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Abstract. For a given random element X of a metric space Sand -

a - measurable. mapping h of § into.a metric space S, such that

. P{XeD;} >0 we give ithe conditions for a sequence of random

. elements X,, n>1, of the space S under which the convergence
X, 2x implies h(X,) 2, h(X) (Lemma 1) and stronger conditions
for {X,} undcr which the convergence X, 2 X implies
(X, h(X,) = (X h(X)) (Theorem 3). Here D, is the set of discon-
‘tinuities of A. The case §= D[0, ), h(x) = supp<;< x(f) is con-
- sidered in detail. '

1. Introduction. One of the theorems most frcqucntly used in applications
of the weak ‘convergence of probability measures is the continuous mapping
theorem-(CMT) (see [1], Theorem 5.1). It says that if y and yu,, n> 1, are
probability measures on a metric space S, h is a measurable mapping of S into
a metric space S,, and D, is the set of discontinuities of A, then the weak
convergence u, = p and pu(D,) = 0 imply the weak convergence u,h~! = uh 1.

In the queueing theory and the reliability theory many characteristics have
the following form: : e
o h(X)= sup X(1),

0<t<aw

"where X is a process with sample paths belonging to the space C [0 oo) (the
space of all continuous real-valued functions on [0, o0)) or to the space
D[0, ) (the space of right-continuous real-valued functions on [0, o0) with
limit from the left). Considering the space C[0, co) with the topology generated
by the uniform convergence on compact sets we see¢ that the mappmg his not
continuous at each xe C[0, w0) such that h(x) < co. To see this let us take any
continuous function x such that b& h(x) < oo and define the functions x,,
n>1, as x,(t) = x(t) for 0 <t <n, x,(8) =x(n)+(E—n)(b+e—x(n) for n< ¢
< n+1and x,(t) = b+e¢fort > n+1, where ¢ > 0. It is obvious that x,, n > 1,
are continuous and sup0<,<t|x (t) x(t)l—»O as n— oo for any ¢ > 0 but
h(x)-b+s-|—>b h(x). - ‘

A similar example can be given in the space D[o, oo) considered with the
metric defined by Lindvall in [3]. D[0, o) with Lmdvall’s metric is a Polish
metric space, and Lindvall’s metric generates the Stone topology in D[0, )
(see [3]). The above example shows that we cannot use CMT to the inves-
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tigation of the convergence

sup X, (1) 2, sup X(t)
0<t<wm . 0st<w

under X, 2, X in D[0, oc) with the Stone topology. Thus the following
problem arises: for which sequences {X,} < {X,, n = 1} does the convergence
X, 2 x imply the convergence supg<;<q X,(t) —1—)—> SUPg << X ()7 We gen-
erally state this problem as follows: Given a measurable mapping h of a metric
space S into a metric space S, and g1ven a random element X of S we ask for
which sequences {X,} such that X, 2, X does the convergence h(X,) 2, h(X)
hold? Obv1ously, if P{XeD,} = 0 then by CMT we know that X, —» X
implies h(X,) -—»h(X)

Our approach to the investigation of the stated problem is based on an
approximation of h by a sequence of measurable mappings h,, k > 1, of § into
S, such that

(a) (X)) hk(X) as n> oo, for each k> 1,
and

(b) h(X) 2 h(X) as k- .

Then, as Proposition 1 shoWS, und_er (a) and (b) the eondition'
© : li:n @go(g(h,;(xn)), 2 (h(X,)) =0

is equivalent to the condltlon _ _ ,
(d) C hX) 2R as n— o,

where g, is any metric in the space of probability measures which metrizes the
weak topology.

Theorem 1, given in Section 3, shows that if §; is the Euclidean space, then
in the situation P{X €D,} = 0 there exists a sequence of continuous mappings
hy,. k =1, of § into S, such that the conditions (a), (b) and (c) hold under
X, 2, X. From this we infer (Theorem 2) that our approach contains the
s1tuat1on of CMT, i.e. Theorem 5.1 from [1].

One of the propert1es desirable from a pract1cal point of view is the
implication

[X, 2 X and h(X)—»h(X)]=>[(X,,, h(X ) 2 (X h(X))]

This 1mpl1cat1on is true when P{Xe D,, =0, Unfortunately, it is generally false
(see [6], Example 1). The reason for which this implication is desirable is the
following: Let X and X,, n > 1, be processes which generate the 0-th and the
n-th queueing systems, respectively, and let h(X) and h(X,) be some characteris-
tics of those systems (for example the process of waiting time). Then the validity
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of the above 1mpl1cat1on allows us to investigate the joint convergence
(h(X,,) [ (X, h(X,))) = (h(X), f(x, h(X))) as n— oo, where f(X, h(X)) is
another characteristic of the queueing system. -

An attempt of a characterization of the above 1mp11cat1on is given in [6].
Here we give more concrete conditions under which the mentioned implication
holds (Theorems 2 and 3). Thus if there exists a sequence of measurable
mappings h,, k> 1, of S into §; such that P{XeD,} =0, k> 1, and

() h(X) 5 h(X) as k- oo,
then additionally under X, =» X the condition ‘
(©) lim lim a(hy (X,,), h(X,)) =

k n .

is equivalent to the condition
@ (X, h(X,) 2> —(X,h(X)) asn—o0. -

Here a is the metric which metrizes the convergence in probability. Theo-
rem la, given in Section 3, shows that if S is separable and S, is the Euclidean
space, then in the situation P{X e D,} = 0 there exists a sequence of continuous
mappings h,, k > 1, of § into S, such that conditions (b’) and (¢’) hold under
X, 2> X. This approach allows us to reduce the investigation of the weak
convergence of the joint distribution of several characteristics to the weak
convergence of each characteristic separately (see Corollary 3).

