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Abstract. Sufficient conditions for equivalence of distributions in 
LZ(O, T, H )  of two Ornstein-Uhlenbeck processes taking values in 
a Hilbert space H are given. The Girsanov theorem and some facts in 
the theory of perturbations of semigroup generators are used. 

0. Introduction. Let X and Y be two Ornstein-Uhlenbeck processes on 
a real separable Hilbert space H. We assume that they are solutions of the 
following linear stochastic equations: 

I 
j where W is a cylindrical Wiener process on H, A and B stand for infinitesimal 
I 

generators of C,-semigroups from a class to be specified later. By the solution 
of (0.1) or (0.2) we understand the so-called mild solution. Let 9 ( X )  and 9 ( Y )  
be the laws (distributions) in LZ(O, T; H )  of X and Y This paper presents 
suflicient conditions for the equivalence of 9 ( X )  and Lf(Y). In the proof of the 
main result (Theorem 1.1) an approximation technique is used. This technique 
needs some facts, mentioned in the Appendix, from the theory of perturbations 
of semigroup generators. The operator B is approximated by a sequence {B,} 
such that the law equivalence of the mild solutions corresponding to A and B, 
follows immediately from the Girsanov theorem and the sequence of densities 
is relatively weakly compact (more precisely, the sequence of entropies is 
bounded). The problem of law equivalence of the processes X and Y was 
considered by Koski and Loges [7] for self-adjoint and commuting generators, 
by Kozlov [8] and [9] for elliptic generators and by Zabczyk [I21 for analytic 

I 

generators, delay equations and finite dimensional equations. This paper covers 
a general class of equations for which mild solutions take values in H. The 

I cases of self-adjoint generators and elliptic generators are considered in Sec- 
tion 4 concerning particular cases. 

1. Notation and fomula~on of the main result. Let (v, H, E) be an abstract 

I Wiener space, i.e., E is a real separable Banach space, H is densely and contin- 
I 

i 
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uously imbedded in E, and v is a mean 0 Gaussian measure on E satisfying the 
condition 

where ( , ) stands for the canonical bilinear form on E* x E. Let W be a Wiener 
process in (v, H, E) (see [lo]) defined on a probability space (a, 9, P). Let 3, 
t 2 0, be the complete sub-a-fields of 9 generated by {W(s): 0 < s < t). 

The space of bounded (or Rilbert-Schmidt) linear operators on H and the 
operator (or Hilbert-Schmidt) norm will be denoted by L(H) (or L2(H)) and by 
11 11 (or 11 ]I,), respectively. By C, we denote the collection of all generators of 
Go-semigroups acting on H. In our considerations an important role is played 
by the class 4 of generators AEC, such that the semigroup S generated by 
A satisfies the condition 

2 t < a. j I I S ( ~ ) I I ~ ~  
0 

In this and next sections, A E %  is fixed and S stands for the semigroup 
generated by A. The following stochastic process, called the mild solution of (0.1), 

is well defined (see [lo]). Moreover, X is an H-valued Gaussian process, 
EX(t) = S(t)x and 

t 

(1.2) E IX(t)k = Is(t)xlb + j I\s(s)ll$ds. 
0 

According to ([4], p. 209), X can be considered as a random element in the 
space ZT = L2(0, T; H). The main result of this paper is 

THEOREM 1.1. Suppose that A E 4 and B = A + K, where (K, D(K)) is 
a closed linear operator on H such that 

1 

D ( K ) z  URangeS(t) and fIIKS(t)ll$dt<m. 
t > O  0 

Then BE 9 and, for all x E H and T > 0, the distributions in ZT of the solutions 
of (0.1) and (0.2) are equivalent. 

In the Appendix, the collection of linear operators K satisfying the 
assumptions of Theorem 1.1 is denoted by Y2(A). The proof of Theorem 1.1 is 
postponed to Section 3. 

