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THE CLUSTER SET OF {S,(2nLLn)"Y%; ne 4’} IN»BANACH SPACES
L i e

MAREK SLABY (LINCOLN, NEBRASKA)

Abstract. Let X, X,, ... be a sequence of independent identical-
‘ ly distributed random vectors with values in a Banach space E, weak
- .mean zero and weak second moment. Let S, = X, + ... + X, and let
K, be the unit ball of the reproducing kernel Hilbert space associated
with u = 2(X,). We show that for any infinie set .4 of positive
integers the cluster set of {S,(2nloglogn)™*/%; ne 4"} equals almost
surely 2K, where « satisfies 0 < « < 1 and can bedetermined in terms

of # and g by the convergence of certain series.

1. Introduction. Let E be a separable Banach space and let X, X, X, ...
be a sequence of independent identically distributed (i.i.d.) E-valued random
vectors. S, will denote X,+X,+...+X,, and a, will denote the LIL
normalizing sequence, i.e.

' logn if n>3,
1 ifn=1,2.

We will write Xe WM3 if Ef(X) =0 and Ef*(X) < oo for every feE*.
Let Xe WM}, = Z(X). For every feE* define

Sf = {xf (x)du(x).

Then § is an operator from E* into E. The completion of the range of S with-
respect to the norm |Sf||, = [|f(x)|>du(x) is called the reproducing kernel
Hilbert space of y and is denoted by H,. K, will denote the unit ball of H, For
details on H, and K, we refer the reader to [2]..

For any sequence (X1, C((x,)=1) will denote its cluster set. For any
A < N we define :

= (2nLLn)'?, where Ln = {

B(A) = {8 > 0; Z k= P{|S,/a,|| < & for some ne N NI} =
for all 6>0}

Alexander obtained in [1] the following cluster set result:

" PROPOSITION 1.1. Let Xe WM2, y > 1, L=[[Y.0"") fork=1,2,...
and let o = sup B(N), whenever B(N) # ©&. Then o does not depend on the
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choice of y>1 and

c s,_,)w _{9 ifB(N)=@,” |
a,/u=1) |2K, if B(N)+#®.

It follows from the one-dimensional law of the iterated logarithm (LIL)
that the assumption X e WM3 is an obvious necessary condition. The purpose
of this paper is to characterize the cluster set of (S,/a,).cs for an arbitrary
infinite set 4" of positive integers. This question has been studied: in the
real-valued case or finite-dimensional situations by Torrang [6], Weber [7]
and the author [5]. In [5] we have also obtained the following infinite-
-dimensional result. (See Theorem 2.4 in [5].)

PROPOSITION 1.2, Let X e WM3 and let & be any infinite set of positive
integers. If ' : '

(1.1) I Ens,,/a n

Il"li)

then

cv(f(s,/a,,)..em) = e} mx as.,
where L

gf(AN) = sup{g*(_,({); MN, M={m; k=1,2,. } lim sup mm < 1}
; Lo . B ; ko Mt
e*(M) =inf{e > 0; Y (logm) ™ < 0}. m *
v k=3 .
Remark 1.1.(a) Since in finite dimensions the finite second moment
implies (1.1), Proposition 1.2 includes the general cluster set statement for

subsequences in ﬁmte-dlmensmnal spaces
(b) It can be shown that &} can be expressed in an alternative form

&1 iAN)= SuP{ﬁ > 0; Z k I[k TP)NH £B) = 00}

wh1ch resembles Alexanders deﬁmtlon of o

In the followmg result we characterize the cluster set of {8 /a,,, neAN}
without assuming (1.1). It is therefore a generalization of Pr0pos1tlon 1.1 and
Proposition 1.2. - : :

THEOREM 1.1. Let X e WM%, A be an arbitrary infinite set of positive
integers, I, = I,(y) be defined as in Proposition 1.1, and let o(A") = sup B(A")
whenever B(N') # B. Then a(A") does not depend on the choice of y > 1 and

C((S_) -)_ o . fBW=0,
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Remark 1. 2 If S,,/a,, n"f,"; 0in probablhty, then a(# ) = e¥ (N ). Indeed; for
large k- SRR

Hictnn 2oy S P{”Sn/an” <9 f01' some ne N O L} < lpnnzop

hence, by Remark 1.1 (b), a(A4") = e¥(A4"). Thus Propositions 1.1 and 1.2 as well
as finite-dimensional results of [5] are all special cases of Theorem 1.1.