In Section 4 we consider a special case of § and h, i.e. S = D[0, ) and
h(x) = Supg<;< o %(t). Furthermore we give an application of the results
obtained to investigating the asymptotic stationarity of queueing systems.

2. Preliminaries. The paper uses the terminology of the weak convergence
of probability measures, so most of the notation appearing here can be found
in [1]. Here we introduce only specific notions, assumptions, and we formulate
auxiliary facts. Throughout Sections 2 and 3 the letters S, § and S,l1<ism,
denote metric spaces with metrics ¢, § and g;, 1 <i < m, respectively. The
Cartesian product of metric spaces is considered with the product metric. For
a Borel o-field of subsets of a metric space we write % before the symbol
denoting the space. For a mapping h the symbol D, denotes the set of
discontinuities of 4. The set of all probability measures on (S, #(S)) is denoted
by .#(S), and g, denotes the Prohorov metric on .#(S). If S is separable, then
v(S) denotes the space of random elements of S defined on a fixed probability
space. This space is considered with the metric « deﬁned as (see [7])

a(X,Y)= mf{s P{Q(X Y)>e}<ég} for X, Yev(S).

For the distribution of a random element we put £ before a symbol denoting
the random element. By =, —», -Z» we denote weak convergence of
probability measures, convergence in distribution and convergence in probabil-

ity of random elements. The Prohorov metric g, metrizes the weak topology in
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the space -of probability measures on afixed metric space and the metric
o metrizes the topology of convergence in probability of random- elementS'
Furthermore the following relatlons hold (see [2]): :

“(Xls Yl) “(Xm Yz) . When Q(Xb Y) Q(X2= Yz) ac.,
QP(E(X),E(Y)) a(X,Y) for X, Yev(S)
In a few places we refer to the followmg fact ‘

PROPOSITION 1. Let {x,,, k,n>1}, {x;; k> 1} and {y,,n>1} be an
array and sequences of elements of the space S, respectwely, such that Jor each
k>1, x,,—x, as n— oo and x, —»xe§ as k- oo. Then the convergence ..

lim lim Xk ) =0
k n ’

is equivalent to the convergence y, — X as n— .

Proof. The proof of the assertion is a consequence of the following
1nequa11t1es wh1ch follow from the triangle 1nequa11ty for a metrlc

_ Q(ym JC) Q(yn’ xk n)+Q(xk ns xk)+9(xk’ x)
and v e : B
G m ) < 8 %) +E (5 x)+8(x, V). ®

Before formulating other auxiliary facts let us introduce the notation of
some conditions which are satisfied by an array {Z, ,, k, n > 1} and sequences
{Z,, k> 1} and {Y,, n-> 1} of random elements of S, and a random element
Zof §;. : . a ' ‘

A,. for each k> 1, Zk,,—*Z as n—oo;

A,. for each i, k> 1, (zl,,,z,‘,,)—>(z,, Z)as n—o0; .
B;. Z 2,7 as k—-»oo '

B a. Z, ——»Z as k— c0; _

B for each i >1, (Z,,Z)—-—-»(Z Z) as k— oo;

C,. llmkhm Qp(g’(zk,,), L2@)=0

C a. for each ¢ >0, lim, lim, P{QI(Z,‘,,, Y) }

C,. for each i > 1, llmkhm QP(,‘?(Z,,,, Zk,,) ,?(Z,,,, Y”))=
Dl. Y, —»Z as n— oo;

D,. for each i> 1, (Zim ¥) 252, 2) as n> 0.

“.Let us notice that the formulations of some of the above condltlons need
addltlonal assumptions. Namely, in-the conditions C,a and C, the random
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elements Y, and Z; ,, k.> 1 must be defined on a common probability space.

Slmllarly, in the condition B;a the random elements Z and Z,, k > 1, must be

defined on a common probabﬂlty space. Moreover, the conditions A,, B, a, Bz,

C,a, C, and D, need the separability of §,. i
It 1sobv1ous that the following nnphcat_lons hold:

A,=A,, Ba=B,-B, Ca=C,=C, and D,=D,.
The implication C,a=C, holds because the distance between (Z;,, Z; ,) and
(Z;n, Y) in S, x S1 is equal to ¢,(Zyn, Y), because of the inequality

ep(Z(X), Z2(Y)) < a(X Y) when X, Ye v(S) holds and at last because of the
following fact:

PROPOSITION 2. The' condition C,a is equivalent to
C,. lim, lim, a(Z; ,, ¥)) = 0.

The following fact glves more detalled relations between ‘the above
conditions: s :

ProrosiTION 3 (1) If A, and B hold then C, and D, ‘are equivalent.
. (i) If S, is separable and A, and B, hold, then C and D2 are equivalent.

(111) If 8, is separable and A and B a -hold, then C,a, C; and D, are
equwalent

Note 1. The assertion (i) is stronger than Theorem 4.2 from [1] where it
has been shown that under A,; 131 and C,a the condltlon D1 holds

Proof. The implications (i) and (i) are lmmedlate consequences of
Proposition 1 with the following specifications: § = .#(S) "and § = gp.

