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. BY L : -
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, Abstract. An omnibus test of fit for Cox’s proportional hazards

" regression model is proposed for continuous data. The procedure is
_extended to a random censorship model. Density estimation methods
are used. ‘

1. Intreduction. One of the principal models of failure time data analysis is
the proportional hazards model of Cox [6], [7]. This semiparametric model
has been assumed as the underlying structure in numerous instances, and so it
is lmportant to have a test which can be used to determine whether. it is
appropriate in a given situation or not. Bednarski [3] shows how the Cox
estimator can misbehave if the model is not correct. We propose an omnibus.
test procedure in which the test statistic is asymptotically normal under the
null hypothesis that Cox’s model is true. The results are generalized to the
random censorship case in Section 4 (cf. Theorem 4.1). '

Our approach is based on density function estimates. Although their
convergence rate is slower than that of the sample distribution function, they
enjoy the desirable property that thelr limiting distribution does not depend on
the fact that parameters of the model must be estimated. For an approach
based on the sample distribution function, the results of Durbin [8] and Burke
et al. [4] indicate that the limiting behavior would depend on the parametric
family of distribution functions underlying the model and possibly on the
values of the unknown parameters.

Previous approaches are mostly based ‘'on data analytic techniques (e.g.,
Kay {12]; Andersen [1] and Schoenfeld [15]). Schoenfeld [14] proposed a class
of chi-squared tests where  p-dimensional Euclidean space is partitioned into
a finite number of classes. His approach, thus, discretizes the data and, by
choosing different partitions, one arrives at different tests in the continuous
case. While there are many ingredients in the density approach which can be
varied (kernel function, bandwrdth), this approach seems more natural in view
of the model’s definition in the continuous case. The monograph by Prakasa,
Rao [13] gives a good survey of density estimation results. Horvath [10]
obtained asymptotic normality for L, -norms of multivariate densities.
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We define the hazard rate function of a random variahle T given Z as

(1.1) AMt,2)=lim Q)" 'P{t<T<t+4t| T>2t,Z =1z},
: 410

where T denotes the failure time and Z is the (p— 1)-dimensional covariate or

regressor varlable Our null hypothes1s is that Cox’s model 1s true

(1.2) C Hy A 2) = Ae)e?,

where B is an unknown (p— 1)-vector. of regression parameters and. 4,(t) an
unknown base-line hazard function. Our results will also be true if we replace
e’? by a known function #(z, f) for which »(0, f) = 1. '

Our test procedure will be based on the fact that H, is equivalent to

(13) : o Mt, 2)e” % = Ao(0),

being a function of ¢ only.
Let F(t, z) denote the joint. survwal functwn of (T, Z), that 1s,

t14) e Ft2)=P{T 2t, Z <z},

We assume that the correspondlng densny f (t Z) exnsts Hence A(t 2) of (1.1)
can be, wntten as _—

5. z')‘=”f(r,.z)'[g(t, z)j*l;
where AV - o R o
(1.6) _ g(t, 2) = (6""1/621,.‘. 0z, 1)F(t z)

Statement (1.5) is well defined if the denomlnator is not zero. Our approach is
to estimate § by f,, Cox’s [7] partial likelihood estimator, the density f by f,,,'
.a p-variate kernel estimate, and the derivative g by the estlmator g, of (1 10)
' below We then arrive at the process ' :

a7n - X, (¢, z,w i : - S
=St Daut, 21 exp{—F,z} ¢, Wgnt, w1~ exp{—Fw}..
Under H, and in view of (1. 3) each term in the difference (1.7) is an

-estimate of the base-line hazard rate zlo(t) We will estabhsh the. asymptotlc
normality of - : e

18 _’ “_[Xz(t z, w)dtdzdw

where D = (0, Q)xM2 (cf Condition 2.1 (a)). '
" Let (T;; 2y, (T Zy), ... (T, Z ) be mdependent random vectors w1th‘
surv1va1 function (14) and let ‘ . ,

i=1

Fu,0)=n"t Y I{T>u, Z,<v)
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denote the empirical survival function, ue R, ve R?~*. For the kernel function
K(u, v) satisfying Condition 2.1 (c), we define

(19) £t 2) = — [P Kb [(t, )~ (u, )]]dF,(u, 2
= -t Y K[bU—T, 2~ Z))],

where the “bandwidth” sequence of constants- {b =b,} satisfies Condi-
tion 2.1 (e). Next, with the kernel function K, satisfying Condltlon 2 1 (d), we
define

(1.10) - gnlt, 2) = Ibf‘”'l’Kz[b"(z, v)]d,F, (¢, v)
| = (nb)~C~ D z K,[b7'—Z)IH{T > ).

