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WEAK CONVERGENCE UNDER MAPPING 
BY 

Abstxaet. For a given random element X of a metric space S and 
a measurable mapping h of S into a metric space S ,  such that 
P { X E D , }  > 0 we give .the conditions for a sequence of random 
elements X,, n 3 1, of the space S under which the convergence 
X, 5 X implies h(X,) -% h(X) (Lemma 1) and stronger conditions 
for {X , }  under which the convergence X, X implies 
(X,, h(X,)) (x, h(X)) (Theorem 3). Here D, is the set of discon- 
tinuities of h. The case S = D[O, co), h(x) = sup,,,, , x(t) is con- 
sidered in detail. 

1. Introduction. One of the theorems most frequently used in applications 
of the weak :convergence of probability measures is the continuous mapping 
theorem (CMT) (see [I], Theorem 5.1). It says that if p and p,, n 2 1, are 
probability measures on a metric space S,  h is a measurable mapping of S into 
a metric space S , ,  and D, is the set of discontinuities of h, then the weak 
convergence p, p and ,u(D,) = 0 imply the weak convergence p,h-' bh-l. 

In the queueing theory and the reliability theory many characteristics have 
the following form: ! 

h (X) = sup X(t), 

where X is a process with sample paths belonging to the space CEO, oo) (the 
space of all continuous real-valued functions on [0, a ) )  or to the space 
D[O, oo) (the space of right-continuous real-valued functions on [O, oo) with 
limit from the left). Considering the space CEO, a) with the topology generated 
by the uniform convergence on compact sets we see that the mapping h is not 
continuous at each x E C[O,  oo) such that h(x) < oo. To see this let us take any 
continuous function x such that b g  h(x) < GO and define the functions x,, 
n 2 1, as x,(t) = x(t) for 0 < t < n, x,(t) = x(n)+(t-n)(b+e-x(n)) for n ,< t 
< n+ 1  and x,(t) = b + ~  for t 2 n+1, where E > 0. It is obvious that x,, n > 1, 
are continuous and supo d t a e  lxn(t) -x(t)l-+ 0 as n -P oo for any c > 0, but 
h(x,) = b + ~ *  b = h(x). 

A similar example can be given in the space q[O, oo) considered with the 
metric defined by Lindvall in [3]. D[O, oo) with Lindvall's metric is a Polish 
metric space, and Lindvall's metric generates the Stone topology in D[O, oo) 
(see [3]). The above example shows that we cannot use CMT to the inves- 
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tigation of the convergence 
D sup X,(t) - sup X(t) 

O < t < m  O < t < m  

under X, z X in D[O, co) with the Stone topology. Thus the following 
problem arises: for which sequences {X,} (X , ,  n 2 1) does the convergence 

D D X, - X imply the convergence supos,,, X,(t) - sup,bt<m X(t)? We gen- 
erally state this problem as follows: Given a measurable mapping h of a metric 
space S into a metric space S ,  and given a random element X of S we ask: for 
which sequences {X,} such that Xn % X does the convergence h(Xn) %:(x) 
hold? Obviously, if P{XED,} = 0, then by CMT we know that X, + X 
implies h(XJ % h(X). 

Our approach to the investigation of the stated problem is based on an 
approximation of h by a sequence of measurable mappings h,, k 2 1, of S into 
S, such that 

(a) h k )  h )  as n -, KI,  for each k 2 1, 

and 

Then, as Proposition 1 shows, under (a) and (b) the condition 

is equivalent to the condition 

(d) h(X,)%h(X) as n-KI ,  

where Q, is any metric in the space of probability measures which metrizes the 
weak topology. 

Theorem 1, given in Section 3, shows that if S,  is the Euclidean space, then 
in the situation P {X E D,,) = 0 there exists a sequence of continuous mappings 
h,, k 2 1, of S into S, such that the conditions (a), (b) and (c) hold under 
X, --% X. From this we infer (Theorem 2) that our approach contains the 
situation of CMT, i.e. Theorem 5.1 from [I]. 

One of the properties desirable from a practical point of view is the 
implication 

CX. -% x and h(X.) 5 h (XI1 =. [(X., h(X,)) % (X, h(X))]. 

This implication is true when P{X E D,} = 0, Unfortunately, it is generally false 
(see [6], Example 1). The reason for which this implication is desirable is the 
following: Let X and X,, n 2 1, be processes which generate the 0-th and the 
n-th queueing systems, respectively, and let h(X) and h(Xn) be some characteris- 
tics of those systems (for example the process of waiting time). Then the validity 
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of the above implication allows us to investigate the joint convergence 
(h(X.1, f (X., h(X.1)) 5 ( h ( ~ )  f (x, h ( ~ ) ) )  as n  + a ,  where f (X, h(X)) is 
another characteristic of the queueing system. 

