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Abstract. The purpose of th’c'prment paper is to prove a stochas-
tic Taylor formula for two-parameter processes which extends the '
results of W. Wagner and E. Platen in the one-parameter case

(cf. [53-7D)

. 1. Introduction and notation. Let (2, %, P) be a ‘complete probability
system and let < be the natural ordering in R, ie., for (s, t)eR3, i=1,2,
(81, 14) < (53, £y)if sy < sy and g, < t,. An integrable process M = {M_, ze R} }
is said to be a martingale (w.r.t. an increasing family {.fz, ze Ri} of sub-o-fields
of F)if it is {#,}-adapted and E(M,. | &) = M, for any z < z'. In this paper we
~ assume that the family {#,} satisfies the usual condmons in [3] or [4]. Given

~p =1 let m? be the class of all continuous martingales M such that M, = 0 on
the axes and sup, E|M,|’ < + 0. If p > 2 and Mem, we denote by M and
(M), (M), {M, Du- (M >, the martingale and the continuous versions of
quadratic variations of the martingales (cf. [3])

Let B={1,2,...,7} and A={@}u(|J,., B), where B denotes the

I-fold Cartesian product of the set B. Further, let ) and Y be functlons from the

set B into {1, 2, 3, 4} such that : ,
p(D=1, 0@ =...=0()=2," ¢6)=3, <P(7)=
YO =YD =1, ¥@)=...=¥()=
eI,
! ifaeB,I1>1,
and if = .(ozl',. vy oc,)eA\{Q} we put’ '

Given ac A, set

. ] » .
el = 2¢m,¢@e;ww;

P ifl=1,
IR (7P i 1> 2. '
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The composition of the vectors a = (2, ..., o) and- ﬁ (Bl, .oy B 18
defined by a*f = (a,, ..., o, Bys ... Bo)- _
For a continuous stochastic function h defined on R% and adapted to %,
we put
I,(h, s, t) = | h(z)dM,, Iz(h s, t) = { h(z)dM,,

R Rst
L 5.0 = [hx, 0dCM > Lulh, 5,0 = 1 [his, A<M, ),

(L.1) 4 3
Isth, 5,10 = —3 [ h(x)d<M),, "Is(h, s,0)= — [ h(z)d{M, M),

Rt Rse

Ih,s, )= ~% | h(Z)d<M>z,
where R, = {zeR%: 2 < (5, 1)} o
Ifacdisa multl 1ndex we deﬁne inductively a multiple stochastlc integral
I, by
_ : h(z) ifa=0,
L. =
(12 L. 9 {a_(Im(h 12 i a=(, ), 13

In what follows we shall use the following Ito formula for functions of

- two-parameter martmga]es due to Nualart [4].

Suppose that f: R— R is a function belonglng to C* and f )= .0 and “
suppose that M is a martmgale in mc Then for any (s, t)eR% we have

(1-3) f(Mst)_ If(Mz)dM + If"(M )M, +3 If”(sz)d<Mr>

Rn . Rst .

+3 If"(Msy)d<M> -3 f”(Mz)d<M>z

“Rat!
- If”’(M )d<M M) -1 ff“’(M)d<M>
Rn : t N T Rnt :

Usmg the notation (1.1) we can rewrite (1.3) as follows
(1.3) e fmM)= Y Ia(DA”“”foM, z).

la|]=1 ’

From the above formula we shall introduce a wide class of M-differentiable
processes and prove a Taylor formula for this class. We also obtain estimations
of errors for such an expansion and apply these results to the problem of the
approximation of stochastic processes by stochastic polynomials.

DEerFINITION 1.1. Let M em?. A stochastic process f= {f(z), ze R% } is said
to be n-times M-differentiable (or belonging to the class C7,) if there exist
continuous stochastic processes { fa(z), 1 < |o| < n} such that for any zeR%:

(14 L f@O=1O+ ZI (for 25
. f(Z) =L0+ 2 I(fap,2) (1<l <m).

