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Abstract. The purpose of the present paper is to prove a stochas- 
tic Taylor formula for two-parameter processes which extends the 
results of W. Wagner and E. Platen in the one-parameter case 
(6. C51-C71). 

1. Introduction and notation. Let (a, 9, P) be a complete probability 
system and let < be the natural ordering in R: , i.e., for (si, ti)€ R:, i = 1, 2, 
(sl, < (s2, t3 if sl < s2 and t ,  ( t ,  . An integrable process M = {Mz, z E R: } 
is sad  to be a martingale (w.r.t. an increasing family {Pz, z E R:} of sub-a-fields 
of 9 )  if it is (9,)-adapted and E(M,, I 9,) = M ,  for any z 6 z'. In this paper we 
assume that the family {FZ) satisfies the usual conditions in [3] or [4]. Given 
p 2 1 let mf be the class of all continuous martingales M such that M, = 0 on 
the axes and sup, EIM,IP < -t a. If p 2 2 and M E  mf, we denote by # and 
{M),, {a),, (M,),, (M. , ) ,  the martingale and the continuous versions of 
quadratic variations of the martingales (cf. [3]). 

Let B = (1,2, . . . , 7) and A = {O) u (U:, B'), where B1 denotes the 
I-fold Cartesian product of the set B. Further, let cp and $ be functions from the 
set B into {1, 2, 3, 4) such that 

Given a E A, set 
0 if a = @ ,  
I X ~ E B ! , I > I ,  

and if a = (aI, . . . , a,) E A\{@}, we put 
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The composition of the vectors a = (a,, . . . , a,) and P = ( / I , ,  . . . , 8,) is 
defined by a * P = (a,, . . . , a,, P I ,  . . . , P,). 

For a continuous stochastic function h defined on R: and adapted to Fz 
we put 

I , (h , s , t )=  5 h(z)dM,, I , (h ,s , t )= I h(z)da, ,  
Rst Rst 

I,@, s, t )  = -$ h(z)d(U), ,  
Rst 

where R, = { z  E R2+ : z G (s ,  t)}. 
If a E A is a multi-index, we define inductively a multiple stochastic integral 

Ia by 

(1.2) 
if a = B ,  

Ia(h, 2) = 
I ~ ( h , ) , z )  if a = ( u  ,,..., aJ ,  I >  1. rZ) 

In what follows we- shall use the following It6 formula for functions of 
two-parameter martingales due to Nualart [4]. 

Suppose that f :  R -, R is a function belonging to C4 and f (0) = 0 and 
suppose that @ is a martingale in m:. Then for any (s, t ) e R $  we have 

++ Sf "(~, )d(M, . ) , - f  5 f " W J d < M ) ,  
0 Rst . 

' - 5 f"'(M,)d(M9 a ) , - $  5 f ' V ( ~ z ) d ( @ ) z .  
Rat . Rst 

Using the notation (1.1) we can rewrite (1.3) as follows: 

From the above formula we shall introduce a wide class of M-differentiable 
processes and prove a Taylor formula for this class. We also obtain estimations 
of errors for such an expansion and apply these results to the problem of the 
approximation of stochastic processes by stochastic polynomials. 

DEFINITION 1.1. Let M E  m:. A stochastic process f = { f (z) ,  Z E  R$)  is said 
to be n-times M-differentiable (or belonging to the class 6,) if there exist 
continuous stochastic processes { fa(z) ,  1  < la1 < n) such that for any ZER::  

(1.4) f (z)  = f  (o)+ C l a ( f , ,  z), 
UEB 
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2. Stochastic Taylor formula. 
T W J ~ R E M  2.1. Suppose that f = f f (z), Z E  R:) is an n-times M-d~erentiable 

stochastic process where M E  m;, n )/ 1. Then for each z E R2, : 

Proof (by induction). (i) For n = 1, (2.1) follows from (1.4). 
(ii) Suppose that (2.1) is true for any n = m.'Then 

(2.2) f(z)=f(o)+ 2 Ia(f=(0),z)+ C Ia(fa9z). 