An attempt of a characterization of the above implication is given in [6]. 
Here we give more concrete conditions under which the mentioned implication 
holds (Theorems 2 and 3). Thus if there exists a sequence of measurable 
mappings h,, k 2 1, of S into S, such that P{XED,,,) = 0, k 2 1, and 

(b') h,(X)&h(X) as k - a ,  
then additionally under Xn z X the condition 

( ~ 0  lim GG a(h,(x,,), h(xn)) = o 
k n 

is equivalent to the condition 

(d') ( ~ , , , h ( x ~ ) ) % ( X , h ( ~ ) )  as n + w .  

Here a is the metric which metrizes the convergence in probability. Theo- 
rem la, given in Section 3, shows that if S is separable and S, is the Euclidean 
space, then in the situation P{X E D,) = 0 there exists a sequence of continuous 
mappings h,, k 3 1, of S into S, such that conditions (b') and (c') hold under 
X, 3 X. This approach allows us to reduce the investigation of the weak 
convergence of the joint distribution of several characteristics to the weak 
convergence of each characteristic separately (see Corollary 3). 

In Section 4 we consider a special case of S and h, i.e. S = D[O, oo) and 
h(x) = sup,, , , , x(t). Furthermore we give an application of the results 
obtained to investigating the asymptotic stationarity of queueing systems. 

2. Preliminaries. The paper uses the terminology of the weak convergence 
of probability measures, so most of the notation appearing here can be found 
in [I]. Here we introduce only specific notions, assumptions, and we formulate 
auxiliary facts. Throughout Sections 2 and 3 the letters S, S" and Si, 1 < i < m, 
denote metric spaces with metrics Q, @ and Q,, 1 < i < m, respectively. The 
Cartesian product of metric spaces is considered with the product metric. For 
a Bore1 o2field of subsets of a metric space we write &? before the symbol 
denoting the space. For a mapping h the symbol D, denotes the set of 
discontinuities of h. The set of all probability measures on (S, &?(S)) is denoted 
by A@),  and Q, denotes the Prohorov metric on A(§). If S is separable, then 
v(S) denotes the space of random elements of S defined on a fixed probability 
space. This space is considered with the metric a defined as (see [7]) 

u(X, Y)=inf{s: P { Q ( X , Y ) ~ E ) < E )  for X,YEV(S). 

For the distribution of a random element we put Y before a symbol denoting 
D the random element. By a, -+, A we denote weak convergence of 

probability measures, convergence in distribution and convergence in probabil- 
ity of random elements. The Prohorov metric Q, metrizes the weak topology in 
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the space of probability measures on a fixed metric space and the metric 
a metrizes the topology of convergence in probability of random elements. 
Furthermore, the following relations hold (see [2]): 

4 x 1 ,  Y,)<a(X2, Y2) when @(XI, Y,)<@(X,, Y,) a.e., 

ep(Wx),  g ( Y ) )  < a(X, Y )  for X ,  YEV(S). 

In a few places we refer to the following fact: 

PROPOSITION 1. Let {x,,,, k, n 2 1) , {x,, k 2 1) and {y,, n 2 1) be an 
array and sequences of elements of the space S", respectively, such that: for each 
k 2 1, x,,, -) X, as n + ao and x, + x E S" as k +-a. Then the convergence , 

- 
lim lim@(xk,,, y) = 0 

k n 

is equivalent to the convergence y, + x as n + ao. 

Proof.  The proof of the assertion is a consequence of the following 
inequalities which follow from the triangle inequality for a metric: 

Before formulating other auxiliary facts let us introduce the notation of 
some conditions which are satisfied by an array {Zk,,, k, n 2 1) and sequences 
{Z,, k 2 1) and ( 5 ,  n 2 1) of random elements of S ,  and a random element 
Z of S,. 