Now let us consider the implication (iii). Since B, a implies B,, so under A,
and B, a the equivalence of C, and D, follows from the implication (ii). Thus in
view of the implication C,a=C, it is enough to show the implicationv
C,=C;a under A, and B,a. But then D holds Hence 1n view of the
contmulty of the metric, we get '

01Zip, V) 2 0,(Z, Z) as n— 0.
Thus for almost all &> 0 w1th respect to the Lebesgue measure we have
| hmP{gl(Zk,,, Y)>¢) = P{Ql(Zk, z)> a}
Let {-:1 be such that the above falls and let & be such that O <g< el and the-
above holds ‘Then we have . . Coe
11mP{Ql(Zk,,, ) > g} < nm P{‘gl(zk,n, Y)>e} |

= P{0,(Z,. Z) > &}.

Hence and from B,a we get C,a, which completes the proof. =
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3. Weak convergence under mappings. Let # be a measurable mapping of
Sinto S, and let X and X, n > 1, be random elements of §. Our mam criterion
for exammatlon of the convergence h(X,) —»h(X) under X, —»X is the
following o : e .

LEMMA 1. Assume that there exists a sequence of measurable mappmgs h,
k> 1, of S into S, such that - :

a for each k=1, h(X,) 2> h(X) as n— oo,
(2) : h(X) 2 h(X) *as k> oo.
Then the followmg conditions are equivalent:
3) lim lim 0,( £ (h,(X,)), £ (h(X,)) =
k n
4 hX,) 2 h(X) as n—oo.
- Proof. The assertion is a consequence of the impliCatiOn (i) of Proposi-
tlon 3 with the following spemﬁcatlon Zin=h(X), Z, = h,,(X), Z= h(X),
=h(X,), n, k=1

‘Let us notice that if Sis a Polish metric space and S, is Euclidean, then
there exists a sequence of continuous mappings h,, k > 1, of S into S, such that
h(X) - h(X) ae. as k — oo. Unfortunately, to verify (3) we ought to know
something more about h,, k > 1. Thus we ought to give a construction of those
mappings. The followmg theorem gives such a constructlon in the situation
when 8, is the Euclidean space and P{XeD,} =

THEoREM 1. [ f X, =+ X and P{XeD,} =0 where S, is the Euclidean
space, then there exists a sequence of continuous mappings h,, k > 1, of Sinto S,
such that

5 R lk(X)Lh(X)v ’as k—»oe
6) hm 11m lim (L (h(X,), £ (h(X,) =

Proof. Since § is a metric space, % (X) is regular. Hence for each k > 1
there exist closed sets F, such that F, « D and P{XeF,} > 1—1/k, where
Di denotes the complement of D,. Because of the continuity of h on Dg, his
continuous on each closed set F,. Thus, by Tietze’s theorem, for each k =1
there exist continuous mappings h, on S such that hy=h on F,, k> 1.
Moreover, in view of P{h(X) # h(X)} < 1/k we have (5).

Now we show that the sequence of h,, k > 1, satisfies (6). For clarity let us
denote by p and p,, n z 1, the dlStl’lbllthl‘lS of X and X,, n =1, respectively.
Then we have

ep(uahit, ph™Y) = infle: p,h~\(F) < pohi 2(F%) +¢}
< inf{e: 0 < p by (F)+e—p,(h~ ' F)},
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where F* = {xeS,: ¢,(x, F) <¢}, and F is closed. Hence

llm QP(un hk » Mn 1)

llm 1nf{s 0< unhk 1(F8)+£—,u,,(h IF)}
< inf{e: 0 < lim p, (b ' FO)+ e~1im g, (b7 F)}

<inf{e: 0< phy *(F)+e—p(r T F)}
<inf{e: 0'< ph,:l(Ff)+e-u(D Uh~'F)}
<infe: O < uh (P ko™ F)) = gpluhi ' ph” 1)’
where F is closed. Hence, by (5), we obtain (6). =

Assuming that S is separable we obtaln the following strengthened version
of Theorem 1: :

THEOREM la. If X, -2 X and P{X ED,,} 0 where S1 is the Euclzdean
space and S is a separable metric space, then there exists a sequence of contmuous
mappmgs hk, k=1, of S into S; such that

(52) B BhX)  as koo,
(6a) for each &> 0, lim llmP{Ql( (X, h(X) = ¢} =0.
: k n E

Proof. Let us take the sequence of continuous mappings h,, k > 1, chosen
in the proof of Theorem 1. In view of P{h,(X) # h(X)} < 1/k the condltlon (5a)
holds.

Now notice that the set of continuity points of the function 0 1( (x) h(x))
x €S, contains the set F, . and this function is equal to zero on F,. Thus for fixed
£>0, k> 1, and for each xedF, there exists an open sphere N(x, J,) with
radius 6, > 0 such that g, (h(y), h(y)) <& for yeN(x, é,). Let

G, = |J N(x,8)UF,, k>1.
xedFy
Then G, k > 1, are open and G, o F,, k > 1. Denoting by H, the complement
of G, and using Theorem 2.1 from [1] we have -

: hmP{gl( (X, (X)) > e} < limP{X,eH} <P{XeH} <1/k.

