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EQUIVALENCE OF DISTRIBUTIONS
OF SOME ORNSTEIN—UHLENBECK PROCESSES
" TAKING VALUES IN HILBERT SPACE '

BY

S. PESZAT (KrAKOW) -

Abstract. Sufficient conditions for equivalence of distributions'in
L*(0, T: H) of two Ornstein—Uhlenbeck processes taking values in
a Hilbert space H are given. The Girsanov theorem and some facts in
the theory of perturbations of semigroup generators are used.

0. Introduction. Let X and Y be two Ornstein-Uhlenbeck ‘processes on -
a real separable Hilbert space H. We assume that they are solutions of the
following linear stochastic equations:

0.1) .- dX = AXdt+dW, X(0)=xeH,
0.2) dY =BYdt+dW, Y(0)=xeH,

where W is a cylindrical Wiener process on H, 4 and B stand for infinitesimal
generators of C-semigroups from a class to be specified later. By the solution
of (0.1) or (0.2) we understand the so-called mild solution. Let #(X) and Z(Y)
be the laws (distributions) in L?(0, T; H) of X and Y. This paper presents
sufﬁcxent conditions for the equivalence of #(X) and & (Y). In the proof of the
main result (Theorem 1. 1) an approximation technique is used. This technique
needs some facts, mentioned in the Appendix, from the theory of perturbations
of semigroup generators. The operator B is approximated by a sequence {B,}
such that the law equivalence of the mild solutions corresponding to 4 and B,
follows immediately from the Girsanov theorem and the sequence of densities
is relatively weakly compact (more precisely, the sequence of entropies is
bounded). The problem of law equivalence of the processes X and Y was '
considered by Koski and Loges [7] for self-adjoint and commuting generators,
by Kozlov [8] and [9] for elliptic generators and by Zabczyk [12] for analytic:
generators, delay equations and finite dimensional equations. This paper covers
~ a.general class of equations for .which mild solutions take values in H. The
- cases of self-adjoint generators and elliptic generators are considered in Sec-
tion 4 concerning particular. cases. :

1. Notation and formulation of the main result. Let (v, H, E) be an abstract
Wiener space, i.e., E is a real separable Banach space, H is densely and contin-
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uously imbedded in E, and v is a mean 0 Gaussian measure on E satisfying the
condition

(U, 2k, 2)v(de) = I, kdy, I, keE* < H* = H,
) :

where ( , ) stands for the canonical bilinear form on E* x E. Let W be a Wiener
process in (v, H, E) (see [10]) defined on a probability space (22, %, P). Let &,
t > 0, be the complete sub-o-fields of # generated by {W(s): 0 <s<t}.

The space of bounded (or Hilbert-Schmidt) linear operators on H and the
operator (or Hilbert-Schmidt) norm will be denoted by L(H) (or L,(H)) and by
| Il (or || I|,), respectively. By C, we denote the collection of all generators of
C,-semigroups acting on H. In our considerations an important role is played
by the class % of generators 4eC, such that the semigroup S generated by
A satisfies the conditio_n : .

IIIS(t)II%dt < o0.

In this and next sections, Aef’ll is ﬁxed and S stands for the semigroup
generated by A. The following stochastic process, called the mild solution of (0.1),

way X(t)=s(t)x+fs(t—s)dW(s)," £0,

is well defined (see [10]). Moreover, X is an H-valued Gaussian process,
EX(t) = S(t)x and

a2z | o EIX(t)IH = |S(t)x|H+ I IIS(S)H%ds

Aocordmg to ([4], p. 209), X can be considered as a random element in the
space J#;, = L? (O T; H). The main result of this paper is

" THEOREM 1.1. Suppose that Ae¥ and B=A+K, where (K, D(K))
a closed linear operator on H such that

1
D(K) U Range S(t) and _f II‘KS(t)llﬁdt < 0.
>0 )
Then Be% and, for all xeH and T > 0, the dzstrlbutzons in #r of the solutlons
of (0 1) and (0.2) are equwalent