A,. for each k 2 1, Z, ,  -%Zk as n +  CO; 

A,. for each i,  k 2 1, (Z,,,, Zk,,) % (Zi, Zk) as n + co ; 

B,. for each i 2 1, (Zi, 2,) A ( Z i ,  Z) as k +  a;  
- 

C .  l i m n  ( ( z ~ , ) ,  z ( 5 ) )  = 0; 
- 

Cia. for each E > 0, limklim,P{~,(Zk,,, Y,) 2 E )  = 0; 

C,. for each i 2 1, lirq e r ( 9 ( ~ i , n ,  Z,,,), LZ(Zi,n, x)) = 0; 

D,. 5 % ~  as n + c o ;  

D,. for each i 2 1, (Z,,,, YJ % (Z,, 2) as n + co. 

Let us notice that the formulations of some of the above conditions need 
additional assumptions. Namely, in the conditions C,a and C ,  the random 
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elements Y, and Zk,n, k 2 1; must be defined on a common ljrobability space. 
Similarly, in the condition B,a the random elements Z and Zk, k 2 1, must be 
defined on a common probability space. Moreover, the conditions A,, B, a, B,, 
Cia, C, and D, need the separability of S , .  

It is obvious that the following implications hold: 

The implication C ,  a - C, holds because the distance between (Zi,n, Zk,.) and 
(Z,,,, Y,) in S, xS, is equal to er(Zk,;, Y,), because of the inequality 
e p ( 9 ( X ) ,  9 (Y)) < u(X, Y) when X, YE v(S) holds and at last because of the 
following fact : 

PROPOSITION 2. The' condition C, a is equivalent to 

The following fact gives more detailed relations between the above 
conditions : 

PROPOSITION 3. (i) If A, and B, hold, then C, and Dl are equivalent. 
(ii) If S ,  is separable and A, and B, hold, then C, and D, are equivalent. 

(iii) If S, is separable and A, and B1a hold, then C1a, C, and D, are 
equivalent. 

N o t e  1. The assertion (i) is stronger than Theorem 4.2 from [I] where it 
has been shown that under A,, B, and C,a the condition Dl holds. 

P r o  of. The implications (i) and (ii) are immediate consequences of 
Proposition 1 with the following. specifications: 5 = d ( S )  'and ,@ = g,. 

Now let us consider the implication (iii). Since B1a implies B,, so under A, 
and B, a the equivalence of C, and D, follows from the implication (ii). Thus in 
view of the implication C,a=C, it is enough to show the implication 
C, * C,a under A, and B,a. But then D, holds. Hence, in view of the 
continuity of the metric, we get 

Thus for almost all E > 0 with respect to the Lebesgue measure we have 

limP{e,(Zk,,, Y,) > E }  = P{el(Zk, 2) > E } .  
n 

Let be such that the above fails and let E be such that 0 < E < E ,  and the 
above holds. Then we have 

Hence and from B,a we get Cia, which completes the proof. 
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3. Weak convergence under mappings. Let h be a measurable mapping of 
S into S, and let X and X,, n 2 1, be random elements of S. Our main criterion 
for examination of the convergence h(X,) h ( X )  under X ,  5 X is the 
following 

LEMMA 1. Assume that there exists a sequence of measurable mappings h,, 
k 2 1, of S into S, such that 

(1) for each k 2 1 ,  h , ( X , ) z h , ( ~ )  as n - a ,  

(2) h,(x)-%h(x) as k + m .  

Then the following conditions are equivalent: 

(3) lim lirn @,(a (hk(xn))  P (h(xn))) = O ,  
k n 

(4) h ( x n ) z h ( x )  as n + a .  

Proof.  The assertion is a consequence of the implication (i) of Proposi- 
tion 3 with the following specification: Zk,, = hk(Xn),  Zk = hk(X) ,  Z = h ( X ) ,  

= h(X,), n ,  k 2 1. 

Let us notice that if S is a Polish metric space and S, is Euclidean, then 
there exists a sequence of continuous mappings h,, k 2 1,  of S into S, such that 
h,(X) -, h ( X )  a.e. as k -, a. Unfortunately, to verify (3) we ought to know 
something more about h,, k 2 1. Thus we ought to give a construction of those 
mappings. The following theorem gives such a construction in the situation 
when S, is the Euclidean space and P ( X E D , )  = 0. 