~+ 2.Characterization of the cluster set. The idea of the proof of Theorem 1.1
is that of Alexander’s proof of Proposition 1.1. In fact, some of his lemmas can
be applied. here directly. The main ingredient of his proof however, ie. Lem-
mas 2.15 and 2.16 in [1], can be neither applied nor their proof can be
immediately altered for the case of a general set of positive integers .#". In our
Lemmas 2.5 and 2.6, working with the more general index set, we were able to
obtain not only more general but also simplified statements.

It is well known (see [2]) that X € WM} implies C((S,/a,);%1) = K, as.
Therefore to establish Theorem 1.1 it is enough to prove the following result
(cf. Theorem 2.3 in [1]):

THEOREM 2.1. Let X e WM3% and let heH,. The following conditions are
equivalent:
(@) he C((Sy/a)es) as. f o
(i) For every B < |||, [or B =0 if h=0] and for every 5 > 0 there is
y>1 such that S

Z k~B*P{|S /a, < & for some nel (y)n N} =

k=1

(ii)) For every < ||h||, [or p =0 zf h = 0], for every 5 > 0 and for every
y>1

S kP P{ISal < & for some nel)n N} =
k=1
We introduce first some notation. We try to be consistent with the
notation used by Alexander in [1]. . _
We will consider bounded partitions IT = (E,, E,, ..., E,) of E, ie. such
that E, is the only unbounded set in the partition. Let &, £;,..., &, be
mdependent and such that for every AecH(E)

P(; eA) P(XeA | XEE)

where %(E) deno.tes the Borel o-algebra of subsets of E. Let 5y, #,, ..., 1, be
independent of (£)/-, and such that

2 . ) .
(’10, Hpseors ’1,;) = (I{XEE0}9 I{XeE,}, caes I{XEEJ})' :
Then it is easy to verify that '

v s

j=0
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Let now {(¢ ,k), o0; k=1,2,...} be a sequence of independent copies of (£)]-o
and let {(nu)/-0; k=1, 2 } be a sequence of independent copies of (1;)]-0
Assume also that {(éjk)J 0 k=1,2,. ..} and {(7p)f-0; k=1,2,...} are
mdependent “Then - ' ‘ '
n J
£ Z Z Nk it
k=1 j=0

Let .4 be the o-algebra generated by {X YE )}j=0, and assume that
P(Xe€E,) >0. Then we can define E(X|.#) in Pettis’ sense. For every
k=1,2,...let now .#, denote the o-algebra generated by {X; 1(E )}j=0 and
let Xk—E(lek) and Xy = X —Xj. Let

=ZX’i and S, =) X7.

If we assume that

7 . : , n I . -
Xk= Z njkfjk') k=1, 2,..., and Sn= 2 ankfjk, n=1, 2,....,-
k=1 j

j=0 =0
then-

z ijEéjk and Z Z r’jké}k
) k=1 j=

Let for every n and ]—1 2,.

By comparing the Fourier transforms one can show that for every n

n

( Z njkEﬂca Z r’jkEéjk)

has the same JOll‘lt dlstrlbutlon as

TJ” T]"

(Z éJk’ Z Eiﬂc)

Hence for every n

J  Tin J T
(Sm S;l) = ( Z Z njkéﬂu Z Z anEéjk) g( Z Z é;ka Z Z Eé}k)-
k=1 j= k=1 j= j=0 k=1 j=0 k=1

Therefore we can actually assume that

Tin T jn
Z Z fJ"’ Z Z Eé]ka
j=0 k=1 j=0 k=1
2.1)
J Tin

S;; = Z Z (é]k Ef)k)

j=0 k=1
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' Qur‘ﬁrst lemma is a particular case of Lemma 2.4 in [1].

