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'LIMIT LAWS FOR GENERALIZED CONVOLUTIONS
‘ ,‘ BY ,

K. URBANIK (WrOCLAW)

Abstract. The paper deals with stochastically compact sequences
of scalar modifications of powers of probability measures taken in the
sense of a generalized convolution. Our aim is to give a charac-
tenzatlon of all poss1b1e limit laws for these sequences

1. Notation and preliminaries. In this paper we adopt definitions and
notation given in [3] and [4]. In particular, P will denote the space of all Borel
probability measures defined on the positive half-line [0, c0). The space P is
endowed with the topology of weak convergence. For any ae(0, ), T, will
denote the scale change (T, u)(E) = u(a™ ' E) (u€ P). Further, §, will denote the
probability measure concentrated at the point c. A continuous commutative
and associative P-valued binary operation o on P is called a generalized
convolution if it is distributive with respect to the convex combinations of
measures and the operations T, (a > 0), 4, is its unit element and an analogue
of the law of large numbers is fulfilled: S

(1.1) . T.01" >y # 6

for a choice of a normmg sequence ¢, of pos1t1ve numbers. The power 50" is
taken here in the sense of the operatlon o. The limit measure y is uniquely
defined up to a scale change and is called the characteristic measure of the
generalized convolution in ques_tion.' Generalized convolution algebras admit-
ting a non-constant continuous homomorphism into the algebra of real
numbers with the operations of multiplication and convex combinations are
called regular. All generalized convolution algebras under consideration in the
sequel will tacitly be assumed to be regular. Moreover, we shall always assume
that the characteristic measure y has finite g-th moment, where g denotes the
characteristic exponent of the generalized convolution in question. It has been
proved in [3] Theorem 6, that the convolution o admits the characteristic
function, ie., the map p—ji from P into the set of continuous bounded

‘real-valued functions commuting with convex combmatlons and scale change

and fulfilling the condition (zo0 v) = fiv. Moreover, the characteristic functlon
is an integral transform .-

A0 = | 20u(d)
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-with a continuous kernel  satisfying the conditions |Q2(¢)] <1 and
Q@) =1-t1L(),

-where the function L is continuous at the origin and L(0) > 0.

A measure u from P is said to be infinitely divisible if for every positive
integer n there exists a measure u,€P such that y = po". By the condition
L(0) > 0 and Theorem 13 in [3] the family of the charactenstlc functions of
infinitely divisible measures from P comcldes with the family of functions

(1.2) ;L(t) = exp j 7 E)-1

: , o mXx)
where m(x) = mm(l x") and M runs over all fimte Borel ‘measures on the
positive half-line [0, c0). The integrand is defined as its limiting value — L(0)
when x = 0. Changing the scale if necessary we may assume without loss of
generality that L(0) = 1. In what follows the measure x with the characteristic
function given by, formula (1.2) will be denoted by e(M).

‘The paper [S] has been devoted to the study of limit sets consisting of
cluster -points of normalized powers under. a generalized convolution of
‘probability measures. The family F consists of all cluster points of sequences
T, A°", where a, > 0, A€ P, the sequence T,.A°" is conditionally compact and
all its' cluster points are non-degenerate laws. It is clear by Theorem 12 in [3]
that the family F is contained in the family of infinitely divisible probability
measures. Put H = {e(M): MeF}. For ordinary convolution a nice analytic
characterization of the family H has been given by Pruitt in [2]. Our aim is to
extend this result to the case of generalized convolutlons Namely, we shall
prove the following statement:

M (dx),

THEOREM. A measure M belongs to if and only if it does not vamsh
ldentlcally and there exists a positive number ¢ such that

. Midy) _
<1 ) & 5

(1.3) M d y)

for all xe(O oo)

The proof of the necess1ty of the condmon isin the next section. The ﬁnal
section contains the proof of the sufficiency. :

2. The necessnty of the condltlon Suppose that Me H. There exist then
a measure A€ P and a sequence a, of positive numbers such that the sequence
of measures T, A°" is condltlonally compact and its set of cluster points
consists of non- -degenerate measures and contains the measure e(M). By
Theorem 4.1 in [5] we infer that

2.1) ' x1A((x, 0)) ¢ }y“l(dy)
- .o
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for some ¢ >0, x, >0 and all x > x;. Put

22)  MB) =n{my)T,Ady) (n=1,2,..).
. E . :

By the Jurek Theorem on accompanying laws in [1] we conclude that the
measure M is a cluster point of the sequence M,. Suppose that M, . = M.
Further, suppose that x is not an atom of the 11m1tmg measure M Then