According to Definition 1.1 and induction assumption, for each a €  Bm 
fa is 1-time M-daerentiable. Hence 

(2.3) fa(zl) = f, (01 + C IB (h*~ z') (a Bm) . 
BEE 

I From (2.2) and (2.3) we have 

i 
f(z)=f(O)+ C la(f,(O)9~)+ C Ia(fa(O>,z)+ C CIa(Is(fa*p,z)) 

O < l a l < m  la1 = m  Ial = m  BEE 

=f(o)+ C Ia(f,(o),z)+CIa*,(f ,*,,z) 
O < l a l < m + l  a+@ 

=f(O)+ C Za(f,(o)9z)+ C Ia(f,,z), 
O < l a l < m + l  J a l = m + 1  

I which shows that (2.1) also holds for n = m+ 1. The proof is co&lete. 

THEOREM 2.2. Suppose that  ME^; and let Cm be the class of all real 
functions defined on R: , m-times continuously diferentiable. Then 

(2.4) { f o M , f ~ c ~ ~ ) ~ C &  ( n 2 1 )  

and 

(2.5) f(M,)=f(O)+ x z ~ ( D ~ ~ ~ ~ ~ ~ ( o > , z ) +  C 
O < l a l < n  14 = 

for any f €C4" and any z ~ R 2 , .  

Proof (by induction). (a) Suppose that f E C4; then g = f - f (0) E C4 and 
g(0) = 0. 

Applying the two-parameter It8 formula (1.3') for g o  M, we get 

g ( ~ , )  = C ~ ~ ( ~ l l = l l ~ o ~ ,  z). 
la1 = 1 

Hence 

(2.6) f(M,) =f(O)+ x Ia(~'l"llf  0 ~ 9  z), 
Ial= 1 
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which shows that F = f o M E C h ,  i.e., (2.4) holds for n = 1. Moreover, the 
functions Fa in Definition 1.1 are of the form 

Now we suppose that (2.4) holds for n = m 2 1 and (2.7) is true for every 
a with Icll d m. 

Let f be an a~bitrary function in C4("+'). It is clear that Dllallf E C4 for 
any a E Bm and F = f o M E  C;, and (2.7) holds for ol €XI"_,  B' (by induction 
assumption). ~ ~ ~ l j r i n ~  the It8 formula (1.3') for each Fa = Dllallf O M  with 
la1 = m we get 

F,(z)= ~ l l ~ l f ( ~ ~ =  ~ l l ~ l l f ( o ) +  C ~ ~ ( ~ ~ f l ~ ~ ~ ~ l ~ l l f ~ ~ , ~ )  
181 = 1 

= ~ " ~ l l f  (o)+ ~ , ( ~ ~ ~ ~ * f l ~ ~ f  O M ,  z), Z E R ~ , ,  
181 = 1 

where D I I a * 8 1 1  f is continuous. 
Thus, by Definition 1.1, Fa E Ch (a E Bm), and F = f o M E  C",' l .  More- 

over, for a ~ B " + l ,  Fa = Dllallf O M .  

Hence (2.4) and (2.7) hold for n = m+ 1. 

(b) Now (2.5) follows from (2.41, (2.7) and Theorem 2.1. The proof is 
complete. 

Remark 2.1. Putting Ia(zj:= Ia ( l ,  z) we get I,(h, 2)-= h-Ia(z)  for any 
h = const. Therefore, (2.5) can be written as follows: 

EXAMPLE. (a) Let f (x )  = zi = , akxk (a, # 0). From (2.5) we have 
- 

f (Mz) = a,+ C (llall ! ) a l l = l l ~ ~ ( z ) ~  
O <  llall Q n  

M (b) eMz = 1 + Co<lal<nIa(z)+ C/al=nIa(e z). 

3. Estimation of errors. We denote by rn:, a subclass of rn: such that 
M E  m:d i f f  the following domination condition is satisfied: 

There exist continuous increasing non-stochastic functions A,, A, > 0 on 
EZ: such that 

<M)(B)  d (Al@A2)(B), <&(B) G (Al@A2)(B) 

for all Bore1 subsets B of R2,. 

It is obvious that the class rn;* contains all two-parameter Wiener 
processes. 
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THEOREM 3.1. Suppose that M E  m:d and f E C;I;. Furthermore, suppose that 
there exist numbers A ,  and B, such that 

(3.1) K , : = S ~ ~ E ~ ~ , ( Z ) ~ ~ < A ~ - B Y ( " ) ,  UEB".  
z Qzo 

Then 

(3.2) S"PEl f ( z ) - f ( o ) -  Ia(h(0)9z)12GA1mB~/(n!), 
ZCZO O<lal<n 

where B2 is a positive constant depending only on A,@/l,(zo) and B,. 