LemMA 2.1. Let {F,; ne A"} be any sequence of events and let B > 0. Then
the convergence or divergence of Zk 1 k BP{F, occurs for some ne,/V N I,(y)}
does not depend on y> 1.

Proof By an apphcatlon of Lemma 24 in [1] with F = @ for ngAN. m

The next lemma is a generalization of Kuelbs’ result and it can be proved
by a slight modification of the proof of Lemma 4 in [3].

LemMa 22. Let y> 1 and yeE. Then
o yeC({S,/a,i ne ) as.
if and only if

Y. P{|IS,/a,—yll <& for some ne " n1,(y)} =0 for every e>0. m
& : palied g AdS R SO

LemMa 2.3 (cf. Proposition 2.6 in [1]). Let I be a bounded partition of E, let
X e WM3 and let 0 > 0. Suppose that ye C({S,/a,; ne /'}) a.s. Then a partition
A can be chosen so that A reﬁnes rand - . R

S P{Sy/a,~yl <0 and |Si/a| <0 for some neN AL} =
k=

where S, and S, are defined in terms of A. m

The proof is again a slight modification of the proof of Proposition 2. 6 in
[1] with Lemma 2.2 used instead of Lemma 4 from [3].

The next lemma follows 1mmed1ately from Lemma 2.8 in [1].

LEMMA 24. Let 6> 0. If y—1 is small enough, then

Sl i
5 pf| S
k=1

where n, = [7*]. ® 7
Next we modify Lemma 2.12 of [1].

LEMMA 2.5. Assume that Xe WM3, 0>0,0< u<f <1 (or p=f§=0),
A is a bounded partition of E and for every é >0 o

> for some ne./VnIk(y)} < 00,

”k

Z k=#P{||S,/a,| <& for some ne N NI} = oo.
Then a bounded partition IT can be chosen so that IT ref ines A and

Z k™ "P{||S”/a | <8 for some neJank} 0. =
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We omit:the proof which is a repetition of the proof of Lemma 2. 12in[1]
with Lemmas 2.1, 2.3 and 2.4 used instead of Lemma 2.4, Propos1t10n 2.6 and
Lemma 2.8 of [1], respectlvely

Before we will present the last two lemmas we introduce some addmonal
notatlon that are taken mostly unchanged from Alexanders _paper:

[np,], where p= P{XeE } [Sp”za MK
- {k O |k t:On' mOn}9 :
R, = {(ky, kz, e k)EZL; kj—tul < mju, 1 <j < T}

Q. =W,xRy; U, =(Tin .-v» Traki
Vo=Ton .-, Ty Co=[) {V,eQ}.

nely

Let

Y,Y,Y,,. ..bean independent copy of the sequence X, X,, X, ... and let
X X

1 )? be a sequence of ud random vectors such that
P{Xed} = P{XeA | XEE S}

Given a bounded partition IT of E let Y =Y'+Y” and X = X'+ X" be the
decompositions induced by II. It is easy to verify that for every k-

Thus for every n , :
22 ""Zﬁgzzmm'
- o k=t .
Finally, let us write L _ _
A (0) = {lISy/a,ll < & for some ne & N1},
B.(5, h) = {||Sw/a, —h| < 8}, where n, = [*].
- LEMMA 2.6. Let heK, and let

o(ER*(X"))'? <8, where ¢* = sup Ef*(X), 6 >0.
IFAES! .