* BeB



A stochastic Taylor formula 151

2. Stochastic Taylor formula.

THEOREM 2.1. Suppose that f {f(2), ze R%} is an n-times M- dszerentzablé
stochastic process where Mem?, n > 1. Then for each zeR%:

(2-1) - f@=10+ Y L(£O):2+ ¥ L 2)-

0<|a|<n laj=n

Proof (by induction). (i) For n =1, (2. 1) follows from (1 4)
(ii) Suppose that (2 1) is true for any n= m Then

@)  f@=fO+ I L{0.9+ T L 2.

O<|al<m lal=m
According to Definition 1.1 and induction ‘a:ssi.lmption‘, for each e B™
[, is 1-time M-differentiable. Hence

23) 1) = 10) + zlﬂ(ﬁ*ﬂ,z) (@eBM.

BeB

From (2.2) and (2.3) we have
f@Q=fO0+ Y IL(L0),2+ ) I(f(0) )+ Z ZI(Iﬁ(ﬁuﬂsz»

) O0<ja|<m ' |aj= =m ’ |a| mﬂeB .
'=f‘(0)+0 Hz’ 1 L), 2)+ zpla.ﬂ(fm,,, 2)
-0+ Hzf L0, )+ ”z L(fu 9,

which shows that (2. 1) also holds for n'= m+1. The proof is complete

THEOREM 2.2. Suppose that Mem? and let C™ be the class of all real
Junctions defined on R +» m-times. continuously differentiable. Then

2.4) {foM fe c4"} cCy (1)
and R
2.5) f(M) O+ Y I(D”“"f(O) I+ ¥ I(D”““foM 2

0<|al<n |a) = =n -

for any feC*" and aﬁy zeR2

Proof (by lnductlon) (a) Suppose that fe C“ then g = f—f (O)EC4 and
9(0) = '
Applymg the two -parameter It6 formula (1 3’) for goM we get
(M)—- Z I(D”“”goM z)
. la| =1
Honce:_ N , _,
(2.6) » f(M,) f(0)+ Y. I D""”foM ),

la]=1
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which shows that F =foMeCyy, ie., (24) holds for n = 1. Moreover, the
functions F, in Definition 1.1 are of the form , :

2.7 - F,=DllfoM. _

Now we suppose that (2. 4) holds for n = m > 1 and (2.7) is true for every
o with |o| < m. _

Let f be an arbitrary function in- C‘“’"“’ It is clear that Dl*lfe C* for
any ae B™ and F =foMeCp, and (2.7) holds for aez B! (by induction

assumption). Applying the Itd formula (1 3) for each F = D”““ foM w1thv
le| =m we get ;

181=1

—D“““f(O)+ Y I(D""*”"foM z) zER+,
7, 181=1

where D!I*#lf js continuous.

Thus, by Definition 1.1, F,e C}; (xe B™), and F=foMeCy"l. More-
over, for aeB™*!, F, —D”“”foM

Hence (2.4) and (2 7) hold for n = m+1.

(b) Now (2. 5) follows from (2 4) (2 7) and Theorem 21 The proof is
complete.

Remark 2.1. Putting [ (z) =1 (1 z) we -get I (h z)= h-Ia(z) for any
h = const. Therefore, (2.5) can be wrltten as follows: .

M) =fO+ Y DIIfOLE+ Y I(D”""foM 2).

o<|[ef<n lel =n

EXAMPLE. (a) Let fe)=Y,_ oakx (a, #0). From (2 5) we have
M) =+ Y (llall')anauI(Z)

o<iiali<n
(b) eM= = 1+ZO<|¢|<nI (Z)+ Z]al nI (e )

3. Estimation of errors. We denote by md; a subclass of m such that
Memd iff the following domination’ condition is satisfied:

There exist continuous increasing non-stochastic functions /11, A, > 0o0n
RY such that

: . M) (B) < (4,®4,)(B), <M>(B)<(/1 ®/12)(B)

for all Borel subsets B of R% B _
M M3 <Al 1< 12,55
(M= M.y, < DOy =24 (50)s 83 <5, £

It is obvious that the class m% contains all two-parameter Wlener

:Ar,Faj(z) Ilallf(M ) = Dllallf(0)+ Z I (DllﬁIIDHallfoM z)

0,
0.

processes.
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THEOREM 3.1. Suppose that M em?; and f € C. Furthermore, suppose that
there exist numbers A, and B, such that

6D Ki=swEILE <4, B, aeB".