Hence we get (6a), which completes the proof. =

As a consequence of Theorem 1 and Lemma 1 we get the following
well-known theorem:

THEOREM 2 (see [1], Theorem 51). If X, 2,X as n— o0 and
P{XeD,} =0, then h(X,) = h(X) as n— oo.
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Proof. Let f be any bounded and continuous mapping of S, into R. Then
Sfoh is a bounded mapping of S into R and in view of D, c D, we get
P{XeDj,} =0. Hence and from Theorem 1 we infer that there exists
a sequence of real-valued mappings g,, k> 1, on S which are bounded,
continuous and satisfy’ the followmg conditions:

. gi(X) —;foh(X) _as k— o0,
limlim (£ (9,(X,)), Z(foh(X,) = 0.

k n

Thus by Lemma 1 we obtain fo h(X,) N foh(X) as n— co. Now, because foh
is bounded, Efoh(X,) = Efoh(X) as n — co. This and the fact that f was an
: arbltrag continuous and bounded mapping of S, into R give the convergence
h(X,) — h(X) as n— oo, which completes the proof. =

. In the situation X, ——> X as n — oo, Lemma 1 will be more suitable for an

examination of h(X ) 2, h(X) if we choose mappings h,, k > 1, in a way such
that P{X e D, } = 0, k > 1. Then in view of Theorem 2 we must only verify (2)
and (3). For clarlty let us 1ntroduce the following notlons

DEFINITION. A sequence of mappmgs he,k>1,is sald to approxlmate h on
X either (i) in probability or (ii) in dzstnbutwn 1f hk, k > 1, are measurable
mappings of § into S, such that

A. P{XeD,} =0 for each k > 1,

and | o

Ba. hy(X) %> h(X) as k— o in the case (i),
B. h (X)—»h(X) as k— oo in the case (11)

DEFINITION A sequence of mappings hk, k>1,is said to .app'rox;m*'tate hon
the sequence {X, } either (i) in probability or (11) m dlstrlbutlon if h, are
measurable mappmgs of § into S, such that

Ca. for each ¢ > 0, lim, hmnP{Ql( h(X,), h(X,)) > &} =0 in the case (1),

C. 1irm,‘vliE,l ep(ZL (m (X)), (h(X,,))) 0 in the case (ii).
In this terminology Lemma 1 and Theorem 2 give the following

COROLLARY 1. Let X, 2, X as n— oo and let {h;} approximate h on X in
distribution. Then the followzng conditions are equivalent:

C. the sequence {h,} approximates h on {X,} in distribution,”
D. h(X,) = h(X) as'n— oo. ' '
To obtain condltlons under wh1ch ‘the 1mpllcat10n _ .
[X, —»X]=>[(X h(X )) (x, h(X))]
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holds it is enough to use Corollary ‘1 by replacing h and h,, k > 1, with
mappings # and h,, k> 1, respectively, defined as A(x) = (x, h(x)) and
B (x) = (x, hy(x)). Then we have

COROLLARY 2. Let X,-2>X as n— o and Tet the sequence {h} ap-
proxlmate honXin dzstrlbutzon ‘Then the condition that {ﬁk} approxlmates h on
the sequence {X,} in distribution is equivalent to (X, h(X, )) — (X, h(X)) as
n— co.

Let us notice that the condition that {hk}'approximates hon X in
distribution does not imply the condition that {h,} approximates # on X in
distribution. Similarly, the condition that {h,} approximates h on the sequence
{X,} in distribution does not imply that {k,} approximates % on {X } in
distribution. However, these implications hold if the approximation in dis-
tribution is replaced by the approximation in probability. But then the
- following problem of a relation between  the condltlons arises: {h,} ap-
proximates h on {X .} in probability and (X, h(X,)) = (X, h(X)) A solution
of this problem is given by Theorem 3 below Before stating it let us. formulate
the following lemma:

LeMMA 2. Let X, ——->X as n— oo and let the metric spaces S and S, be
separable F urthermore assume that there exists a sequence of mappings hy,
k > 1, approximating h on X in probability. Then the followmg conditions are
equivalent:

7(7) for each’i > 1, lim, lim, .0p(Z (h (X,,) hk(X )) &L (h; (X ) h(X,,))) =
(8). for each &> 0, lim, im, P{e, (h(X,), h(X,)) > ¢} = 0, |
©) for each i> 1, (h(X,), h(X,)) = ((X), h(X)) as n— co.

Proof. Assume Z =h(X), Z;,=h(X,), Z,=h/(X) and Y, = h(X,,),
k > 1. Then the convergences X, — X as n— oo and h(X) -—+h(X) as
k—» oo and the condition A 1mp1y that the array {Z,,, k,n > 1} and the
sequences {Z,, k > 1} and {Y,, n > 1} satisfy the conditions A, and B, a from
Section 2. Hence usmg the 1mphcat10n (111) of Proposmon 3 we - get the
assertion. m : : S

THEOREM 3. Let X, 2+ X as n— oo and let the metrtc spaces S and S, be
separable. Furthermore, assume that {h,} approximates h on X in probablhty'
Then the following condntwns are equwalent

Ca. the sequence {hk} approxlmates h on the sequence {X } in probablhty, |
Da. (X, h(X, )) (X h(X)) as n— oo.

Proof. Let us define mappings / and 4,, k > 1.0f the space S into Sx S,
as follows: A(x) = (x, h(x)) and fi(x) = (x, h,(x)) for xS and k > 1. Obviously,
these mappings are measurable and the set of dlSCOIltlnlllthS of h,, ie. Dy,, is
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asubset of Dy, k > 1. Hence by the condition A, we have P{X €Dy} = 0 and,
by the convergence h,(X) - h(X) as k— oo, we get

I W(X) = (X, h LX) 2 (X, h(X)) = E(X) as k— o0.