If po=P(X e'E;)< 1/100, then
T [P(AO)— P52 B, W)] < o

Jor y—1 small enough. .
Before we start the proof we make some observations. We shall assume

that p, = P(X€E,) > 0. If Po = 0, some steps of our proof become obviously
superfluous. Let goe W, , ie. lgo—mpol < 8p§*a,, . Define a stopping time
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= inf{n; Ty, = q,}. Note that N > go and Ty, = g,. It follows from (2.2) that

N-gq N-gqo
SN- Z Sox+ Z X, . Sy 2 Z (fOk—EfOk)‘F Z '
n—ng
e = SK+ Z Y for n>n,.
Let
R — g n—nx

Z(éo.—E«:mH z Xr+ z Y/ for n>n,.

Observe that for k large enough we have
CiE () {Vae Qi) < {IN—m) <m},

nely

and so, by. Lemma 2.14 in [1]
3) Z P{iN—nkI Z P(C ) < 0.

Proof of Lemma 26. The follbwmg mequahtles hold for sufficiently
large k, sufficiently small y—1 and 1 <c < : :

P(4,(9) < P(4,0) 0 {IN-n < C"k})+P{|N —nl 2 cnk} ,
< P{S, < bya, for some ne N NI, IN—n]< cnk}+P(C,,)
< P{IS}snemll < 20ya,, for some ne A NI, IN—cn)< cn}

|N — ngf ; .
+P{| ¥ Y| > bvya,, IN—n) <cn}+P(C5)
i=1

< P{HH,.II < 3dya,, for some ne A NI, IN—n/ < cn}
+P{max |H,— Sy +n-nl > dva,, IN—n} < cn,}

nely
[(1 +cjng]
+2P{| ¥ Y”||>15ya,,k}+P(C

i=ny .

where the last inequality follows from Lemma 2.7 in [1]. Thus
P(4,(9) < P{||H,|| < 3bya,, for some ne ¥ NI}
IN = nx| _ '
+P{| ¥ X/|> oya,, IN—n < cn}
: =1
[ + o]

+2P{| ¥ ¥'| > 4bva,}+P(C)

i=ng

< P{|H,| < 3dva,, for some ne V" NI}

fenk} fenk]
+2P{" Z X;’" > %5’)}0,,,‘} +2P{" Z Y,-"" > %5‘yank} +VP(Cf,k).
Shi=1 ‘ i=1 R R
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Putting

[emd L [enx] R
A =2P{| % X >4oya, }+2P{| ¥ Y| > 6ya, } +P(C;)
e : = ‘

‘we see that for every g,e W,

@4 P(A4,(0)) < P(4,(48) | Ton, = o) + &

where Yo Ay <0 by Lemma 2.13 in [1] and (2.3). Now

2.5 P{4,(49) | 'TOnk—QO) Y P (Ak(45) | Vo =405 7)) .
reRn, .

XPUy =71 | Tom, = 40)+P(Un ¢ Ry, | Tom = o),

where, by (2.21) in [1], P(U, éR,, | Ton. = qo) < k™2 for large k.
Letq = (q,; €@, and let q’ € Q,,k be such that gp = q,. We will show that

(2.6) (Ak(46) |V, = ) (Ak(55) | xq)+%,' wh‘gré ii}, < 0.
o . N 3 . k-fl" N
We have . ‘ ' B
. J J
P(4 k(45) I =q)=P{| Y Z (é,. Eé,,)ll < 45a..k
. . =0 i=1

~ for some ne Nl o

Ly 'J
<P % Y €Een] <5,

for some neN nl}

+P{ Z || Z (é,, Eé,,)|| > bay,)

(Ak(sfsn -9 |
o+ zP{u z (f,,_Ef,,)||>(6/J)ank}
< P(44(59) | Vs = q)

+2 2 P{| 2 (Ei— Eé,,)ll > (6/20)an},

where the last inequality is a consequence of a version of Lemma 2.7 in [1].
Putting

k=2 Z P{] Z (&—E&p| > (5/2J)ank}

we mfer from Lemma 213 in [1] that Zk . ik < o0, and so (2.6) is proved.
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| Corhbining (2.5) and (2.6) we get for every g =(qq, ..., q;)
P(4,(40) | Tom, = o) < P(A4,(50) | W, =q)+A+k™%

for sufficiently large k. Therefore from (2.4) we obtain

‘ P(A4,(9)) < P(4,(50) | Vp, = @)+ A+ A+ k2.

