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. STRUCTURE OF LEVY MEASURES
OF STABLE RANDOM FIELDS OF CHENTSOV TYPE

. BY

YUMIKO SATO (TOYOTA) _

Abstract. We study finite-dimensional distributions of symmetric .
-o-stable . (abbreviated as SaS) random - fields -of - Chentsov : type,- . :
- 0 <« < 2. We discuss a structure of the spherical components of Lévy.
measures and their determinism which depends on the dimension of
" the parameter space R‘. Here we treat mainly the cases d =1 and =
d = 2 vhere a proof is direct and admits a geometrical understandmg Co
" The general case w111 be treated in [4]. P

1. Introduction. A famlly of real valued random variables {X () teR”} is
called an SaS random field if every finite linear combination X = Z"_ L4 X(t)
has a symmetrlc stable dlstrlbutlon of 1ndex o. That 1s 1ts charactenstlc
function is described as =

(1.1) ; (CXP(IZX))—EXP( clzl”),  zeR,

where ¢ > 0 Let (E, .% u) be a measure space. We say that a famlly of randorn
variables {Y (B); Be #, u(B) < oo} is the SaS random measure associated with
(E, B, ) if

- (i) each Y(B) has an SaS dlstnbutlon with ¢ = u(B);

(i) Y(B,), Y(B,), ... are independent if B,, B,, ... are disjoint and u(B )
<o fori=1,2,..; ' ' o

(i) Y(UJ ,B)= Z:c_’_l Y(B) as. if By, B,, ... are disjoint and u(Uf .B)

< 0.

Recently, Takenaka [6] extended the idea of Chentsov s representatlon of
Gaussian random fields and constructed an SaS random field using an SaS
random measure associated with a certain measure space in the following way.

Let E, be the set of all (d— 1)-dimensional spheres in R®. Any element of E,
is expressed by a coordinate system (r, x), where (r, x) corresponds_to. the
sphere with radius reR, = (0, c0) and center xeR?. Using this, we identify

(1.2) E, = {(r, x); reR+;‘xeR‘} R, xR

Let S be the set of all spheres in R? which separate the pomt teR? and the
origin ,0 of R. By using the co;respondence above, S, is represented as -

(13) S, ={(r, x)eR, xR d(x, 0) < r}A{(r x)eR, xR%; d(x, t) € }
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where A A B denotes the symmetric difference of 4 and B and d(a, b) denotes.
- the Euclidean dlstance between a and b. Let

{(r x)eR, xR%; d(x, 1) < r}.

- Theset C,isa rlght cone in R, xR with vertex (0, ?), although the point (0, t)
is not a point- in R, xR“. We simply call C, the cone with vertex t. In this
notation we have S, ="C,AC,: Let %, be the a—algebra of Borel sets in E, and
p be a measure on (EO, O) such that L :

(1.4) . uS)< oo for all teR?.
We define an SdS random field by o
s ~ X@®=Y(S), teR,

where Y (B) is the SaS random measure correspondlng to (EO, #,, 1). We call
this random field {X (t) teR"} a Chentsov type random f eld of R"-parameter
assoczated with u.

One of Tak_enaka s aims of constructlng Chentsov type random fields was to
‘present a new example of a self-similar SaS process with stationary increments. .
Actually, hie proves that if du,(r, x) = r*~?~drdx, then the Chentsov type SaS
field {X,(t), te R"} associated with p, is self-similar with exponent H = B/o.

For d =1, this {X,, ,;(t)} is a new example of an SaS self-s1mllar process
with statlonary increments for the area of « and H where there were no other
examples known before. In this paper, however, we do not assume any special
form of pu.