.In the Appendlx the collectlon of linear operators K satlsfymg the
assumptions of Theorem 1.1 is denoted by 2 (A) The proof of Theorem 1.1is
postponed to Section 3. :

2. The case of bounded perturbatlons In this section we consider the s1mp1e :
case B = A+ K, where K is a bounded operator on H. The following infinite -
dimensional version of the well-known Girsanov theorem whose proof can be
found in [9] plays an important role. in our considerations.
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THEOREM . 2.1. Let ¢: [0, T]x 2 — H be an (.9" )-nonantzctpatmg process
such that :

T
2.1) Eexp{j'd)(s)dW(s)—-% j'lq&(s)l,z,ds} =1.
A o Al
Then
2.2y W*(t) = W(t)— j'qb(s)ds, 0<t<gT

is a Wiener process in (v H, E) def ned on the probabzllty space (@, .?7" P* ),
where

P*(dow) = exp{jd»(s)dW(s)'—% 5|¢(s)|%,ds} P(dw).
(1) 0

Remark 2.1 (see‘ [51, p. 83). If there exists & > 0 such that
(2.3) : ~sup E exp(5|¢(t)|H)< 00,

[VEY £ T
then 2. 1) holds.

~ Let KeL(H). Then B= A+KtsC0 and the semigroup U generated by
B satisfies the followmg equation:

Ut)x = S(t)x+ j S(it— s)KU(s)xds = S(t)x+ jU(t s)KS(s)xds
Moreover, it is easy to see that A+Kew and
Y(t) = UDx+ (j) U(t—s)dW(S), t>0,
is the unique (f,)—nona_nticipating solutién of the stochastic integral equation
24) Y(t) = S(t)x+ is(t“S)KY(S)dS'ﬁ ;[S‘(¢—s)dW(s), t=0.

The main result of this section is

THEOREM 2.2. For arbitrary T >0 and xe H t.he'dlstnbutzons Q(X) and
.?(Y) of X and Y are equivalent and the Radon—Ntkodym derwatwe ’

_dZ(Y)
T dP(X)
has the following properties: fu
_ . . )
25 . ¥(X)=E{exp(] KX(s)dW(s)~3% [ IKX(s)lds) | X},
0 0 . . . . .

(26) E¥(X)log ¥(X) <} jT'lKU(s)xI,,ds+ f j IKU (s)|3dsdt.
: [1] 00

-
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Proof. Let ¢(s) = KX (s). The Fernique theorem (see [10]) implies (2.3)
(for details see [12], p. 26). From (1.1) and (2.2) we have

X() = S@)x+ [SE—s)dW(s)

t t
=S{t)x+ jS(t—s)KX(s)ds+_jS(t—s)dW*(s).
Hence X is the nonanticipating solution of (2.4) defined on the probablhty
space (Q, #, P*). Therefore, for each I eBor(#;) we have :
ZL(Y)I)=P(Yel)=P*(Xel)
= exp{jKX(s)dW —3 j'IKX(s)|%,ds} P(dw).

Xerl’

This proves £ (Y) < #(X) and (2.5). The absolute continuity of #(X) with
respect to £ (Y) can be proved by similar arguments with the replacement of
A with A+K and K with —K. To prove (2.6) notice that p(u) = ulogu is
a convex function. Hence, using Jensen’s inequality to.(2.5), we have-

EEP'(X)log'I’(X) E{exp(jKX(s)dW(s 2§|1<X(s)|§,als)
- x({ KXl(s)éW(s‘ )—1 EIKX(s)lﬁds)} |
- B[ KX QW ()} §|Kx<s)|%,ds) |
= B[ KX@W*0)+} [IKX9f3ds) = 37 | KXOads

T .. . T T
=3%E _flKY(s)I%,ds =% leU(s )xtqds+5 § § IIKU(s)Ilidsdt
0 00

Thus the proof is complete

3 Proof of Theorem 1.1. Let K, = KS(1/n) for neN Slnce Kis closed the
operators K, are bounded. By 3 (Y) we denote the distribution of the
process

