¥" be the
function constructed, in Lemma.5.3. Given t >0 and TeZ,
IE e—qu(XT))__E (e_aTgn(XT))l <I +I +13

with
' I = |E, [6'“Tf(XT) e'“‘“”f(XTM)]I,
Iz = |E, [e_“‘T“"(f(X:m) g,.(Xm))]I

= |E,[e7*Tg,(X ) —e™*T*g, (X1, )]I.

Then I, < 2e‘°"||f|| and I, < 2e‘°“(||f|l‘,o +n~1).Fix¢ > 0and choose . such.

that I, +1; <e. Given any n, set T, = inf{t: X,¢K,}. Then
I, < sup{lf—g(x); xeK,}+ QI flo+n"YPAT At > T)
"‘+(2ilf||w+n"‘)1’x(t T).

Thus Lemma 5.1 shows that one can choose N such that I, <¢€ for n> N.
Hence

sup{|E,(e e[ f(X )~ —4.(X ) Ted, xeR} < 2

. for each n > N, and the sequence of contmuous functlons R”‘g,, converges‘

uniformly to Rg. w
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APPENDIX

- In thlS Appendlx we. prove Theorem 42 ie., the cont1nu1ty of the map
x> P for a Feller sem1group on a compact space E.

(a) The proof reduces to showing that (P,; x € E) is tight. Indeed, let (P,,)
converge to a probability P on Q. Since E is compact, extract'a subsequence
(still denoted by (x,)) such that x, converges to x. By Proposition 4.1 (b) choose
a countable dense I = R, and a P-null N such that w> o, is continuous for
w¢N and rel. Let R

[ fX)ex).

'1sk

The ch01ce of I ensures that E.(h— fth On the other hand for every, yeE “

E,(h) = z.(f1 o-ulfa- (P L) )(y)

Since (P,) is Feller the func’uon E (h)is contlnuous and E, (h) - E (h) Hence
both probabilities P and P, coincide on (]}, and the monotone class theorem
shows that they are equal on o(#; (I)) Z.

. (b) To establish the tightness of a sequence (P, ; neN) of probabllltles on
.Q we use the following criteria due to Aldous [1] (see also [16]). The following
cond:tlons are satisfied: _

(i) The laws of w, are tlght on E .

(11) For every € > 0, :

lim hmsup sup sup- Px,,(d(a)”s, coT)>e) 0,
h—0 _n TeT 0<s<h '

where d denotes the Skorokhod metric on Q
Since E is compact, condition (i) is trivially satisfied. To prove that (11)
holds, we apply the strong Markov_property, for every yeE,

P,(d(@r, @r.,) > 8) = B, (Pord(@,, ) > £)) < sup P, {d(®,, wo) > ).

yeE
Hence the proof of (ii) reduces”'to showing that |

lim sup sup P,(d(w,, wg) > ) =0.

" h—0 xeE 0<s<h -

This is Dynkin’s stochastic continuity pfoperty [11],‘ which is always satisfied
by a Feller process: on a compact set. We briefly sketch the proof. Set.

qu)=1-ufe if u<e and q(g);o.if u>e.

The - function ¢.(-) = g(d(x, -)) is continuous, and |¢,—¢,| < d(x, y)e. Fix
0 < a < &% and let (x;; 1 < i < k) be the centers of balls of radius « covering the
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compact set E. Gi;'en xeE, let-rx,. be such that d(x, x;) <a »Then,_ for every s,
Pl @) > ) = Pits, 0) > ) < .09~ E,(¢:()
<) — b, ()] + [, () — E ¢x‘(w )|+ Ex(|6x,— ¢l (e ))
< 20/e+ ¢ (x) —E (¢x!(ws))|

Smce (P) is a Feller sem1group and since ¢, is contmuous we have.

‘lim sup sup |¢xl(x) P ¢x,(x)|—0 -

h—>0 OSs<h x

"Remark. Theorem 4.2 is also true for Markov processes Wthh are Feller
in the following weaker sense: U*(C(E)) = C(E) for each « > 0, and aU*f— f
pointwise as o — oo for each feC(E). Indeed, in part (a). of the proof, replace
the class of r.v.’s =#(I) by the following class #, made of random variables h:

h=L0,f15 05 Ao f) = n § _Mf( :)dt

) . 1Ki<k [0,+ o]

for k> 1, 2,60 and f; in a dense subset of C(E).
The characterlzatlon of potentials given in [14], p. 38, shows that E (h) is -
the A=Y A potential of the function P,g, with

gx)=_ Y fE(L- 1(/11,f1, s Ao S A )
1<k ‘ .
in wich * indicates the quantity which has been omitted. Since U*P,=U% an
- easy induction argument together with the weaker Feller property shows that
E (h) is the potential of a continuous functlon g on E The contmulty of
potentlals shows that '

Ex,.(h) U‘g(x)—’U‘g(X) -E (h)

The proof of (b) carries over without change. Indeed, the last convergence
property can be checked on potentlals Wthh are dense’in C (E) for the uniform
topology.
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