2. Results. It is l‘(no.jwn that the characteristic functibn of an n-dimensional
SaS- distribution, 0 < o < 2 has the followmg umque canomcal representa-
tion’ [2] IR
ecn - el@= exp{ c §lg Zl’l(dé‘)}

. ) ) ! Sn- 1
where ¢ > 0,8 1= {E (<SP é,,), 2f .= =1}, lisa symmetrlc proba-
bility measure on §"7%, and £ -z is the inner product of vectors ¢ and z. The
measure A can be considered as the spherical component of the Lévy measure of
the n-dimensional stable distribution. We call 1t a )L-measure of stable dzstrzbutwn

We define the label set £, as_

22). &, —{e—(el,.. e) e—O orlforl—l n}\{(O }
Each ec &, is called a label ofszze n. For T =(ty, ..., t,,)E(R”)" and e=(e,...
e)eé’n, we deﬁne ) . o

.3) S(T o) = {S

e Af e =1,
Si. if =0,

ey STa=(1sTo.
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Let {X(t); teR%} be an SaS random field of Chentsov type associated with
a measure u and T'= (¢, ..., t,), where t,, ..., t, are different points in R The
characteristic function. of X = (X(t,), ..., X(z,)) is, for z=(z, ..., z,)eR",

ey cp“T('z)e‘Eexp{i ¥ 5X0)} = Eepli ¥ 275}

‘—-Eexp{ Zn: ZY(S(T,e))} o

eeén
ex=1

=Eexp{i ¥ (Y ez)Y(S(T, )}

reedn k=1

C—expf= Y| T ezl u(S(T o)}

eeén k=1

=exp{— ¥ [£(@)-2l* lelu(S(T, e))}

. eeé”,.

where e = (e, -.., €,), |]e|| is the E_uclldean norm. of e, and &(e) = e/|le|.
Noticing that £(e)e S"~ ! and comparing the last expression of (2.5) to (2.1), we
see that it gives the canonical form of ¢,(z) and the i-measure is supported by
{E(e); ee&,} u{—L(e); ec&,}. So, we have

THEOREM 2.1. Let {X(t); te R} be an SaS random f eld of Chentsov type.
Then for any n and for any different t,, ..., t,€R* the i-measure of (X(t,), ...
.., X (t,)) is discrete with support in the set-A,, = {l(e); e &,} U {—E&(e); eeé,}
and assigns the mass (1/2)|e||*u(S(T, e)) to each of the points E(e) and —&(e).

Notice that A depcnds neithér on u nor on the ch01ce of T= (tl, AN
Looking again at the formula (2.5) we see that ¢ (z) is determined by the values
of u(S(T, e)), e &,, and that, conversely, u(S(T, ¢)), e £,, are determined by
@y(z). Further, we will see that for any n>d+1 and tis..., L,€R? the
distribution of (X(t,),..., X(t,) is determmed by its (d+ 1)-d1men31onal
marginal distributions. So, we have

THEOREM 2.2. We assume d = 1 or 2. Let u and ji be measures on (E,, B,)
satisfying (1.4). Let {X(t); te R*} and {X (t); te R%} be the SaS random fields of
Chentsov type associated with u and fi, respectively. If the (d+ 1)-dimensional
distributions of {X (1)} and {X (1)} coincide, then {X (t)} and {X ()} are equivalent,
that is, the finite-dimensional distributions of {X(t)} and {X(t)} coincide.

- In the next section we will prove Theorem 2.2. For d = 1 the proof is
.obtalned dlrectly by set calculation in R2. But’ it is more technical when d = 2.
Extending the idea of the case d =2, we can generallze Theorem 2 2toa hlgher
dimensional case. This will appear in [4]. ' : :
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3. Proof of Theorem 2.2.

"Proof of Theorem 2.2 ford = 1. Let {X(z); te R} be an SaS-process of
Chentsov type of R!-parameter. Let T= (¢4, ..., t,)eR" and suppose t, <t,
<.<t, <0< fyy<...<t, By (25), the characteristic function of
(X(ty), ..., X(t,) is obtained if we know all the values of u(S(T, e)) for ecé,.
Let U:'=1 S,,=S. Consider the partition of S = R, x R generated by S,
(i=1,...,n). A picture (see Fig. 1) will help us to describe an explicit

h & L T T T
. Fig 1 S
n=7, k=3 (1) 413, (2):" A2, B): Q2, 6), 4): Aa7
determinism. Let C=C, AC, . Then § is decomposed into two disjoint parts
C and S\C. Therefore we have - N :

ey c=Usme),
- : i i=1 ’

where ¢ = (¢}, ..., ¢}) and we define

; 1 . for l=1,...,i . L
| .-e‘={0 Cfor I=itl,..,n SISk
62 R e
L0 forI=1,..5i=1 .
e,.={1 for l=1i,...,n as i k+1.