Y0 = U0+ [ U,(~9)aw ),

where U, is the semigroup gencréted by B, = A+K,. By Theorem 2.2, Z(Y,)
and ¥ (X) are equivalent. Let

dZ(¥,

p _ 42

- N.
T irxy "€
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Then, by (2.6),
T Tt
E¥,(X)log ¥,(X) <} [IK,U,()xl3ds+3 [ [ IK,U,(s)]3dsdr.
[V oo
Hence, by Lemma A.5, ’
I 'supEY’(X)log‘I’(X)<oo
. . neN :
Accordlng to the De La Vallée~Poussin theorem ‘the sequence {'P (X)} is
uniformly integrable and, by the Dunford—Schwartz theorem, it is relatlvely'
weakly compact. Let B=A+K. By Lemma A4, Be%. Let U be the

semigroup generated by B and let Y be the solution of (0 2) Then (compare
w1th (1 2))

EJIY(t) Y,(0ld: = | I(U(t)'—U;(t))xI%,dHqu(r)—‘U;(mi%dr
0 0

Hence, by Lemma A.4, the sequence {Y,} converges in L*(Q; #5;, dP) to Y.
Therefore, we have Z(Y) < #(X). Lemma A.6 implies that the absolute
continuity of #(X) with respect to #(Y) can be proved by the replacement of
A with: A+ K and K with —K. This:completes the ‘proof. :

ExampLE 3.1, Let ‘H =[2(0, ), A =d*/ds* with the zero boundary
conditions. Then ‘4 € %, and for arbitrary he H the operator K which multiplies
a function f by h (1e Kf = hf) is closed and satisfies the assumptions of
Theorem 1.1. e 4 T

4. Some special cases. In this section (4, D(4)) is a self-adjoint, negative
definite linear operator on H. For ¢ > 0 the domain D{(— A4)°) is treated here as
a Hilbert space equipped with the graph norm. The following theorem follows
from Theorem 1.1, Lemmas A.8 and A.6 and Corollary A.2.

THEOREM 4.1. Suppose that there exists 0 < &g such that (—A)"'"¢ s
nuclear for arbitrary ¢ < &,. Let K, and K, be closed linear operators on H such
that:

(i) for some y < 1/2, D(K,)n D(K,) 2 D((— A)),

(ii) for some @ < &,/2, the operatar K K2 has a bounded extenszon actmg
from D((—A)¥) into H. °

Then, for all xe H and T > 0, the distributions in 3# ;. of the solutions of
the equations

@.1) dX = (A+K,)Rdt+dw, R(0)=xeH,
@42 a¥ = (A+K2) Ydi+aw, 17,(0) = xeH,
are equivalent. o o '

Now, let 4 be a self-adjomt negatlve deﬁmte and umform]y elhptlc
differential operator of order 2m > d on a bounded region G in R. We assume
that all coefficients of 4 are in C® and the region G has the restricted cone
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property (see [1], p. 11). The domain of 4 is git'en by
- DAy = {¢EH2'"(G) B;¢ =0 on 4G, 1<] m},

where H?™(G) is the Sobolev space of order 2m and {f;} is a normal system of
boundary operators (see [11]). These conditions imply that the operator A has
~a pure point spectrum {—4,} and i, & ~ ck?™' as k converges to oo (see [1],
Section 14, and [3], p. 179). The following theorem is a special case of Theorem
4.1 and,’in a little stronger form, it was proved by Kozlov [8] and [9] for
elllptrc operators on a smooth compact manifold. .

. TaeoreM 4.2. If K, and K, are differential operators of orders less than‘
m and with smooth coefficients, then A+ K,,i =1, 2, belong to %. If the order of
K, —K, is less than m—d/2, then the dlstnbutlons of the soluuons of 4. 1) and
4. 2) are equivalent.