THEOREM 1. If X ,  -%X and P ( X E D , )  = 0 where S, is the Euclidean 
space, then there exists a sequence of continuous mappings h,, k 2 1, of S into S ,  
such that 

(5 )  h , ( ~ ) z h ( ~ )  as k - + o o ,  

(6) ' lim lirn e p ( ~ ( h k ( ~ n ) ) .  I" (h (xn) ) )  = 0. 
k n 

Proof.  Since S is a metric space, 9 ( X )  is regular. Hence for each k > 1 
there exist closed sets F,  such that F,  c Dg and P { X E  F,} 2 1 - l / k ,  where 
Df denotes the complement of D,. Because of the continuity of h on Di, h is 
continuous on each closed set F,. Thus, by Tietze's theorem, for each k 2 1 
there exist continuous mappings h, on S such that h, = h on F,, k 2 1. 
Moreover, in view of P{h,(X) + h(X)]  < llk we have (5). 

Now we show that the sequence of h,, k 2 1, satisfies (6). For clarity let us 
denote by p and p,, n 2 1, the distributions of X and X,, n 2 1, respectively. 
Then we have 

ep(p,,hk1, pnh-l) = id(&: p , h b l ( ~ )  < p,h;l(F"+~} 
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where F& = {xES,: p,(x, F) < E}, and F is closed. Hence 

K ~ ~ ( p , , h i - ~ ,  pnh-') 
n 

- 
< liminf{e: 0 < pnhkl(Fe)+e-pn(h-'1;)) 

n 
- - 

< inf{s: 0 < @pn(h; lF~+~-- l impn(h- l~)}  
n d 

< inf{s: 0 < phil(FE)+e-p(h-IF)) 

< inffe: 0 < , U ~ < ~ ( F ~ ) + E - - ~ ( D ~ U  h-IF)) 

d inf(s: 0 < phil(F"+e-p(h-'F)} = pp(ph;l, ph-I), 

where I: is closed. Hence, by (3, we obtain (6). m 

Assuming that S is separable we obtain the following strengthened version 
:ui' . *%. 

of Theorem 1: 

THEOREM la. If X, 5 X and P{XED,) = 0 where S, is the Euclidean 
space and S is a separable metric space, then there exists a sequence of continuous 
mappings h,, k 2 1, of S into S ,  such that 

I @I h,(X)Ah(X) as k + w ,  
I 

(6a) for each E > 0, lim P (h,(~,,), h(Xn)) 2 e) = 0. 
k n 

P r o  of. Let us take the sequence of continuous mappings h,, k 2 1, chosen 
in the proof of Theorem 1. In view of P(h,(X) # h(X)} < l/k the condition (5a) 
holds. 

Now notice that the set of continuity points of the function el (h,(x), h(x)), 
x E S, contains the set Fk and this function is equal to zero on F,. Thus for fixed 
e > 0, k 2 1, and for each x ~ d F ,  there exists an open sphere N ( x ,  6,) with 
radius 6, > 0 such that p,(h,(y), hb)) < E for y ~ N ( x ,  6,). Let 

G , =  U N(x,6,)uFk, k 2 1 .  
xeaFk 

Then G,, k 2 1, are open and G, 3 F,, k 2 1. Denoting by U ,  the complement 
of G, and using Theorem 2.1 from [I] we have 
- 
lirn P (p, (hk(Xn), h(X# 2 E )  4 P {Xn E H,) d P {X E H,} 6 Ilk. 

n n 

Hence we get @a), which completes the proof. s 

As a consequence of Theorem 1 and Lemma 1 we get the following 
well-known theorem : 

THEOREM 2 (see [I], Theorem 5.1). If Xn X as n + oo and 
PIXEL),} = 0, then h(xn) 3 h(X) as n + oo. 
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Proof. Let f be any bounded and continuous mapping of S ,  into R. Then 
foh is a bounded mapping of S into R and in view of Dfoh c D, we get 
P{XE Dfoh} = 0. Hence and from Theorem 1 we infer that there exists 
a sequence of real-valued mappings g,, k 2 1, on S which are bounded, 
continuous and satisfy the following conditions: 

Thus by Lemma 1 we obtain f o  h(Xn) % f o h(X) as n -+ co. Now, because fo  h 
is bounded, Efo h(Xn) -, Efo h(X) as n 4 co. This and the fact that f was an 
arbitrar , continuous and bounded mapping of S ,  into R give the convergence 2' h(Xn) -+ h(X) as n -t oo, which completes the proof. BI 

In the situation X, X as n + coy Lemma 1 will be more suitable for an 
examination of h(Xn) -% h(X) if we choose mappings h,, k 2 1, in a way such 
that P{X E Dhk} = 0, k 2 1. Then in view of Theorem 2 we must only verify (2) 
and (3). For clarity let us introduce the following notions: 