Next we investigate the part S\C. For the purpose of simplifying the
description, we define t;=0. Let = = = - o ’ ' '

(3.3) U, = {, x)eR, xR; x—t >—r},:“ V,= {(r,'J'c)eR,,’x‘R; X=t<-—r}. .
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be half planes in R, x R. We define rectangles, for i, ],l me{O 1, ..,n} such

that t; <t; <t,<t by o :

(34) | Q6. j; I, m) = U, AU A Ve 'V,m'-

Let us put Do Lo
. i+ =i+l for i#k,0,
Ck+ =0, 0+ =k+l,

Cm—=m—1 for m#k+1,0,
(k+1)— =0, 0-=k

We write, for i, me{O 1,..., n} satisfying t,+ < t

(3-3) - G, m) =00, i+;m—, m).

Thus these Q(i, m) give a partmon of S\C o :
Now we see that the family {S(T, e); S(T, e) # ﬂ} consists of S(T é'),
i=1,..., nand all Q(i, m)’s defined above. On the other hand, the characteris-

© tic function of the distribution of (X (), X(t)), i, je{l, ..., n} is

(3.6)  o(2) = exp{—{lz,|*u(S, nS°)+|zzl“,u( %NS,
+lzy+2,°u(S;n S, )} for z=(z,, z,)eR>%
We define L -
| 8,08, for <0<,
Aij=48nS, forg<t;<0,
| S,nS, for 0<t <t

As we mentloned lmmedlately before Theorem 2. 2, (p(z) determmes u(A, ,) by
(3.6). Then we can express all {ﬂ(Q(l /)} and {_u(S(T ei))} using {p(A, ,)} and
u(s,) as follows:
. o ﬂ(AlJ—)+”(AI+ ]) ”'(A;+ 1—) ﬂ(Aij) )

' ‘ fort<t s_OandO [ <t
B7n  wee )= -

(Al J)+”'(A1+ j ) ”(Al"' 1) “(Ax _p—)
_ for 4 < 0< s

u(S,,) u( z.+)+u(A..+) u(Q(t ni+, 0))
' “for t; <0,
u(s,..)—u(s.i-)+n(Ai-,.-)_—'u(Q(l, i 0, i—»' :
for t;> 0.

68 ST e) =
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Noticing that any Q(, j; I, m) is the union of some {Q(, j)}’s, we see that the
values of u(Q(,j)) and u(S(T, ¢')) are all obtained from the 2-dimensional
marginal distributions of (X(t,), ..., X(z,)). For 0<t, <...<t, or t; <
<t <0o0rt; <, <...<t, =0<t;4; <...<t, the discussion is similar
and simpler. Thus Theorem 2.2 is proved in the case d = 1. :

~ Proof of Theorem 2.2 for d = 2. We prove the following proposition:

_PROPOSITION 3.1. Let {X(t); te R?} be an SaS random field of Chentsov type
of R*-parameter. For any choice of 4 different points t,, t,, ts, t, in RZ, the

- distribution of (X(ty), X(t,), X (t3) X (t4)) is determined by its 3-dimensional

marginal distributions.

This is an essential part of Theorem 22 for d =2, The proof of the fact
that, for n > 4, n-dimensional distributions are determmed by ‘their 3-dimen-
sional marginal distributions is. omitted. - : .