Now : s o .

- PAG)< Y PAG)P(V, = q | B, h)+P(Vid o, | By, ).

q€Qn,
By (2.23yin [1] we have P(¥, ¢Q,,k | Bi(6, W) <k 2fork large enough (here
the assumption o(Eh*(X"))Y/ z < 4 is used). Note also that for cvery g such that
P(V,, = = q, By(d, 1)) >0 we have

27 P(4,(50) | Vs, = g) = P(4,(55) |,Vm‘=q, B, h).
Thus '
P(4,0) < Y P(4,50) | V, )P( =q | B8, b))+ A+ A4+ 2k 2
qeQn,

= T P49 | Yoo =a, B, WP(Vee = q | B3, )
qeQn;
+ A+ A +2k72
P(A4,(50) | B,(5, h))+ Ay + A +2k~2,
where . ‘ o
Y (h+A4+2k"2) < 0. m
k=1
LEMMA 2.7 (cf: Lemma 2.16 in [1]). Let heK, and let o(ER*(X")'? < §,
where ¢ = sup) s <1 Bf2(X). If p, = P(XeE,) < 1/100, then

Z [P(44(0) | B3, B)—P(4,(59))] < oo,

provided y—1 is sujf iciently small.

Proof. Asin Lemma 2.6 we assume that p0 >0. Let g= (qo, Qs --vs 4qy)
€Q,,; then by (2.6) for every reR,, we have

P(A4,(0) | Vi = 4) S P(4,20) | Vs, = (g, )+ 4, where Y J< 0.

k=1"
Thus
28) P(40) | V,,=4q) |
< ) P(4,(29) I e = o> ) P(Va, = (o> 1) | Tom, = o> Un,€Ry)+%
reRp, ' ' ' )

P(4,(20) | Tom, = qo» Un,€Ry)+ 4.
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Now : , . . _ .
P(4,3) | By(3, 1)) < P(4,(3), Va€ Qu, | B3, W)+ P(Vs, ¢ Qu, | Bi(6, b))
< P(A(0), V.. =q | B,(4, h) '
= 4PV #Qn, | B,O, H)
<L P(40) | Vo =4, B3, W)P(V,,=q | B, h)
- 4 P(Va# Qs | B,(5. W),

where the last sum is over all geQ, for Wthh P(V,,k =4, B,(5, h)) > 0
From (2.7) and (2.23) of [1] we obtain

P(4,0) | B3, )< Y P(4 k(5)| Ve = Q)P(Vy. = q | B(3, h))+k-2,”'

C L aeQn

o

and, by (2.8),' |
P(A4,(9) | By(3, b)) | Lo
S Z Z P Ak(2'5) I ’Ibnk - qo; UnkERm;)

. 40eW, reRn,

X P(Ve, = (@o> ) | Bel6, W) +k~2+ 7
< Z P(Ak(25) | Rnk?QO’_UnkeRnk),

qoeW,;, .
X P(Ton, = do> Un € Ry, | B(S, W) +k™ 2+,
Now by (2.22) in [1] we have

( 1(20), T(')nk = ‘10)
P(Tonk = qo)P(Uy € Ry, | Ton, =40) -

P(A4,(20) | Tow, = do» U «€ Ry,

P(4,(20) | Ton, = qo)+2k™2.