2. The ease of bounded perturbations. In this section we consider the simple 
case B = A + K ,  where K is a bounded operator on H. The following infinite 
dimensional version of the well-known Girsanov theorem whose proof can be 
found in [9] plays an important role in our considerations. 
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~ P r o  of. Let 4(s) = KX(s). The Fernique theorem (see [lo]) implies (2.3) 
, (for details see [12], p. 26). From (1.1) and (2.2) we have 

I Hence X is the nonanticipating solution of (2.4) defined on the probability 
space (Q, 9, P*). Therefore, for each TEBor(XT) we have 

This proves Y ( Y )  < 9 ( X )  and (2.5). The absolute continuity of 9 ( X )  with 
respect to 9 (Y)  can be proved by similar arguments with the replacement of 
A with A + K and K with - K. To prove (2.6) notice that p(u) = u log u is 
a convex function. Hence, using Jensen's inequality to (2.5), we have 

T T 

Thus the proof is complete. 

3. Proof of Theorem 1.1. Let K, = KS(l/n) for n EN. Since K is closed, the 
operators K, are bounded. By 9(Y,)  we denote the distribution of the 
process 

t 

x(t) = Un(t}x+ J U,(t-s)dW(s)y 
0 

where U, is the semigroup generated by B, = A + K,. By Theorem 2.2, 9 ( Y , )  
and 9 ( X )  are equivalent. Let 
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Then, by (2.6), 
T T t  

EY,(X)log Y,(X) < $ lKnU,(s)xlids+3 j j IIKnUn(s)ll$dsdt. 
0 0 0 

Hence, by Lemma A.5, 
sup EY,(X)log Yn(X) < oo. 
neN 

According to the De La VallCe-Poussin theorem the sequence (Yn(X)) is 
uniformly integrable and, by the Dunford-Schwartz theorem, it is relatively 
weakly compact. Let B = A +K. By Lemma A.4, BE@. Let U be the 
semigroup generated by B and let Y be the solution of (0.2). Then (compare 
with (1.2)) 

T T T 

E j IY(t)- Y,(t)lidt = 1 I(u(~)- U,(t))xlidt+ j I1 U(t)-- U,(t)ll$dt. 
0 0 0 

I-Ience, by Lemma A.4, the sequence (Y,) converges in L2(Q; JZ?~, dP) to Y. 
Therefore, we have Y ( Y )  < 9(X) .  Lemma A.6 implies that the absolute 
continuity of Y(X) with respect to Y(Y) can be proved by the replacement of 
A with A+ K and K with -K. This completes the proof. , 

EXAMPLE 3.1. Let H = L2(0, IT), A = d2/do2 with the zero boundary 
conditions. Then 'A E @, and for arbitrary h E H the operator K which multiplies 
a function f by h (i-e., Kf = hf) is closed and satisfies the assumptions of 
Theorem 1.1. 

4. Some special cases. In this section (A, D(A)) is a self-adjoint, negative 
definite linear operator on H. For Q > 0 the domain D((- A)e) is treated here as 
a Hilbert space equipped with the graph norm. The following theorem follows 
from Theorem 1.1, Lemmas A.8 and A.6 and Corollary A.2. 

THEOREM 4.1. s up pose that there exists 0 < E, such that (-A)-'+" is 
nuclear for arbitrary E < c0. Let K ,  and K2 be closed linear operators on H such 
that: 

(i) for some y < 112, D (K ,) n D (K,) I D (( - A)Y), 
(ii) for some Q < e,/2, the operator K, -K2 has a bounded extension acting 

from D((- A)e) into N. 
Then, for all X E  H and T > 0, the distributions in HT of the solutions of 

the equations 

- 

are equivalent. 

Now, let A be a self-adjoint, negative definite and uniformly elliptic 
differential operator of order 2m > d on a bounded region G in Rd. We assume 
that all coefficients of A are in C" and the region G has the restricted cone 
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property (see [I], p. 11). The domain of A is given by 

D(A) = (4  €f12"(G): Qj4 = 0 on aG, 1 < j < m), 

where W2"(G) is the Sobolev space of order 2m and {Qj)  is a normal system of 
boundary operators (see [Ill). These conditions imply that the operator A has 
a pure point spectrum { - A k )  and 1, w ck2"Id as k converges to oo (see [I], 
Section 14, and [3], p. 179). The following theorem is a special case of Theorem 
4.1 and, in a little stronger form, it was proved by Kozlov [8] and [9] for 
elliptic operators on a smooth compact manifold. 