Lett,,1,,t;,t, be 4 different points in R? and let T={(t,, t,, ts, t,). We
will determine the characteristic function ¢(z) of the distribution of (X (t,),

X(t,), X (t3) X(t)), that is, the values of u(S(T, e)) for all ee &, in (2.5) with
n=4: Let Sk(T e)= 1f ek =1 and Sk(T e) R, xR 1f € = 0. We deﬂne

(3.9 S(T, e) = ﬂ Sk(T e) . for e=(e,, e_z,‘e3,,e4)e_é"’4.

Since p is a measure, y satisfies the .consistency condition

(3.10) uS(Te)= Y uS(T,e) for ecé,,
e’eé’;(e)‘
where S '
(3.11) Q) ={e = (€}, €, e, e)ed,; ei=e fori=1,..., 4}

Since the number of labels of size 4 is 2*—1 = 15, the condition (3.10) consists
of 15 equations. But, among them, the one which corresponds to
e=(1,1,1, 1) is trivial. So, we consider (3.10) for ee&,\{(1, 1, 1, 1)}. For
these -€’s the values u(S(T e))’s are ‘determined by the 3-d1mens1onal marginal
distributions. So we can regard pu(S(T, e))’s as data. The 14 (=2*=1=<1)
equations of (3.10) are considered to be.a system of simultaneous linear
equations in which unknowns are u(S(T e)) s. The number of them is still 15.
Fix an ordering of &, and let : :

(3.12) | 0 MX=b

be a matrix expression of the system of simultaneous linear equations, where

M is (14 x 15)-matrix of coefficients, X is a 15-vector of u(S(T, e))'s, and b is
a 14-vector of ,u(S(T e))’s. Let M (k) be the (14 x 14)-matrix obtained from M by
deleting the k-th column. If we write down the exphctt form of M, it is easy to
check that M(k) is invertible for any k = 1, ..., 15. Suppose that the following
proposition. is true: :
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PROPOSITION 3.2. For any T = (t,, t,, t3, t,) there exlsts a Iabel ecé, such
that S(T, e) =

For the T that we are -considering, let the element e indicated in
Proposition 3.2 be the k-th in the order of &,. For this e we have u(S(T, e)) = 0
So, the number of unknows is reduced to 14 (= 15—1). The reduced system of
simultaneous linear equations has M(k) as its coefficient matrix. Since M (k) is

* invertible, the system of equations has a unique solution. Thus all x(S(T, ¢)),

e€é,, are determined. So, in order to prove Proposition 3.1, it is enough to
show Proposition. 3.2. .

Let us prove Proposition 3.2. First we define complementary labels in
general For any e = (e,, ..., e,) € &, we define the complementary label of e as.

(3.13) . - e*={(ef,...,e)), e+ef=1fori=1,..,n .

Let T= (t;, ..., t")e(Rz)" We define C,(T, ) = C,, if e =1, C(T, ¢) = - CS if
¢; = 0 and denote ﬂ C(T, ¢) by C(T, o). The set S(T, e) is decomposed into
two disjoint sets as follows

(3.14) S(T, €)= {S(T, &) " Co} U {S(T; &) n C5}.

Moreover, we have
4

S(T, &) Co = ( m S(T, €)) 0 Co = () (SAT; ) Co).

If ¢, =1, then
S{T, )N Cy = 5,1 Cy = (Cyy ACy) A Cq = C5,n Cy = C(T, €*) Cy.
If e, =0, then
SUT, )" Co = S50 Co = (C,‘ACO) ACy = c,,nc0 — C(T, ).

. Hence we have
4

ﬂ(S(T 9N Cy) - (. M Co) = (ﬁC(Te ))mCO

C(T N Co.

We have also -
S(T, e)nc =C(T,enCs.

~Then (3.14) is written as

(3.15) , S(T e) = {C(T e*) N Co} u{C(T e) N C§ }
Hence ee@‘”4 satlsﬁes S(T e) @ if and. only 1f

31 C(Te)mC -0

and R o

(3.17) . CTegnCh=0.
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If we consider T'= (0, t, b2, t3, t,) and €= (0, ey, e,, e5, ¢,)€& 5 instead of
T={(ty, t;,t3, t;) and e = (e, e,, €3, e,)e &, respectively, we realize that.