< P(4,(20) ] Tom = 9o) 1—k-2 <

Therefore
P(4,(5) | B,(5, b))
Z P(Ak(z(s) I TOnu = qO)P(RHk ={qo I Bk(as h))+3k_2+11;‘
: " qoeHh, _ o ‘ v
In a similar way to that we have proved (2.4) we can show that
P(A4(20) | Tom, = qo) < P(A(58))+ 4, where ¥ A < 0.

k=1

P(A,(0) | By, 1)) < P(A(58)+ X+ 3/ +3k~2,
where 3 (h+ A +3k ) <0. @
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Proof of Theorem 2.1. (i) = (ii). Let heC((S,/a)nr) 2s. Since
C((S,/a)ne P K, as., we can assume that heK,. Let y—1 be so small that
Lemmas 2.4 and 2.7 are satisfied and, for every yeE, |y/a,—h| < @ for some
nel, implies :

Iy/an,—hil < 26.
We choose a partition I' so that the assumptions of Lemma 2.7 are satisfied. By
Lemma 2.3 there is a partition A that refines I' and such that

0 = Z P(|S,/a,—h| <0, ||S;/a,| < 0 for some nEJVnI,‘)

8

< Y P(ISw/an —h| < 20, ||Sy/a,l <0 for some ne A N 1)
k=1

it

<
k

P(||Ss/an.—hi < 30, ||S,/a,ll <8 for some ne A" NI,)

Ms

1
+ kil P(Il(S:,~S;,k)/a,k|I > 0 for some ne N n 1)
It follows then from Lemma 2.4 that |
kil P(4,(30), B,(30, b) = o0
From Lemma 2.10 in [1] we infer that for every g < 7||h|| " (or B=01ifh = 0)
i k™% P(4,(30) | B,(30, h)) = co.

k=1

Since the partition A also satisfies the assumption of Lemma 2.7 we obtain

3 kP P(4,(150) = co.
k=1

Since X’ is finite dimensional ‘wit‘h finite second moment, §,/a, =20 in
probability, ie. P(B,(156, 0))1;-»_’00 1. Thus

S k" P(A4,(156) P(B,(150, 0)) = oo.
k=1
By Lemma 2.6 we have

w0 = i k™#P(4,(756) | B,(150, 0))P(B,(150, 0))

<

= =
s 0

k=% P(A4,(756), B,(156, 0)).
) \
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Finally from Lemma 2.4 we conclude that

[« 9] .

w = Y kTP P(4,(750), |S,/a,l < 150 for all ne /"N 1,)

k=1
< Y kP P(|S,/a,]| < 900 for some ne A" A1),
k=1 ’ TR

(i) = (iii). This is an immediate consequencé of Lemma 2.1.

(iii) = (i). If h = O, this is a consequence of the Borel-Cantelli Lemma. We
shall assume therefore that h # 0. Suppose that

Y k~PP(||S,/a,]| <& for some ne N AI,(y) =

k=1

for every B < [|hl,, 6>0, 7> 1. Let £6>0, ¢ = (1—&)h and let «, §, 7> 0
satisfy ' v ,

Ikl >B>a>1+nlel,.
Let 6 >0 and let A be a bounded partition of E such that
(2.9) o(Be*(X")*<0.

‘'We choose y—1 so small that the following three conditions are satisfied:
(1) Lemma 2.4 applies with § = 6. :
(2) Lemma 2.6 applies with é =6 and &k = ¢.
(3) For k large enough

2.10)  |y/an,— el <20 implies |y/a,— ol < 30
for all nel, and every yeE

By Lemma 2.5 there is a bounded partition IT which refines 4 and satisfies
¥ kP P(4,(0) = .
k=1 .

Since I7 also satisfies (2.9), by Lemma 2.11 in [1] for sufficientlf( large k we have
k™% < 2P(B, (0, ¢)).
Thus by Lemma 2.6 we obtain |

Z P(Ak(sg)a Bk(B’ (P)) = 00.
k=1 ) ;
It follows from (2.10) and Lemma 2.4 that

' Y. P(lISn/a,ll < 50, ||Sh/a,— @] < 360 for some neA nI)= co.
k=1 - _ -
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Therefore

S P(IS,/a,— o] <80 for some ne A NI) = o
k=1

and so by Lemma 2.2 we have ¢ e C((S,/a,).r) a.s. Since ¢ is arbltrary and

- C((S,/8,)nex) is a closed set, we conclude that

heC((S,/a)en) 28.
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