3.1. Let h: Rz0 + R1 be a continuous adapted process such that 
supzszo E lh(z)12 < K. Then for any a E A\{0) 

(3.3) E lla(h, z)12 < K [A1 &,A2(zll*(")/(lal !) 
for any z E R,. 

Proof of Lemma 3.1. By the isometry property of the stochastic integral 
(cf. [ I ] )  and the Schwarz inequality we infer that (3.3) holds for any a f B 1 .  
Suppose that (3.3) is true for every a E B". Let ti = a, * a E Bn+' be any but fixed 
and aOtzB. Applying the same inequalities, for M ~ m , 4 ,  we get 

I (3.4) E ll,(h, s, t)I2 
I 
I j E lIa(h, x9 y)12dA,(x)dA2(y) for a, = 1, 2, 

I 
< 

for a, = 4,  
0 

( ~ ~ ( s ) ~ ~ ( t )  j EIla(h, x ,  ~ ) 1 ~ d ~ l ( x ) d ~ 2 b )  for a0 = 5,677, 
Rat 

where A,, A, are the same as at the beginning of Section 3. 
By (3.4) and induction assumption, we get 

K [al G ~ A ~  (z)-J*(~)+ 

(la1 !)[$(a) + 112 
for a, = 1, 2 ,  

K [A ,  @A2 (z)]*('"' 
E lI,(h, z)I2 6 

(la1 !)C$(a) + 112 
for a, = 3,4,  

K [A,  @A,(z)]"'")+~ 

(14 !)[$(a)+ 112 
for a,= 5,  6, 7 .  

Moreover, since' $(a) 2 1st and $(&) = #(a) + $(ao), we have 

E lI,(h, dl2 < K [A ,  @A, (~ ) l* (~ )  
(Id !) 

for any z G z,. 
I 

Hence (3.3) is true for any UEB"", which comple.tes the proof of 3.1. 

I 
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Proof of Theorem 3.1. Let 

By Buniakovsky's inequality and from (3.1) and (3.3) we have 

Rn(z) < 7" C E lI,(f,, z)I2 
la1 =n  

< A, .7" 2 [B, A, Q A, (z)]*(")/(n!) for any z < 2,. 
la[ = n  

Hence, by the inequality la1 < $(a) < 214 for any ~ E A  and the equality 
card {a E A: la1 = n} = 7" for n 2 1, we obtain 

sup Rn(z) < A, 72n[B1A1@12(zo) v 1I2'/(n!) 
z s z o  

='A, B",(n!), 

where B, = {7[B1 A, @A,(z,) v 1]12 and a v b : = max (a, b}, which completes 
the proof of Theorem 3.1. 

Remark 3.1. The expression 

a, + where a,, a, E R, 
O < l a l , < n  

can be considered as a stochastic polynomial of degree n. Thus (3.1) is a sufficient 
condition for the approximation of a process by stochastic polynomials. 

COROLLARY 3.1. Let f E Cm and suppose that there exists a constant B, 2 1 
such that 

(3.5) supIDkf(x)l<B! for k = 1 , 2 ,  ... 
xeR 

Then for any M E  m$ and any z,ER$ we get 

(3.6) lim supEl f (~ , ) -  C ~ll~llf(O)I,(z)l~=O. 
n-rw ER.,, O<la l ,<n  

Proof of Corol lary  3.1. By (3.5) we have 

sup IDkf (lLf,)l < Bk, for k 2 1. 
z d z o  

Hence 

(3.7) sup E ~Dll~ll f (MZ)l2 < B$ l l a l l  < B$*(a) for any or E A\{@}. 
z=Zzo 

It follows from (3.7) and Theorem 3.1 that for any z, E W$ and every n 2 1 

(3.8) R,:=supEIf(M,)- C D I I " I ~ ~ ( O ) I , ( Z ) ~ ~ < B ~ + ~ / ( ( ~ + ~ ) ! ) ,  
Z<ZO O < l a l b n  

where B, = [7 (B$/Z, @A, (2,) v I)]'. 
By (3.8) we get lim,,, Rn = 0, which completes the proof of Corollary 3.1. 
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