(3.18) ‘_ C(T, ") nCy=C(T, -_é*) a
and B L v ,
319 - T e)n'cc C(T é).

Thus Proposmon 32 is equivalent to the following

PROPOSITION 3.3. Let T=(t,, ..., ts), where t,, ..., ts€ R? are not assumed
to be different, Then there exists a label ecé&s such that both C(T e)=0 and
C(T, e*) = @ hold true. '

The proof of Proposition 3.3 is reduced to geometry in the 2-dimensional
Euclidean space. We prepare lemmas. :

. LEMMA 34, Let t,, t,,t € R be vertices of a trzangle and assume that t4 lzes
©in its. mtenor or boundary. Then : .

(3.20) ﬂ C, < C,.

i=1

_ Proof Let >0 and P, {(, x); xeR?*}. Then P,nC,, is a closed disc
with radius ! and center (I, t). The relation (3.20) is equlvalent to

3 A
(3.21) N (€,nP)<=(C,nP) for any I>0.
. - i=1 : : ' Co

From thc assumption it is obvious that, for any xeR?
322 -~ max(d(ty, x), d(t,, %), d(t, X)) > d(ty, x),
which implies that if (I, x)e(\>_, (C,,n P), then (I, x)eC,,n P,.

LEMMA 3.5. Let t,, t,, ty€ R? be different points on a circle B. Suppose that
two line segments t,t, and tyt, have a common point. '
() If t, lies inside of B or on B, then

(323 , C NC,<=C,UC,.
@) If t, lles outszde of B or on B, then
(3.249) C,vC,>C,nC,.

Proof. (i) Let xeR? and suppose that max(d(t,, x), d(t,, x)) = d(tl, x).
Let B be a circle with center x and radius d(t,, x). Then B = B or B intersects
with B at most at one point except t,. Hence, by the assumption, we have

(3.25) max(d(t,, x), d(t,, x)) > min(d(t;, x), d(t,, %)-
So, if (I, )€(C,, " C,,) " P,, then (I, x)e(C,,u Cs) N P,.
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(i) If ¢y, ¢,, t, are on a circle B', then t; is inside of B’ or on B’ and the
proof is reduced to (i). If tl, ty, t, lie on a line, then ¢, t5, 1, 11e on a circle and
the argument is similar. - : : o

Proof of Proposition 3.3. We give the proof in the non-d'egenerated
case, that means, in the case where no 3 points out of 5 lie on a line.
Degenerated cases will be considered at the end of the proof.

Consider the smallest convex set that contains ¢, ..., ts. Changing the
numbering if necessary, we have the following three cases:

() ty, t, and t, are the vertices of a triangle and ¢, and ¢, lie inside of the
triangle;

(ii) 2y, 5, t5, t, are the vertices of a convex quadrangle and ¢, lies inside of it;

(iii) ¢y, ..., ts are the vertices of a convex pentagon. .

Let T; be the set of ¢,,..., t; with ¢; deleted.

In each of the cases (i), (ii) and (iii), we w111 apply either Lemma 3.4 or 3 5
for any T; and ﬁnd out a label e which satisfies the conditions of C(T, ¢) =
and C(T, e*) = ' :

Let us 1ntroduce some simplified notation. Given t,, tis s t,eR?, we
denote C,nC, < C,uC, and C,nCynC,cC, by {i,j} <{k,l} and

A, j, k} < {1}, respectlvely Let us write {i, j} ~ {k, I} to indicate that at least

one of {i,j} < {k, I} and {i,j} >-{k I} holds true.

(i) Changing the numbermg agam if necessary, we can assume that the
points are arranged as illustrated in Fig. 2. Then

T: 2,3, 4 <{5}, T:{L,5}~{3,4, T:{1,25<{4},
ST {1,2,3}<{5}, T {l1,2,3}<{4}.