The last facts mean that the sequence of mappings &, k >1, approximates A on
X in probability. Thus using Lemma 2 we have the equivalence of the
conditions

Ca. for each &> 0, limkﬁ,,P{g‘(‘ﬁk(Xn),ﬁ(Xn)) 2ep=0
and - . : Lo '
D. for each i > 1, (A(X,), A(X,) 2 (A(X), K(X)) as n— oo,

where Q((xl, yy), (%5, ¥2)) = e(xy, X5)+0,(v,, y,) for x,€S, y,€8,, i =1, 2. But
the condition Ca is equivalent to the condition: :

for each ¢ > 0, 11m hmP{gl( ((X), h(X) =} =0,

whlle the condltlon D, in view of A, is equivalent to the convergence.
(X, h(X,)) = (X, h(X)) as n— 0. This completes the proof.

The following remark makes the conditions of Theorem 3 more clear to
the investigation of the weak convergence of vector- valued mappings on the
sequence {X,}.

Remark 1. Let k', 1 <i < m, be measurable mappings of a separable
metric space S into separable metrlc spaces S;, 1 < i < m, respectively, and let
h be the mapping on S defined as

h(x) (F (), (), ..., k"(x)  for xeS.

If for each h', 1 < i < m, there exists a sequence of measurable mappings hk,'v
k=1, of Sinto §; such that this sequence approximates A on X in probablllty,
then ‘the sequence of mappings h,, k > 1, deﬁned as

k(x) ( (x) h2(x), .. h;,”(x)) for xeS

approxlmates the mapplng hon X in probability. Similarly, if for each K,
1<i<m, the sequence of mappings hi, k > 1, approximates k' on the
sequence {X,} in probability, then the sequence of mappmgs b, k=1,
approximates h on the sequence {X,} in probability.

Note 2. The identity mapping is approximated in probablhty by the
sequence of identity mappings on each X and each {X,}

As an immediate consequence of Remark 1 and Theorem 3 we get the
following corollary:

COROLLARY 3. Let X, =+ X as n— oo where S is separable and let ¥,
1 <i<m, be measurable mappings of S into separable metric spaces 8§,
respectively. If furthermore for each W, 1 < i< m, there exists a sequence of
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mapﬁings h;, -k =1, which approximates W on X in probability, then the
convergence : ' N o
(1) (Xp0 B, 2K, .oy B(X) 20 (X, B(X), ..., HP(X) a5 m 6o
holds iff the- sequence {hj, k > 1} approxtmates K on the sequence {X } in
probablhty for each i, 1<i<m. ST

In queuemg theory one considers queuemg systems whlch are perlodlc in
tlme Here in place of the convergence & (X )= 3’ (X ) we put the convergence

a1 zg’(x,.):g(X)ﬁ as n— 0.
i=1

In this situation the problem formulated in Section 1 takes the foll;)wing form:
for which sequences {X,} does the convergence

(11 | 1Y L(X)=> LX) as no oo
Coi=t B T

give the convergence

(12) nt Y Z(X, h(X))=>L(X, (X)) as n—oo?

i=1"

An answer to this problem follows from Theorem 3 and takes the following
form:

COROLLARY 4. Assume that (11) holds and that there exists a sequence of
mappings h, k > 1, approxzmatmg h on X in probablllty Then (12) holds iff for
each £>0

a3 Iimﬁn"‘ 2"2 P{él(hk(xi),,htxi)) > e} =0.

4. The case S D(T) We restnct ourselves to the case where S is the space
of nght-contmuous functions on T = R, i.e. § = D(T). In this situation for any
measurable mapping h of D(T) into a separable metric space S, we indicate an
example of a sequence of mappings h,, k> 1, which approx1mates h on
a random element X of the space D(T) in probability. Next we restrict
ourselves to the case where the mapping h at x € D(T) is equal to sup,> o x(¢) if it
is finite and zero otherwise. In this situation we give conditions on X and on
a sequence {X,} of random elements of D(T) under which the sequence of
mappings h,, '

- h(x)= sup x(), k=1, where ¢, 100,
0<t$ck .

, apprommates h on X and on {X } in probablhty

4 ~ PAMS 13.1
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- Let T'be a sub'ihterval of the real line. T can be finite or infinite and, if
finite, open or closed. Let D(T) be the set of all right-continuous real-valued
. functions on T with limits from the left. Let D(T) have Skorohod’s J,-topology

or its natural extension to non-compact intervals: a sequence {x,,n > 1}
converges to x in D(T) if the restrictions of x, converge to the restrictions of
x in D[a, b] for each compact interval [a, b] < T such: that a and b are
continuity points of x or endpoints of T. This mode of convergence agrees with
the previous extension of the J ,-topology given by Stone and Lindvall (see [8]).
In the case T = [0, o) we can consider D(T) with Lindvall’s metric defined in
[3] or with Whitt’s metric defined in [8] while in the case T = (— o0, 00) we
consider D(T) with Whitt’s metric. D(T) with the mentioned metrics is a Polish
metric space.

Let {c,} = {c;, k> 1} be an increasing sequence of positivé numbers
tending to infinity and let {r,} = {r,, k > 1} be the sequence of mappings of
D(T) into D(T) defined as

S x@r) for 0<t<g,

t —
rk(x) ( )= {x(ck) for t>c,
when T = [0, o0), and as
_ | x(—¢y) Cfor t < —cps
n@E@=<x@.  for—¢<t<g,

x(c) for t>
when T —( oo ). |

Let h be a mappmg of D(T) mto a separable metric space S, and let hy,
k > 1, be mappings of D(T) into S, defined as h,(x) = h(r,(x)) for xeD(T).