Lastly, let f, be the sequence of estimators obtained by max1mlzmg the partial
hkehhood (Cox [6], [7]): , _
L) = H {exp{ﬂzi}( Z exp {ﬁZ,-})"l},
ieS ' JeR(ti)

where S is the set of indices 1, 2, ..., n corresponding to individuals who died
(failed), t, is the failure time of the 1-th individual, and R(z) is the set of indices
corresponding to individuals who survived until time t¢;.

In Section 2 we give the main results for the. uncensored case. The proofs
are indicated in Section 3. Although these results may be considered as
preliminary to the results on randomly censored data (Section 4), they are of
‘interest in their own right. (The behavior of Cox’s partial likelihood estimator
under a sequence of local alternatives is treated in Burke and Gombay [5].) We
follow the approach of Hall [9] in our handling of density-type estimators.

2. The uncensored case. We will assume the following conditions:

CoNDITION 2.1. (a) Let % = (0, Q) x M be the support of (T, Z), where M is
a bounded subset of RP~™! having (finite) Lebesgue measure A,

(b) Let f be the joint density of (T, Z). Assume that all partial derivatives
of order 2 are bounded and uniformly continuous on RP.

(c) Let K be a p-variaté density function satisfying
fu, K(u)du = 0,. j'u qu(u)du = Cd;; < o0

for each i,j=1,2,...,p, where the constant C does not depend on i and
O;;=11if i=}j, and 5” = 0 otherwise.

(d) Let K be a (p—1)-variate density functlon satlsfylng
fuK,(wdu=0, [uuK,udu=Cé;< oo
for each i,j=1,2,...,p—1, where C is independent of i.

9 — PAMS 131
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(e b=b,is a nonihcreasirlg sequence of positive numbers such that-
nb? > o0 and - mb?** >0 ‘asm—>oco. ' A
The main result of this paper is t '

. THEOREM 2.2. Under Condltwns 2.1 and the null hypotheszs H, defined by
(1.2), we have

@D o mbP W) 5> NO, ),
where W2 is defned by (1.8), u= ﬂ1n+#zn+/13,,, wu‘h
=nb?") 7124y | sz(v)az(x) f (x —bv)dvdx,

¥ e
(222 = (mbP~ 1)~ 1. 2,1 (N %(vz)g(t, z— bvz)dv2 dzdt,
% Rp-1

= —4(nbr" 1) 1 ja(x)r(x) 5 | K(u)_K;(bz) £(x—bv)dv,dv,dx;

and TR _

(2.3) | =84y (4 o(t)az(r, z)-j[jK(u)K(u,—v)dv]zdu,_
‘withﬁ' , _‘@/_  | et e
24) A a(t Z)— [a@, Z)ezﬁ] L

Remark 23 To use the: result of Theorem 22 as a test of the null
hypothesis H, of (1.2),-one can estimate y, ¢ of (2.2), (2.3) by 4, 6, where i and
G are deﬁned like 4 and ¢ but with f, g and B replaced by f.» g, and: B,
respectively. It is easy to show that I .

ﬁ r'rb”’z""l(W2 y)—»N(O 1)
under H Hence H, would be re]ected if
b2 WE =) 2 2y,

where z, ., is the (14a)100'percentile of the standard_ normal distribution.
As an alternative to a test based on W,2, one can also consider the vector
' én = [Xn(t1:’ Zla wl);v-a Xn(tka Zk’Awk)]‘

and establish : ' » :

THEOREM 2.4. Assume that Condltlons 2.1 hold and that the support of Kis
finite. Then, as n—» o,

(nb?)é, —> N,

where N is a k-variate normal distribution with zero mean and covariance matrix
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Z having | entries
oy = [a(y;, z)a(ty,z)) f(t;, z)—alt;, z)alty, w) f (i, 2)
—alt, waltp 2) f (1 W) | '
+&(ti; wpa(t;, w)) f(t;, w)] sz(v)dv;

As a consequence of Theorem 2.4, by replacing Z by its estimator Z as in
Remark 2.3, we have

nb")E, 27 & 5 12 (R),
where x%(k) is a chi-square dlstrlbutlon Wlth k degrees of freedom The test:
reject H, of (1.2) if :
(nbp)én..z_-lg:n > Xl-a,ka
where S : -
P{Xz(k) < x%—a.k} =1-a

is an asymptdtically a-level test which would detect departures from H, at
a finite number of points.

3. Proof of the uncensored results. We hérewith sketch the proofs of the
results. Details of the proofs can be found in the technical report of Burke and

Gombay [5]. _ _ ~ L.
We will consider a closely related statistic to. that of ‘W2, namely
@3.1) _ W] = ([ IXO(, 2, w3 dedzdw,
_ v . 3 ‘
where

32 XV, z, w)—a(t z)[f t, 2—f(, z)] a(t w)[f (t w)—f , w)]
—r(t, Z)[g (t z)—g(t, Z)]+r(t W)[g,.(t w)—g(t, W)]

alt, z) is deﬁned by (24), and r(t z) [, z)a(t z)g(t z)‘ We will prove rthe
following ’ L

THEOREM 3.1. Under the conditions of Theorem 2.2,
b2~ { (WP —p) —» N0, 1)  as n— oo,
where u and o are defined by (2 2) and (2 3) respectwely, and W is defined
by (3.1).