® Mnk(dy) = M(dy)

J

.m0y ,;I+ my)

and
[ M, ()| ) M@) a5 k
: M, as k— o0.-
Taking into account the definition (2.2) we have
M) -
) = xa,,k , 0O
A o) (s, o)

and _
Xy,

f y M(dy) e, I i),

whlch by (2 1), ylelds 1nequahty (1.3) for all pos1t1ve x whlch are not atoms of
the measure M. The general case follows from the continuity on the right of
both sides of inequality (1. 3) This completes the proof of the necess1ty of our
, condltlon o

3. The sufficiency of the condition. We may 'restriet ourselves to the case Of
the measures M which are not concentrated at the origin. In fact, if M is
concentrated at 0, then e(M) is of the form T,y, where 7 is the characteristic
measure of the convolution in question. In this case the relation MeH is
a direct consequence of formula (1.1). In what follows we assume that
inequality (1.3) is fulfilled and

(3 1) ‘ _ M((0, oo)) > 0.
We mtroduce aux111ary functlons for xe(O oo)

« [ My 2
f6)=x £ 0= s M@)

and

f < min(x?, y9)

m0) M (dy).

h(x) = f (x)+g(x) =
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It is easy to verify the following formulae:

(3.2) . o limf(x)=lim f{(x)x"?7=0, -

. R _‘,1 @® M(dy)
iy Al
(34) . ' Limg(x) = M®{0}),

. x—0 .
(3.5 | lim g(x) = j' max(1, y)M(dy) > M({0}),
36 ' lim g(x)x“’=0.

Of course, inequality (1.3) can be written in the form .
3.7 v f(x) < cg(x) for xe(0, o).
Observe that, by (3.3) and (3.6),

lim x?y~% "1 (x)g(y) =

x—=0

y=2o
Consequently, we can choose a palr r1, s1 of posmve numbers fulfilling the
conditions r, <1 < s, and :
3. 8  d= sup{x‘y~?f~ 1(x)g(y) x<r,yzs)<l

We start the constructlon by choosing sequences r, >r,>...—0 and
5, <$§<...—~ 00 and settmg A0 =1,

C4,=T] "’—(i) m=1,2,..).

: =1 h(r)
Applyihg (3.2), (34) and (3.5) we get the formula »
39) lim 4, = o.

Moreover, introducing the notatlon B=M ({0})/]’O max(l y)M(dy) we have,
by (3.5),

(3.10) | lim 4! 2 A, = B/(1-B).
LT i=1

- Next, we let pl =rit, t; =pr%h () and, for n>1,

. SISZ...S,,_I -— -1
=22l = prthTi(r) Ay
Py Fily...T, Rt Pn (rn) n—1
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Put J,=(r,,s,] and I,=p,J, (n=1,2,..). Since r,p, = 5S,-1Pn—1, the
intervals I, I,, ... are disjoint and T : S

U I,=(1, o).
Define the sequence ‘Q 1» @, ... of measures on the half- line [0, ) by settmgv

(3.11) 0. (E)=t, _le 1,9 M ((cg)

where 1, denotes the mdlcator of the set Z. It is clear that the measure Q, is
concentrated at the set I,. We list a few facts for later reference. Given u, veJ,
fulfilling the condition u < v we have the formula

G12) Q. ((p.» vp,] )er(u‘"f(u)—v-ﬂf(v)).‘ |
In particular, for v =r,, v=s, we have

(3.13) ' Q1) = t(r f (r)—sz%f (S,.))
which, by (3. 2) and (3.3), yields

314 Q,,(I,,) >O ' for sufﬁciehﬂy large n,
Furfher, for the same paii‘ u, v we have the formula

) YPn

(3.15) | { ¥1Q,(dy) = t,pi(g()—g(u)),
which yields |

g(r,)
(.16) [ 70,0 = 4~ vy 0.

Put w, =t,r, 2h(r,) (n = 1 2, ...). Taking into account notation (3.8) we
obtain the inequality :

st )gs) <d  (=1,2,..),
which yields |
(3.17) T 6 ) < A=07rth)  (e=1,2,..).

Observe that, by (3.13), Q,(I,) < t,r.%(r), which, by (3.17), yields
Z"_ , @a(I,) < 0. Moreover, by (3.14), Z 1 2.(1,) > 0. Now we may define
a probability measure 4 by setting BN P g

A=b Z Qn’ where b~ = i Qn(ln)°
n=1

n=1

11 — PAMS 131
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To prove the sufficiency of our condition it is enough to show that the measure
4 fulfils condition (2.1) for a certain constant ¢ and belongs to the domaln of
attraction of the measure e(M).