Obv1ously, the mappmgs h,,, k > 1 are measurable and the following fact
holds:

_Remark 2 Let X be a random element of D(T) The sequence of
mappings h,, k 1 deﬁned above approx1mates h on X 1n probablhty if

: (rk(X)) 25 h(X) as k— o0

and SRR

P{X(ck) = X(ck—)} =1 for each k=21 -

when T = [O o), while _ ‘ o o 7 |
P{X(ck) =X(¢,—-)} = P{X(— ck) = X(— ck—)} = 1 for each k> 1

when T = (—o0, ).

Henceforth, let h be defined on D(T) as follows: h at xe D(T) is equal to |

sup,»o x(#) if it is finite and h is equal to zero otherwise. Obviously, this
mapping is measurable. As in Remark 2, let us define mappings h;, k > 1, on
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D(T) as -
h(x)= sup x(1), .

ost<cx
where {ck} is an increasing sequence of positive numbers tending to infinity.
The case where h is defined at xeD(— oo, o) as

* h{x) = sup x(t)

<0
if it is finite and zero. otherwise reduces itself to the earlier case, i.e.

“h(x) = sup x().

120
Henceforth, let X and X,, n > 1, be random elements of D(T) satisfyi@g
the condition ' ’ »

a,. P{supX(t) < o0} =1 and P{supX,() <o} =1fornx=1. .

. t20 t20

Immediately from Remark 2 we get the following fact: L
Remark 3 If X satisfies the qoﬁ_dition a, and thé condition B
8, P{X(c)=X(e,=)} =1, k> 1, - | L
then the sequence of mappings h,, k > 1, approximates the'mappipg’ hon X in
probability. 4 _ . o :
‘Now let us notice that the condition

a;. for each ¢> 0, limﬁn_P{supX,,(t)— sup X,(6)>¢} =0,
’ k

n 120 O0<t<cx

means that the sequence of mappings h,, k > 1,"approximates the mapping
h on {X,} in probability.
Obviously, the condition a,'is' weaker than the condition '

d,. limlim P{h,(X,) # h(X,)} = 0.
k n . L I .
However, as we see soon, d, is equivalent to a, in some class of stochastic
processes X,, n>1 (see Lemma 3 and Note 3). g :
LEmMMA 3. Assume that the following,cohditi_ons hold:
a,. for each k> 1, X,,(ck)—,l»X(c-k) as n—»o, .
as. X(c) 2> —0 as'k— oo, : 2
aq. for any £¢>0 there exists b > 0 such that for all n,ik} 1

P{sup X, (1) < —b}<e and P{ sup (X,(t+c)=X,(c))> b} <.

t20 ,0<t<oo

Then the condition 55 holds.
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" Proof. We put s

On= sup X, (8, n, k=1,

. O<st<cx

o= sup (X, (t+c)—X,(c), nmk>1.

0<t< : : . S

Now let us notice that for any xeD(T) and ¢ >0 we have
sup x(t)— sup x(t) = méx{ sup x(), supx()} — sup x(t)

t20 - o<t<c 0Kt<se ' t>¢ Tost<e -

= max{O sup x(¢)— sup x(8)}

t>c. . 0<t<c¢
=max{0, sup (x(t+c)—x(c))+x(c)— sup :_c(t)}.
: O<t<w 0<t<e

Hence
P{supX,()— sup X,()>0} = P{n“—ek,.+x (c) > 0}.

120 Ost<ex

But by ag the above does. not exceed

26+ P {fn—Ount X,(0) > 0, 14, < b, o“ —b} < 2e+P{X (>, 2b}
Hence and from a, we have ' .

: ﬁi_'P{su-pX;,(t)—v- sup X,(f) >0} < 2e+1lim P{X,(c) > —2b}

n t20 0<t<ex n
< 2e+1im P{X,(c) > —2b} <2+ P{X(c) > —2b}.
Now by a; we get . R "
hmhmP{supX ()— sup X,(t) >0} < 2.

. n tz20 0<t<cr -
- Since ¢ was arbitrary, we get the assertion. m - ,
Note 3. From the proof of Lemma 3 it follows that if .

limlim P{X,(c,) > —b} =0 for each b>0

and a, hold, then 4, holds.
The following remark gives the ‘sufficient conditions for ag.
Remark 4. The condition a, holds whenever the sequence {sup,s o X,(t),
> 1} is tight and one of the following conditions (a), (b) or (c) holds:
(a) the sequence {SUPo <<« (X,(t+c)—X,(cy), n, k 1} 1s ught
(b) X,, n> 1, have stationary increments;
(c) for each n,k>1 and x >0 the following inequality holds.‘

P{ sup (X,(t+c)—X,(cp) > x} < P{supX (t)>x}

O<t<a 120
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~ Now, ‘using Remarks: 24, Lemma'3 and ‘Theorem 3 we get

COROLLARY 5. Let X and X n>1, be random elements of D(T) satisfying
a, and a,. Then the following lmplzcauons hold:
(i,) The condition a, and the convergence X, -—» X imply the convergence

a,. (X, h(X )),——f(X, h(X)) as n— co. -

“(i,) The conditions a, and a4 and: one of the conditions (a), (b) or (c) gwen in
Remark 4 imply i,.