We have the expansion
(W=} T,

i=1
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wherc

j”{a(t DL, z)—f(t z2)J—a(t, w)Lf,t, w)—f(t, w)]}zdtdzdw

T'z = ij{r(ts Z)[gn(ta Z)_g(t’ z)]—r(t, w)[g,,(t,w)—g(t, W)]}zdtdZdW,
B '
(3.3) '
T, = —4iy ”a(t, 2)r(e, 2)[ £, 2)—f (¢, 2)]1ga(t, 2)—g(¢, 2)]dtdz,
=4 ”ja(t [ £ ¢, 2)—f (¢, 2)]rt, w)g,(t, w)—gl(t, w)]dtdzdw

We w1ll first consider T, and write

T'I = Z T'li,
i=1
where

=H f{att, DA D~ Ef (. 2] -alt, WA, W)—Ef @, W)]}zdtdzdw,

T, = j § {a(t 2)[Ef, (¢, z)—f(t 2)]—aft, w)[Ef,,(t w)—f(t w)]}zdtdzdw
(34)
Ty = 41,\,5 fa*(t, D1, 2)—Ef (¢, DI[EL(E, 2)—f (t, 2)]dtdz, -

Tia=4 j'”a(t, z)a(t; w)[f,,(t, 2)—Ef.(t, D1[EL.(t, w)—f (¢, w)]dtdzdw.

Under Condltlons 2.1,
(3.5) ' suplEf(t z) —f(t, 2)— b2 sz(t z)| -0,

" where I72 f is the Laplacnan and Cis a constant Hence as n — oo, we obtain
(3.6) Tz = 0(*).
LEMMA 3.2, Under Conditions 2.1,
Ti; 42y b*n~ 102 qus)'-Z,
where Z is a standard inormal. (0, 1) random variable, C is a constant, and
0ts = ;a“[sz]zf—[iaz(sz)f]z-
Lemma 3.3. Under Conditions 2.1,
Tia T(‘”’z"-l/zco'u)'Z,
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where Z is a standard normal random variable, C is a constant, and

o1a = [[a*@t, 2)m*(t) £ (¢, 2)drdz —[ {§ a(t, 2)m(e) £ (t, z) drdz]?
@ )

with
(3.7  m(t) = { a(t, w2 (t, wydw.

As a consequence of (3.6) and Lemmas 3.2 and 3.3 we have
(3.8) nb?*(Ty,+ Tys+ Tia) 520 as n— co.

Hence the term T;; determines the asymptotic distribution of T, which is
described by :

LeMMA 34. Under Conditions 2.1, nb"/i 1(T ,ul,,) —* Z, where Z is
a standard normal random var:able Hin and o are def ned. by (2 2) and (2 3)
respectwely

'~ We can treat the term T,0of (33)in a similar manner to that of T, and

write
Z T,

where Tz, is defined like T;; in (3.4) but with g and r replacing f and a,
respectively. We then obtain

(3.9) nb"’z(T22+T23+T24) -0 asn-oo
in a similar way to (3.8). |
LemMMA 3.5. Under Conditions 2 1, _
nb”"z(T ~ #2a) 5 0 as n— 60,
where Uza is defined by (2.2). |

Since g, is a (p— 1)-dimensional kernel éstimator, the deviation of T, from
1ts mean is asymptotlcally neghglble as comparcd to T,. Similarly, we have

LeMMA 3.6. Under Condztlons 21
nb?(T; — p3s) -+ 0, nb?2 T, -0 as n— oo,

where ’1"3 and T, are defi ned by (3.3) and ys,. is defi ned by 2. 2)

Proof of Theorem 3.1. The theorem follows directly from (3. 8) 3.9)
and Lemmas 3.4, 3.5 and 3.6. :

Proof of Theorem 22. We have
W = 5 JIIXO@, z, w4 R, (¢, z, w)}Pdidzdw
D L _

= (WP +2 [ XOR,+ [[fR2,
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where

R, (t; z, w)= Z [Rin(t, 2)— Rin(t, w)]
and -

Rua(t, 2) = f(t, 2)g(t, 2)~ ' [exp{—fz} —exp{—pz}],
Rat, 2) = [9,(t, D9(t, Dexp{f}17' £t —f &, A9 (t. =g, 2],
(.10) Ranlt, 2) =£ (¢, Da,(t> Dglt, 2] Texp{—Fz} |
e e —exp{—Bz}1[g(t, 2)—g,(t, 2],
Ranlt, 2 =1 ¢, 940, )9, z)exp{ I?Z}] '[g(t, 2)—gult, 217

Under condltlons weaker than ours, T31at1s [16] has shown that nt z(ﬁ ﬂ) is
asymptotically normal with zero mean and finite variance. For another
approach, see Andersen and Borgan [2]. Hence, by the mean value theorem,

exp{fz} —exp{fz} = 0,(n" %),
uniformly in ze M. Since f, is a uniformly eonsistent estimator of f, we have
o sup |Ry,(t, 2)| = 0, 42). - |
Consequently, y

| j {a(t, z)[f(t 2 f(t z)]Rl,,(t z)dtdzdw—-o (nb?12).