First we shall prove the inequality *

(3.18) (. 0) < BE-DU =) oox o)
for x”eIk' k=1,2,..). From the formula

((x OO)) b Z Qn(I )+ka((x skPk])

om=k+1 }
by virtue: of 3. 12) (3 13) and (3 17) we get the: mequahty
Alx, ©)) <b Z tan "h(r)+bth pzh(xp{‘)

n=k+1
< b(1—-d)” 1tk+1rl¢_fih(7'k+1)+bth—quh(xl7k_l)?
Since ’
tk+1 tkrz+lsk qh(Sk)h 1(7'k+1)

and the function x ¢ h(x) is monotone non—mcreasmg, we have the 1nequallty

tk+1 tkrlqc-i-lx quh(ka Yh- 1("k+1)

which yields (3.18). . .
Further, for any xel, (k=1,2,..) the formula

J” YA =b T [ y0udN+b | 10,y

n=1 I, Pk

together with (3.15) and (3.16) yields

k-1

' I yqi(dy)>b Y (A= Ay 1)+btkpﬂg(xm H- bAk 1

n=1
= by plg(xpc )—b.
Taking into account (3.7) and the mequahty

b pth(xpi ') = tpth(ry) = Ax—y
we conclude by (3.9), that for sufficiently large k the 1nequa11ty

x

b
3.19 S g
(.19) ) > 5

holds. Comparing this with (3.18) we obtain the; inequality -

L pth(xpi Y

x1A{(x, oo)) 2(1+0)2—d)(1—d)” 15yq/1(dy)
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for sufficiently large x. This shows, by Theorem 4.1 in [5], that there exists
a sequence of norming constants a, such that the sequence T, A°" is
conditionally compact and all its cluster pomts are non- degenerate ‘
Putn, = [b7 'ty 'Jand b, = p; ! (k =1, 2,....), where the square brackets
denote the integer part. Since, by (3.8), ' ‘

te < drEh T ()
and, by (3.3) and (3.6), _

h ® dy)

fim 200 | M@)

o0 XU gy m(y)
~ we infer that ¢, — 0 and, consequently, n, — c0. Usiﬁg Lemma 1.1 from [4] to
prove that MeH it suffices to show that T, A°™ — e(M) as k — oo. By the
Jurek Theorem on accompanymg laws in [1] the last statement is equlvalent to
M- M, where : :

M,(E) = nkfj m(y) nkz(dy)ﬂ Ck=1,2,..).

It is evident that the 1nequa11ty n<k y1elds 5,0p < rkpk Consequently,
pi I, < (0, r,] = (0, 1]. Hence and: from (3.16) we get the formula
!m(ypk C.(dy) = pi (4, — An-19(r)h” 1(r )-

SIn
smg this formula and applying (3.2), (3.4) and (3 10) we get

k=1

(20 'Y [mOpe 1)Q,.(ffly)

n=11I, .
k-1 : ) ) e . g
=hr)Al: Y (A,— Ap=19G)h™ A, ))—-»M({O}) as k— oo,

n=1

Observe that the mequahty n>k YICldS TuDn > Sk Dy Hence Dr 1I c (s,,, oo)
= (1, o). Consequently,

Ijm(yp,:l)g,,(dy)=Q’nun). - | |

Now, applying (3.13) and (3.17) we get the inequality

a0

1Y [ mOope Y0y <t (=) e 18y h(res )

n=k+1 I,
= (1—d)™ s (s,),
which, by (3.6), yields

(3.21) ty ! i [ mypi HQ,dy) >0 as k— 0.
. n=k+1 I, .
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Finally, we note that by (3.11) v o :
322 &' [mOpMQ(dy) = M(J) > M(0, ©)) ask—co. -
C I : Di L L

Moreover, for any xeJ, being a continuity point of M

*Pik

(323 &' | mOp)Qudy) = M((r, x1) - M(0, x])  as k- co.

TPk +

Formulae (3. 20)—(3 22) yield the relatlon
| M, ([0, oo))—-»M([O o).
Furthermore, (3.20), (3.21) and (3.23) imply
M,([0, x))—+M (fo, x))

for any xe(O o0) bemg a continuity pomt of the lmntmg measure M. Thls
shows that M, — M, which completes the proof of the sufficiency of the
condition in question. The Theorem is thus:proved.
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