APPENDIX -

In the Appendix, (4, D(A)) is the generator of a C,-semigroup S acting on
. H. The class % is introduced in Section 1. We consider here the class #(4) of
perturbatlons which was introduced by Hille and Phllhps (see [6]) Classes
2,(4) and 2,(A) are introduced by the author.

DeFNITION A.1. We say that a linear operator (K, D(K)) on H belongs to’
#(A) iff K is closed, D(K) U,>0Range S(r) and o

j||KS(t)|| dt < 0.

* DEFINITION A. 2 We say that a lmear operator (K D(K)) on H belongs to
2,(4) iff Ke#(4) and | | o |

jIIKS(t)llzdt < .
: ! .
" DerNITION A.3. We say that a linear operator (K, D(K)) on H belongs to
P,(A4) iff Ke.?(A) and : o , _ .

_[llKS(t)]I%dt < .

Remark A.1. If K e2P(A), then the operators KS(t), t > 0, are bounded.
Moreover, D(4) < D(K) and B= A+K is the generator of a Co-semlgroup
U (see [2] Chapter 3 such that D(K) U,>0 Range U (t) and ' '

AL " U@=80+ j'S(t-'-s)KU(s)ds =8+ j'U(t—s)KS(s)ds.‘ '
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Lemma Al If KeP(A), then P(A+K) = P(A).
Proof. Let Le #(A). Note that it is é:nough_ to show that, for some 0 < 7,

IVuLU(t)n‘dt < 0.
Let 0 <17 <1 be such that

IIILS(t)IldH I IKS@®)llde < 3.

Then (see [2], pp 68—71) for each t <

U®) = S0+ [ St—9)KSEds+ | [S(t-—'s)KS(s—sl)KS(sl)dsl’ds+
(] 00
Hence

[ILUG)dt < [ ILS@) de+ j 5 VLS(t—s)KS(s)| dsdt + ...
0 ]

i -

Therefore, we have 2(A) gg‘(A'+ K). Since —K e #(A4) € #(A+K), we have
P(A+K) = P(A).

. Let K, = KS§(1/n) and let U, be the semigroup generated by B, = 4+ K.
The proof of the following lemma is rather routine and is omitted here.

LemMMA A2, Let K € #(A). Then there exist constants M and o such that, for
arbitrary ne N, U and U, belong to CO(M o). Moreover, for each veD(A) D(B)
= D(B,),

: lim B,v = Bv.

According to the Trotter—Kato theorem (see [2], Chapter 3) we have
COROLLARY Al For all veH |

lim U, (v = U(t)v

uniformly with respect to.t on every compact sét
Lemma A3. Let K eg‘(A) Then P(A+K) = A (A).
Proof. Let Le#(4). We will show that Le#(4+K). Since

- P(A+K)=2P(A), it is enough to verify that, for some 0 < 1,

j'_llLU(t)jlzdt <oo.
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Let 0 <7 <1 be such that -
JILSOPde+ [ IKS(@de <
Using arguments similar to those in the proof of Lemma A.1 we have

(FILU@I2d0" < (] ILS@)]>de)

0

+([t [ILSE=9 IKS@IPdsdif+ ... < 3 27 = 1.
[V ]

k=1
Hence #%,(A4) = #,(A+K). Since —KEQ’I(A),'we have Z,(A+K) < Z(A).
LemMMA Ad4. If Ae and K € #,(A), then B= A+ Ke% and, forallt >0,
(A2) lim {|U@®)-U,@l}dt=0.

» n—>w 0
Proof. Since (A.1) holds and KeZ (A+K), we have

T

[IU@I3d <2 [I1S©IZdt+2 | ¢ [ ISE—9)3IKU(S)|2dsdt
0 0 0 0 .