Then : zsz0 -
(32 sup Elf @-fO)- . % L(£0), 2)|]* < 4, B3/(nY),

where B, is a positive constant depending only on A,®4,(z,) and B,.
LemMA 3.1. Let h: R,,— R be a continuous adapted process such that

SUp, <z, E|h(2)> < K. Then for any aeA\{ﬁ} :

(3.3) - ElL(G, Z)I2 K [/1 ®iz(2)]""“’/(lal')

for any zeR,,.

Proof of Lemma 3.1. By the isometry property of the stochastic integral
(cf. [1]) and the Schwarz inequality we infer that (3.3) holds for any ae B!
Suppose that (3.3) is true for every ae B". Let & = ay*ae B'I+1 be any but fixed
and oyeB. Applying the same inequalities, for M e mcd we get ' !

(34  ElL, s, 1y

(| EIL(k, x, y2dA, (x)dzz(y)“ for ap=1,2,
Z(s)/i 2() jElI,(h x, O diy(x)  forog=3,

= <'AZ(s)Az(r)jEu (h s, Pdi,0) ~ for ag=4,
4940 5E|1 (h, x, YPdA,()dAy() for ag =S5, 6,7,

!t

~ where 21, A, are the same as-at the beglnnmg of Section 3.

- By (3 4) and. induction assumption, we get

(K[ @2, @) ~
W@ e h
K[ ®@4LEM*2 -
Ell(h, 2)I* < < )b @ + 1T for ay =3, 4,
; K[M@iz(z)]mahz, , L ‘;‘
@ =36 T

" Moreover, ;since"/qﬁ(o:) = |of and Y@= |/i(oz)-i—'v,b(a0),‘ we have
e K[1,®4L,@1® |

(Ial) ,
Hence (3.3) is true for any ausB"+1 which oomplet&s the proof of Lemma 3 L

E|L(h, 2 <

for any z< z0
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‘Proof of Theorem 3.1. Let :
R,(2):=E|f@)~f©0)- 2 LR, 9P - E_I T LU 2.
By Buniakovsky’s inequality and from (3.1) and @G. 3) we have
R,(2)< T |u|ZnElI «(fo P
<A4,;-7 Y [BA ®/12(z)]"’("’/(n‘) for’ any z <z
Hence by the tnedu:‘lllt; |ot| |//(a) 2|« for any aeA anct the equahty
card{aeA: o] =n} =7" for n2>1, we obtain

sup R,(z) < 4, 7"[B, A ®1z(zo) v 1]2"/("‘)
. —A “B3/(n!), ’

where B, = {7[B A ®Az(zo) v 1]}2 and av b = max{a b} Wthh completes
the proof of Theorem 3.1..

" Remark 3.1. The expression

@t Y a Ia(z), where a,, a,€R,

o o<lalsn G- SR
can be considered as a stochastic polynomzal of degree n. Thus (3.1) is a sufficient
condition for the approximation ‘of a process by stochastic polynomials.

COROLLARY 31. Let feC® and suppose that there exlsts a constant By > 1 '
such that '

(3.5) . . sup|D¥(x)) < BY  for k=1,2,...
’ xeR )
Then for any Mem}; and any zyeR% we get -
(3.6) lim sup E|f(M,)— ¥ DllfOL@)*=0.
n>w zeRz, O<jal<nm -~

Proof of Corollary 3.1. By (3.5) we have
sup D4 (M, ) < B -for k> 1.

Hence .
3.7 sup EID”"’”f(M M < < B3l < B3¥®  for any ae A\{@}.
z<z9 B, : T

It follows from (3.7) and Theorem 3.1 that for any z,€ R% altd everyn = 1

(38) R,:=swE|f(M)~ Y DIHIfQLE] <B Y n+1),
z€zp . O<|a|<n ’ . I

where B, = [7(B34, ®4,(z0) v 1)]*.

By (3.8) we get lim, . , R, ='0, which completes the proof of Corollary 3.1.
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