THEOREM 4.2. If K1 and K2 are differential operators of orders less than 
m and with smooth coeficients, then A + K,, i = 1,2,  belong to 9: If the order of 
K, - K, is less than m- d/2, then the distributions of the solutions of (4.1) and 
(4.2) are equivalent. 

APPENI)IX 

In the Appendix, (A, D(A)) is the generator of a Co-semigroup S acting on 
H. The class 9 is introduced in Section 1. We consider here the class 9(A) of 
perturbations which was introduced by Nille and Phillips (see 161). Classes 
P1(A) and P2(A) are introduced by the author. 

DEFINITION A.1. We say that a linear operator (K, D(K)) on W belongs to 
P(A) iff K is closed, D(K) 2 U,,,RangeS(t) and 

1 

f IIKS(t)ll dt < W. 
0 

DEFINITION A.2. We say that a linear operator (K, D(K)) on H belongs to 
9,(A) iff K E ~ ( A )  and 

- 

DEFINITION A.3. We say that a linear operator (K, D(K)) on H belongs to 
B2(A) iff K EP(A) and 

1 

1 IIKS(t)ll$dt s oo. 
0 

Remark A.1. If K E ~ ( A ) ,  then the operators KS(t), t > 0, are bounded. 
Moreover, D(A) E D(K) and B = A+K is the generator of a Co-semigroup 
U (see 121, Chapter 3) such that D(K) 2 U,,oRangeU(t) and 

t t 
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LEMMA A.1. If K E S ( A ) ,  then B(A+K) = S ( A ) .  

Proof. Let L f S ( A ) .  Note that it is enough to show that, for some 0 < 7, 

j l l~u(t)lldt < m 
0 

Let 0 < T G 1 be such that 

Then (see [2], pp. 68-71), for each t < t ,  
t t S 

U(t) = S(t)+ jS(t-s)KS(s)ds+ j jS(t-s)KS(s-sl)KS(sl)dslds+ ... 
0 0 0 

Hence 
T t T t 

j IILU(t)ll dt G j IlLS(t)II dt + j j 11 LS(t -s)KS(s)ll dsdt + . . . 
0 0 0 0 

Therefore, we have B(A)  E 9 ( A  + K).  Since - K E P (A)  E P ( A  + K),  we have 
B(A+K)  E B(A). 

Let K, = KS(l/n) and let U, be the semigroup generated by B, = A+&. 
The proof of the following lemma is rather routine and is omitted here. 

LEMMA A.2. k t  K E B(A). Then there exist constants M and u such that, for 
arbitrary ne  N, U and U, belong to Co(M, a). Moreover, for each V E  D(A) = D(B) 
= D(B,)9 

lim Bnv = Bv. 
PI-) 03 

According to the Trotter-Kato theorem (see [2], Chapter 3) we have 

COROLLARY A. 1. For all v E W 

uniformly with respect to t on every compact set. 

LEMMA A.3. Let K E g1 (A). Then ( A  + K )  = g1 (A). 

Proof. Let LeP1(A). We will show that L€P1(A+K). Since 
B ( A  +K)  = B(A) ,  it is enough to verify that, for some 0 < z, 

T 

j II~U(t)ll~dt < m. 
0 
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Let 0 < 2 < 1 be such that 

Using arguments similar to those in the proof of Lemma A.l we have 

I ~ u ( t ) l l ~ d t ) l l ~  < ( j  I I L S ( ~ ) ~  2dt)1/2 
0 0 

r t co 

+(St  j ( ~ ~ s ( t - ~ ) l l ~ ~ l ~ s ( s ) l l ~ d s d t ) ~ / ~ +  ... G C 2+= 1 .  
0 0 k= 1 

Hence 4 ( A )  E q ( A  + K). Since - K E (A), we have 4 ( A  + K )  E 4 (A). 