<2 [1IS®I3dt+27 [ |S(@13de [ IKU@*dt < oo.
(o] V] (V) :
Note that it is enough to show that (A.2) holds for some 7> 0. Since
' ' B Cittm . b ‘

JIK,S@)Nds = [ IKS(s)l*ds,
Y B . YL I .

we may choose 7€(0,1] and M,eN such that
JIK,SG)2ds <% for n> M,.
e 0 S N
If n> M,, then '
[IU®—-U,013dt <2 [t || (UE—5)—U,t—9)K,S(s)||3dsdt
0 o 0
T t
+2 [t fIU@E—s)(K—K)S(s)|3dsdt -
oo o .
<3 [IU@-U,@03dt+2 [IU@I34de [ I(K=K)SE)dt.

Hence

A3) (5) U= U,0l3d: < 4 [IU@I2de (5) (K — K,)S(@)]2dt.
0
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Since S is continuous in the operator norm on the interval (0, c0), the

right-hand side of (A.3) converges to 0 and we get (A.2). Thus the proof is
complete.

LEMMA A5 Let Ke@z(A) Then, for v > 0,

(A4 . sup _[ IK, U (®]3dt < 0.

neN 0O

Proof. Note that, as in the proofs of the previous lemmas, it is 'enough to
verify (A.4) for some 7> 0. Let t1€(0, 1] and M, eN be such that

jliK SEIZds<}  for n>M,.
By (A.1) we have
K,U,(t)=K,S({t)+ }K,, U,(t—s)K,S(s)ds.
0 A
Hence, for n > M,, we obtain

jllK U (t)ll%dt 2[[|K S(t)llzdt+2 j't j||K U,(t—sK, S(s)||3dsdt
<3+2 (K, S(r)||2dr5nK U(r)nzdt |

<3+

Oty 4 D ey

nK,,U,.(r)u%dt‘
and, consequently,
HK U (t)ll%dt for n > M1

LemMMA AL6. If AeU and KegP(A) then QP(A) (A+K)
Proof. Let Le#(A4). By (A.1) we have

- i“LU_(t)lI%dt < 2,;‘||LS(t )|3dt+2 jt[]lLS(t s)KU(s)Ilzdsdt
0 ' 0

1 o
<2 j ||LS(t)||§dt+2 jllLS(t)”%dt I IIKU(t)HZdt < 0.

Hence % (A4) =€ (A +K). The mcluswn .%(A+K) c % (A) can be proved in
the same way. '

‘Now, let (4, D(4)) be a self-adjoint, negatlve definite linear operator on H.
Note that Ae% iff A™" is nuclear. Therefore, we assume that 4! is a nuclear
operator on H. : g ERRLE
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LemMma A7. If 0 < 1/2, then K = (—A) e Z,(A).

Proof. Let {—1,¢} be the sequence of all cigenvalues and the
corresponding normalized elgenvectors of A. The C,-semigroup § generated by
A has the form ,

Sy =Y exp(—4,)<v, &)pé.
k=1 _

Kv=Y 2o, e,‘>Hr‘e; for o'eD('K')'., |
. k=1
Hence, for ve H,
IKS@ewlh = Y, 220 exp(—24,1)<v, >f
k=1

< Il sup 2% exp(—24,) < Ioffre?t " exp(—2)

keN -

~ and, consequently,

_[IlKS(t)szt o*?exp(—29) j't 2edt < 0.

Lemma A8. If (K, D(K)) is a closed operator such that D((— A)") c D(K)

- fof some ¢ < 1/2, then Ke %, (A4).

Proof. Since K(—A)™? is bounded, we nave‘
1 1 _
IIIKS(I)Ilzdt < I IIK(—A)“’II2 I(—AXS@)I%dt < c0.

Usmg similar arguments we can easily obtain

LeMMA A.9. Suppose that there exists 0 < &o such that (— A)'”" is nuclear
for arbitrary & < e,. Then, for each g <¢&y/2, (— AP eF(A).

CoroLLARY A.2. If (K, D(K)) is a closed operator such that D((—AY)
< D(K) for some g < gy/2, then Ke%(A).
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