DEFINITION. A sequence of mappings h,, k 2 1, is said to approximate h on 
X either (i) in probability or (ii) in distribution if h,, k 2 1, are measurable 
mappings of S into S ,  such that 

1 

1 A. P{X  ED,^} = 0 for each k 2 1, 
and 
Ba. h,(X) A h(X) as k + co in the case (i), 

B. h,(X) 5 h(X) as k -, oo in the case (ii). 

DEFINITION. A sequence of mappings h,, k 2 1, is said to approximate h on 
the sequence {X,) either (i) in probability or (ii) in distribution if h, are 
measurable mappings of S into S ,  such that 

Ca. for each E > 0, l i r n , & ~ { ~ , ( h , ( ~ ~ ) ,  h(Xn)) > E) = 0 in the case (i), 

C. lim, Q,(P(~,(x,)), Z(h(xn))) = 0 in the case (ii). 

In this terminology Lemma 1 and Theorem 2 give the following 

COROLLARY 1. Let X, -% X as n + co and let {h,} approximate h on X in 
distribution. Then the following conditions are equivalent: 

C. the sequence {h,} approximates h on {X,) in distribution, 

I 
I To obtain conditions under which the implication 
I 

I 
i rx, 5 XI * [(x,, h(Xn)) (X, h w)] 



Weak convergence under mapping 47 

holds it is enough to use Corollary 1 by replacing h and h,, k >, 1, with 
mappings h" and Kk, k 2 1, respectively, defined as h"(x) = ( x ,  h(x)) and 
&(x) = ( x  , h,(x)) . Then we have 

COROLLARY 2. Let X ,  A X  as n -t oo and let the sequence ap- 
proximate h" on X in distribution. Then the condition that {&} approximates h'on 
the sequence {X,)  in distribution is equiualent to (X,, h(X,)) 3 ( X ,  h(X)) as 
n - t  oo. 

Let us notice that the condition that (h,) approximates h on X in 
distribution does not imply the condition that {h",) approximates 6 on X in 
distribution. Similarly, the condition that {h,} approximates h on the sequence 
(X,} in distribution does not imply that {&) approximates 6 on {X,) in 
distribution. However, these implications hold if the approximation in dis- 
tribution is replaced by the approximation in probability. But then the 
following problem of a relation between the conditions arises: {h,} ap- 
proximates h on (X,)  in probability and (X,, h(X,)) ( X ,  h ( m ) .  A solution 
of this problem is given by Theorem 3 below. Before stating it let us formulate 
the following lemma: 

LEMMA 2. Let Xn  % X as n -, oo and let the metiic spaces S and S ,  be 
separable. Furthermore, assume that there exists a sequence of mappings h,, 
k 2 1, approximating h on X in probability. Then the following conditions are 
equivalent: 

(7) for each i 2 1, lim, limn e,(8(hi(X,),  h,(X,)), 8 ( h i ( X J ,  ~ ( x J ) )  = 0 ,  

(8 )  for each s z 0,  l i r n , G  P ( ~ ,  (h,(X,), h(X,)) 3 E ]  = 0, 

(9) for each i 2 1, (hi(Xn), h(X,)) a ( h i ( X ) ,  h(X))  as n + ao. 

Proof. Assume Z = h(X) ,  Z , ,  = h,(X,), Z,  = h,(X) and Y, = h(X,), 
n,  k 2 1. Then the convergences X ,  3 X as n -, ao and h,(X) A h(X)  as 
k -+ oo and the condition A imply that the array {Z,,,, k ,  n 2 1 )  and the 
sequences { Z , ,  k 3 1) and (Y,,, n >, 1) satisfy the conditions A, and B, a from 
Section 2. Hence using the implication (iii) of Proposition 3 we get the 
assertion. ra 

THEOREM 3. Let X ,  A X  as n -, oo and let the metric spaces S and S, be 
separable. Furthermore, assume that {h,) approximates h on X in probability. 
Then the following conditions are equivalent: 

Ca. the sequence {h,) approximates h on the sequence {X,)  in probability, 

Da. (X,, h(X,)) 3 (x, h(X)) as n + oo. 