~ To consider the asymptotic stationarity of queueing systerns it is useful to
have an analogue of Corollary 5 in the case where D(— 0, o) is replaced by
the space R®,, ie. the space of sequences x = {xk,‘—oo < k < o}, where -
x€R, while b at xe R, is equal to sup;<o x; if it is finite and zero otherwise.
Obviously, each element x of R®,, can be meant as an element x of D(~ o0, )
if we write x(f)=xy, teR.  Now, -since sup;coX;=SuUp;soXx_;
= sup,»ox(—t), the case considered now is a special case of the case
considered in Corollary 5. In spite of this we rewrite Corollary 5 in a sultable
- form for our later applications. :

© Let S, be a separable metric space and let &, Y) and (&, Y,), 1, be
random elements of the metric space R®,, xS, such that £ and §,, n > 1, are
random elements of R?,, while Y and Y n > 1, are random elements of S,.
The random elements & and f,,, n > 1, are written as § = {{,, —0 <k < o0}
and &, = {£,, —00 <k < o0}, n> 1, where &, and &,; are random variables.
Henceforth we assume that & and &,, n > 1, satisfy the followmg condmon

(14) P{sup¢;<w}=1 and Pfsupg, <oo}=1, 'n>1}.‘

Jso -_ iso _
Now, complhng Corollary 5 Theorem 3 and Corollary 3 we get

. COROLLARY 6. Under the assumed conditions the followmg lmphcatzons hold :
(11) If (cn’ n)—’(gs Y) as n—o0" and ’ S .

(15 ey 11mhmP{sup¢,.,— sup 6,,, > 0} 0, “ :
n Jj<o ~k<j<€0 . . )
then , _
(15) ('fm sup fn,, Y,.) —*(tf, sup E,, Y) as n— .
i<o - oo JS0 T

(12) On the contrary, if the convergence

(& 51, ) 2+ (&, supl) a_s"n-_»oo]

150 . : j<o

holds - and furthermore E Ly —o0 as _k—) oo and the sequence
{sup;<o(&nj—x—&n 1) B, k= 1} is tight, then (15) holds true. ,
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Now we give an analogue of Corollary 6 in the case where instead of the
convergence J(é,,, Y)=>2% (:;‘ Y) we cons1der the convergence

(17). o yn‘l-Zf(‘é‘.-, Y.-)._=>(€; K) as,n—foo;

i=1
written as (&, Y) = (&, Y) and called ‘the weak convergence in mean.

COROLLARY 6a. If & and &, n> 1, satisfy (14), then the followmg

imphcatzons hold:
(11) If (17) holds and

18 limhmn? Z Plsup&,— sup &;>01=0,
e K .n: i=1  j<o '—ksjs_o -
gh'en‘ ' . ' '. _ P T
19 . . ZC. SUPé..,, Y)=>$(§, Supé,, Y) S as n— .
: SRR iSO & J€0 . R

" (i,) On the contrary, if the convergences
2

L& sup L) == Z(E, sup¢) as n—> oo _.qnd £ B —c0 as ko o
JSO : Jgo . ; . .

hold and the sequence of probabzhty measures

i Zz(sup(ct, g é._k)) k=1,

z=1-, JSO .
is tlght then (18) holds

ExampLE 1. Here we illustrate an apphcatlon of Corollaries 6 and 6a to
prove Theorem 1 from [4]. The proof of this theorem given here is easier and
clearer than the proof given in [4]. 'Besides, the case (i1} of Theorem 4
formulated below is stronger than-the case (ii)' of Theorem 1 from: [4].
Moreover, Condition AB formulated below and Condition AB in mean are free
of an initial condition w,, however Condition AB under the assumptlons of
Theorem 4 is equlvalent to Condition AB from [4]. Other applications of
Theorem 4 are given in [5].

Let (v, u) = {(v;, u,), k = 1} be a generic sequence for a single server queue
(see [4]), let w, be the waiting time of the  k-th unit, and let-
(w, v, u) = {(W;, v, ), k > 1}. Furthermore, denote by (v°, u°) = {(v?, w?
k= 1} a stationary representatlon of (v, u) in the sense of weak convergence
or weak convergence in mean (see [4]), and by (v*, u*) = {(v¥, uff),
— o0 < k < o0} a two-sided stationary sequence such that {(v}, uf), k > 1} and .
(v°, u°) have the same distribution. Also let X, =v,—u, S,=0, §;
=X +X,+.. +X,,, k> 1, and Xt = of —uf, S§ =0, 5 =¥ k+1X* for
k< 0 : . : . s

PR
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We say that (v, u) satisfies Condzt:on AB or Condition AB. in mean if
 limlim P{ max (S, —58,- J) > 0}

k n k<j<n
or '
Timlimn~! Y P{max (5,—S: ,)>0} 0,
; k n i=; RIIE1A
respectively.

THEOREM 4 (see [4], Theorem 1). Let (v, i) be either (i) weakly asymptotical-
ly stationary or (ii) weakly asymptotically stationary in mean and assume that it
satisfies Condition AB in the case (i) and Condition AB in mean in the case (ii).
Furthermore, let the stationary representation (v°, u®) in both cases be such that
§*, — —o0 a.e. as k — oo. Then the sequence (w, v, u) is weakly asymptotically
stationary in the case (i) and weakly asymptotically stationary in mean in the cdse
(ii). Moreover, the statzonary representation of (w, v, u) is gwen by. (4 14) in [4]

Proof. First' we show that §, 2, —o as n— oo in the case {i) and
n~! Z , P{8;> —a} -0 as n— oo, for any:a > 0, in the case (ii). For that
purpose let us notice that Condition AB and Condition ‘AB in mean imply

P{S,>0} -0 ‘and n~'Y P{5,>0}>0 asn— oo,
j=1

respectively. Hence for any ¢ > 0 and b > 0 there exists n, such that for n > n,
we have P{S, > b} <e¢ in the first case and n~?! Z} (P{S;>b} <e in the
second case. But for any a > 0 we have