Using similar calculations to those ab0ve, we obtam '

G.11) [[§XOR, = o,@mb??), [[[R2 = b,,‘(nb"’z)'
D ' D E

Hence Theorem 2.2 follows from (3.11)"and Theorem 3.1. = e

Remark 3.7. We have assumed throughout that nb?*# — 0. The cases
nb?** ¢ and nb?** - o can also be treated with an asymptotic normal
result. However, in these cases the terms T, and T;; (i = 1, 2, 3, 4) are the ones
determining the asymptotic behavior of [W1'}? (ct, e. g, Lemmas 3.2 and 3.3).
~ The résulting asymptotic variance would be too comphcated for this approach
to’ be practical. : o 8 :

Proof of Theorem 2.4. The proof follows asin the proof of Theorem 2.2
above. We can replace £, by :

6(1) = [X(l)(tls zla 1)’ . Xsll)(tk!‘zk; Wk)]a ‘
that is, L .
@b?) )&, — S 0.
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The vector &1 is a sum of independent random vectors with zero mean and
covariance matrix (nb?)”' X +o((nb?)"!). Note. that
@) D, D—g(t. 2)] 0.
On applying a central limit theorem the theorem is proved. =

. 4. The censored case. Suppose that the survival times T;, T, ..., T, of
n individuals are subject to random censoring by the random varlables
C;, Gy, ..., C,, which are assumed to be independent. Moreover, T; and C, are
assumed to be conditionally independent given the covariate vector Z;
(cf. Tsiatis [16]). The observable time until death will be denoted by
Y, = min{T; C}andleté—I{Y T}, i=1,2,. G S
Let F * denote a joint “survival” function of Y and Z,
F*t,z)=P{Y2t,Z<z},
where 0 <t < Q and zeM < R?™! (cf. Condition 2.1). Let
@.1) G*(t, 2) = " YYozy, ..., 02, 1F*(t, 2).
Then, if f; is the marginal density of Z and if
: F(t|z) P{T: >t| Z;=z}, : _‘G(‘tlz)-v——P'{Ciﬂ> t| Z,= z},
we have - L e S
< g*, 2) = [(F (| )G(tlz) o
by the conditional independence of T, and C,, given Z,. Also,

(“4.2) Aty 2) = fit, 2)[g* (@ 2177,

where o | , . B

(4.3) f, 2) =' —(é?/at, 02y, .00, 02p-)P{Y; > 1,6, = 1, Z, < z}
=/ 96n | L

is the _]omt subdensny of ¥, and Z with ¥, =T, (uncensored),‘ and f is the joint

dens1ty of (T;, Z)).

To proceed with our test of H, of (1 2) i in this random censorshlp case we
estimate 4 by .

R, 2 =7, 2lgke, Z)]”

where -
Fift, 2) = b7 [K(b[(¢, 2)—(u, V)])dF,(u, v),

4.4) o T -

gr(t,2)=b"@"V fK, (b~ [z—v])d,FX(t, v)



136 M. D. Burke and E. - Gombay

and

Fuo=n'tY H{Y,>u Z,<v,6,=1},
i=1 -

Ftu,v)=n"! Z Y, > u, Z, < v}.

- Note that both F ‘and F¥ 'are based on the observed data Y, Z, 5-)
i= 1 2,.

Let E denote the Cox estimator for the (p—1)- vector ﬁ (cf Tsiatis [16])
We arrive at the process correspondmg to (1.7):

4.5) X*(t z, w) = f' (t, gt 2] exp{—fz}

, (e, Wlgk(t, w1~ exp{—fw}
and to the statiétic corresponding to (1.8):
(4.6) R = [ j'[X*(t z, w)]*dtdzdw,

“ where f, and g* are defined by (4 4)."
We have

THEOREM 4.1. Assume Conditions 2.1 hold with f and g replaced by fand g*,
respectively. Then the concluszo_ns of Theorems 2.2 and 2.4 and Remark 2.3 hold
for (W*)? and X¥ with f and g replaced by f and g*, respectively.

The proof of Theorem 4.1 follows from the arguments in Section 3 and on
noting (4.2).
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