Flg 3

Case 1. Suppose that {1,5} < {3 4} holds true for T,. Then C(T e)
for e = (1, e,, 0, 0, 1) whichever e, is 0 or 1. Next we see the relation for T
The relation {2, 3, 4} < {5} shows that C(T, ¢)=@ for & = (¢}, 1,1, 1, 0)
whichever e is. Take e, = 0 and ¢; = 0. Then e and ¢’ are complementary with
each other and they satisfy the condition of Proposition 3.3.




174 . S Y. Sato

~ Case IL. Suppose that {1,5}>{3,4}. Then C(T,e)=@ for -
e = (0, e,, 1,1, 0) whichever e, is. This time from the relation {1 2,5} < {4}
for T, wehave C(T, e)=Qfore =(1, 1, e3, 0 1) whichever e} is. So, we take

, =0 and €3 =0 to get ¢ = e*.

(i) We can assume that the pomts are arranged. as 111ustrated in Fig. 3
Thls tlme the relatlons are as follows

C R T L~
T;: {1, 5} ~ {2, 4}, T, {1,2; 3} < {5}, Ts {1,3}~{2,4}.
The relations for T, .T_;, T; are linked as

320 {4, 5}~ {1, 3} ~ {2, 4} ~ {1, 5}.

- If, in this chain of rclatlons

(3.27) - o {4 5Y< {1, 3}-<{2 4}

holds true, then we get a label e which satisfies the requlred condition. Indeed
- from {4, 5} < {1, 3} it follows that C(T, ¢) = for e =(0, e,, 0, 1, 1) and
from {1, 3} < {2, 4} it follows that C(T, ¢) =@ for ¢ =(1,0, 1, 0, e’s), If we
take e, = 1 and ¢5 =0, e and ¢ are complementary labels which satisfy the
condition. A similar argument applies if there are two consecutive relations
< or.two consecutive relations > in (3.26). So, we consider the remaining case

328 S =<{Ly>249<{,5
(329) B {4,5)>{1,3} < {2, 4} > {1, 5}. -

If (3.28) holds true, then from {4, 5} < {1, 3} -and the relation T,: {1, 2, 3}
< {5} we can find out a label e which satisfies the condition. If (3.29) holds true,
then from {2,4} > {1, 5} and the relation T;: {2, 3,4} < {5} we get the
required label e.

. (ii)) We can assume the points are arranged as illustrated in Fig. 4. The
relations are the following: :

T (2,4~ (3,5}, T {1,4}~{3,5}, Ty{1,4}~{2,5},
| T (1,3}~ {2,5), Ty {1,3}~1{2,4}.
We can make a chain of relations 7 ‘
(30 {24~ {3, S~ {1, 4~ (2, 5}~ {1, 3} ~ {2, 4}.

This time we have a circle of relations, as the first term and the last term
coincide. Recall that each ~ stands for < or >. Since the number of terms in
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this circle is odd, there must be two consecutive relations < (or >) in this
circle. Moreover, any three adjacent terms have the form {i,j} ~ {k; I}
~ {m, i}, where i, j, k, I, m are different. Hence we.can find a label e wh1ch -
satisfies the condition (3.27). ' : :
Thus Proposition 3.3 is proved in the non—degenerate case.

17

Fig. 4

If3 points are on a line and no 4 points lie on a line, then we can apply
Lemmas 3.4 and 3.5 again. A similar argument can be used. If ¢, ¢,, t;, t, are
on a line in this order, then it is easy to see that C,, n C,, = C,, and C,,n C,,

< C,. Then S(T,e)=@G for e=(1,0,1,e,,e5) and S(T,e)=@ for

= (e}, 1,0, 1, €5), whatever e, es, €y, €5 are. In the case where some of
ty, ..., ts coincide the assertion is obvious.

Remark. The proof of Theorem 2.2 shows us that if n > d+1, then
there exists ee &, such that the points &(e) carry no A-measure. That is, if
n>d+1, then the support of the A-measure of (X(t,), ..., X(z,) is a proper
subset of 4,,.
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