P{s, <—a}/P{S <-—a,8, k<a/2} P{S = Sn- ,,<—a/2 S k<a/2}
> P{S,—S,_ k<—-a/2} P{S k>a/2}

and

j=1 j=

n~! Z P{S,< —a} >n"" ZP{S —8; . < —é/Z}—-n"i iP{sj-k>_a/2}.
: o q=k o

By the weak asymptotic stationarity of v—u in the first case and the weak
asymptotic stationarity in mean in the second case, for any a > 0, ¢ > 0 and
k > 1 there exists n, such that for n>n, we have

P{S,~8S,_x< —a} > P{S*, < —a}—¢ in the first case

and , _ »
n~! 3 P{S;—S; x< —a} > P{S*; < —a}—¢ in the second case.

Now, in view of §%, — — 0 a.e. we see that for any & > 0 there exists k, such
that for k > k, we have P{S*, < —a} > 1—¢. Compiling the above facts
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we infer that for any ¢ > 0 and a > O there exists n, such that P{S, < —a}
> 1—3gin the first caseand n™' 3", P{S; < —a} > 1—3ein the second case,
which gives the required convergences.

Now define sequences (3, i) = {(Tux»> ns)y —© <k < 0}, & = {&s
—w<k<o},n>1,and E={§, —o0 <k< oo} in the following way:

Onk = Uptks Upg = Upsg fOr k> —n+1 and G, =d,, =0 for k< —n,

i=k+1

Eu = Z (Bps—1i,) for k<0 and &, =0 for k>0,

&= Z (0 —u¥) for_k<0 ‘and .ék_=0for k>0.

i= k+1

Then in the case (1) we have the convergences
20 £G. W)= 20", w*) and g(g):g)(&) as n— oo,

while in the case (ii) we have (20) with = 1nstead of =, Moreover é = 8%,
- —o0 a.e. as k— oo. Since :

Wat1 = max(S +w,, max (Sp—Sa- ) n=1,
. 0<j<n ) ’
" we have

1) C Wary = max(_atwy, sup&,), 1
Jj<0

In view of Lemma 14 from [4], to show the convergence & (w,,, v,, U,)
= 2 (w°, v°, u°) in the case (i) and the convergence = in the case (i) it is
enough to show the convergence £ (Wy+1, v,, &,) = LW}, v°, u°) in the case
(i) and the convergence ==»> in the case (ii). Here

(wm vm un) = {(V’Vn+k’ Un+ks uh+k)’ k > 1}-
Define the mapping f: R®, xR%2, - R¥_ as
o f(x,9) ={z, —0 <k< o},
where o L
x={xk,—oo<k<oo}, y={m —o0 <k<oo}

2 (xi=y) for k<0 and 7, =0 for k0.

i= k+1

Now let us notice that

sup 61:] - h(f(vn’ un))

Jj<0
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where "h(x) = sup;<o x; if it is finite and zero otherwise. Hence

(Wn+1s I!'n, n) - (maX(é,, _,,+W1, SUP gn j), I’na n) )
1<0 : S

— (max (&, —+w,, h( 1G, i), ¥, i,).
But in view of (20) and of the continuity of f we have the convergence
(22) 3’(10 (f.. —nt W), f (B, B,), 6, | i,) = Z£(0, f (v*, u*), v*, u*)

the case (i) and the convergence == in the case (11}, where I0 denotes the
mdlcator of {0}. Now let us notice that

(23) P{sup&,;— sup &, J>0}

j<0 : ~k<j<0
= P{sup &, ;— sup ¢,;> 0} P{max (S,—S, _,) > 0}
i<k —k<j<0 k<j<n

Since (v, u) satisfies Condition AB with the initial condition w; in the case (i)
and Condition AB in mean with the initial condition w, in the case (11) by (23
the sequence {£,} satisfies condition (15) of Corollary 6 in the case (1) and
condition (18) of Corollary 6a in the case (ii). Thus using Corollary 6 in the case
(i) and Corollary 6a in the case (ii) with the following specification:

Yn = (IO '(én,—n+w1)’ 5::! ﬁn)’ Y = (0’ l’*, u*)!
S=f(F,4), S=f@*u*), n=l,
we get the convergence KW+ 1, By, Bi,) = L (W], v*, u*) in the case (i) and the -
convergence == in the case (ii). This immediately implies the "assertion. =

Remark 5. Under the assumptions of Theorem 4 the Condition AB in the
case (i) and the Condition AB in mean in the case (ii) are necessary for the weak
convergence of {£(w,)} as k — oo in the case (i) and the weak convergence in
mean of this sequence in the case (ii).

Proof. If the sequence {£(w,)} is either (i) weakly convergent or

(ii) weakly convergent in mean, then {,?(wk)} is tight in the case (i) while the
sequence {n 2. , ZWw), n>1} is tight in the case (ii). But

(24) Sup (én,j—k - 611, -'k) = sup . Z én,i

j<o J<0 i=j—k+1

= max (Sn—k_sn—k—j)swn—k+l, t<k<n.
0<j<n—k

" Hence and from the second part of Corollary 6 we infer that the condition (I5)
is necessary in the case (i) of Remark 5, which implies that Condition AB is
necessary in the case (i). Similarly, from the second part of Corollary 6a we see
that the condition (18) is necessary in the case (ii) of Remark 5, which implies
that Condition AB in mean is necessary in the case (ii). =
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