LEMMA A.4. If  A E @  and K f P 1 ( A ) ,  then B = A + K E %  and, for all z > 0 ,  
r 

lim j 1 1  U( t ) -  U,(t)l(;dt = 0. 
n+m 0 

Proof. Since (A.l) holds and K € g 1 ( A  + K) ,  we have 

Note that it is enough to show that (A.2) holds for some 2 > 0. Since 
t t + l / n  

j IlK"s(s)l12ds = j IlKS(s)l12ds, 
0 111 

we may choose 2 ~ ( 0 , 1 ]  and Mo E N  such that 
t 

J I I ~ , S ( s ) l l ~ d s < $  for n2Mo. 
0 

If n 2 Mo, then 

r t 

+2 St  J I I U ( ~ - S ) ( K - K , ) S ( S ) ~ ~ ; ~ S ~ ~  
0 0 

r 5 r 

G 3 j I I  U( t ) -  Un(t)II$dt+2 j I I  U(t)ll;dt 1 INK-K,)5(t)ll2dt. 
0 0 0 

Hence 
z z t 

(A.3) 1 IIu(t)-U,(t)II$dt =S 4 j IIU(t)II$dt J IIW-K,)S(t)I12dt. 
0 0 0 
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Since S is continuous in the operator norm on the interval (0, ao), the 
right-hand side of (A.3) converges to 0 and we get (A.2). Thus the proof is 
complete. 

LEMMA A.5. Let K E 9?? (A) .  Then, for z > 0, 

I 7 

64-41 SUP J IIK, U,(t)llSdt < ~n . 
nsN 0 

Proof. Note that, as in the proofs of the previous lemmas, it is enough to 
verify (A.4) for some t > 0. Let t E (0, 11 and M l  E N  be such that 

j IJK,S(s)JJ;ds < $ for n 2 MI.  
0 

By (A . l )  we have 
7 

K,U,(t) = K,S( t ) f  JK,U,(t-s)K,S(s)ds.  
0 

Hence, for n 2 MI, we obtain 

c 

G *++ J IIK,U,(t)ll;dt 
I 

0 

1 and, consequently, 

I 'c 

JIIK,U,(t)II$dt<l for n 2 M l .  
0 

LEMMA A.6. If  A E % and K E Pl (A),  then P2(A) = P2 ( A  + K ) .  

I Proof. Let LeY2(A).  By (A.l) we have 

Hence %(A) E %(A + K ) .  The inclusion %(A + K) G 9?!(A) can be proved in 
the same way. 

Now, let ( A ,  D(A)) be a self-adjoint, negative definite linear operator on H. 
Note that A E %  iff A-' is nuclear. Therefore, we assume that A - l  is a nuclear 
operator on W. 
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I LEMMA A.7. If e < 1/2, then K = ( - A)@ E PI (A). 

I Proof. Let ( -Ak, ek! be the sequence of all eigenvalues and the 
i 
I corresponding normalized eigenvectors of A. The C,-semigroup S generated by 
I A has the form 

m 
I 
i 

s(t)v = k =  C 1 exp(-A,t)(v, ek),ek. 

Moreover, 
m 

Kv= lg(v,e,),ek for v€D(K). 

Hence, for VEH, 
m 

and, consequently, 

LEMMA A.8. If (K, D(K)) is a cbsed operator such that D((- A)@) G D(K) 
for some e < 1/2, then KEP~(A). 

Proof. Since K(-A)-@ is bounded, we have 

Using similar arguments we can easily obtain 

LEMMA A.9. Suppose that there exists 0 < E, such that (- A)-'+Vs nuclear 
for arbitrary E < 8,. Then, for each e < ~,/2, (-A)@ E P2(A). 

COROLLARY A.2. If (K, D(K)) is a closed operator such that D((-A)*) 
c D(K) for some e < ~,/2, then K E P2(A). 
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