P r o  of. Let us define mappings 6 and 6,, k 2 1, of the space S into S x S, 
as follows : h"(x) = ( x  , h (x) )  and h", ( x )  = ( x  , h, (x))  for x E S and k 2 I. Obviously, 
these mappings are measurable and the set of discontinuities of f;,, i.e. Dkky is 
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a subset of Dhk, k 2 1. Hence, by the condition A, we have P{X  ED^,} = 0 and, 
by the convergence hk(X) P-, h(X) as k 4 oo, we get 

Kk(x) = (X, hk(X)) (X, h(X)) = K(x) as k 4 oo . 
The last facts mean that the sequence of mappings Kk, k 2 1, approximates Lon 
X in probability. Thus using Lemma 2 we have the equivalence of the 
conditions 

ca.  for each E > 0, lirn,G, P{@(%(x,), @,)) 2 E )  = 0 
and 
n. for each i 2 1, (UX,), K(x,)) % (&(x), &(XI) as n -, oo, 

where B((xl, yl), (x,, ~ 2 ) )  = d x l ,  x2)+ Q,(Y,, ~ 2 )  for x i ~ S ,  yi E S1, i = 1, 2. But 
the condition c a  is equivalent to the condition: 

for each E > 0, l i m ~ ~ { ~ , ( h , ( ~ , J ,  h(X,)) 2 E )  = 0, 
k n 

while the condition n, in view of A, is equivalent to the convergence 
(X,, h(X,)) % (x, h(X)) as n -. oo. This completes the proof. 

The following remark makes the conditions of Theorem 3 more clear to 
the investigation of the weak convergence of vector-valued mappings on the 
sequence {X,} . 

Remark  1. Let hi, 1 < i < m, be measurable mappings of a separable 
metric space S into separable metric spaces Si, 1 < i < m, respectively, and let 
h be the mapping on S defined as 

h(x)=(h1(x),h2(x) ,..., hm(x)) for XES.  

If for each hi, 1 < i < m, there exists a sequence of measurable mappings h:, 
k 2 1, of S into Si such that this sequence approximates hi on X in probability, 
then the sequence of mappings h,, k 2 1, defined as 

h, (x) = (hi (x), hi (x), . . . , hP(x)) for x E S 

approximates the mapping h on X in probability. Similarly, if for each hi, 
1 < i < m, the sequence of mappings hf, k 2 1, approximates hi on the 
sequence (X,) in probability, then the sequence of mappings h,, k 2 1, 
approximates h on the sequence ( X , }  in probability. 

N o t e  2. The identity mapping is approximated m probability by the 
sequence of identity mappings on each X and each {X,). 

As an immediate consequence of Remark 1 and Theorem 3 we get the 
following corollary: 

COROLLARY 3. Let X, A X  as n + oo where S is separable and let hi, 
1 < i < m, be measurable mappings of S into separable metric spaces Si, 
respectively. If furthermore for each hi, 1 < i < m, there exists a sequence of 
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mappings hi, k 2 1, which approximates hi on X in probability, then the 
convergence 

(10) (X,, hl(Xn),  hZ(Xn),  . . . , hm(Xn)) ( X ,  h l ( X ) ,  . . . , hm(X)) as n -. oo 

holds ty t h e  sequence {hi, k 2 1 )  approximates hi on the sequence (X,} in 
probability for each i, 1 < i < m. 

In queueing theory one considers queueing systems which are periodic in 
time. Here in place of the convergence 9 ( X n )  * 9 ( X )  we put the convergence 

i= 1 

In this situation the problem formulated in Section 1 takes the following form: 
for which sequences {X,)  does the convergence 

n 

I give the convergence 

I An answer to this problem follows from Theorem 3 and takes the following 
form: 

COROLLARY 4.' Assume that (11) holds and that there exists a sequence of 
mappings hk, k 2 1, approximating h on X in probability. Then (12) holds ifffor 
each E > 0 

4. Tb case S = D(T). We restrict ourselves to the case where S is the space 
of right-continuous functions on T c R, i.e. S  = D(T). In this situation for any 
measurable mapping h of D(T) into a separable metric space S ,  we indicate an 
example of a sequence of mappings h,, k 3 1, which approximates h on 
a random element X of the space D(T)  in probability. Next we restrict 
ourselves to the case where the mapping h at x E D(T)  is equal to suptao x( t )  if it 
is finite and zero otherwise. In this situation we give conditions on X and on 
a sequence {X,} of random elements of D(T) under which the sequence of 
mappings h, , 

h,(x)= sup x(t), k 2 1 ,  where c k t m ,  
Odtdck 

approximates h on X and on {X,} in probability. 

4 - PAMS 13.1 



50 W. Szczotka 

Let T be a subinterval of the real line. T can be finite or infinite and, if 
finite, open or closed. Let D(T) be the set of all right-continuous real-valued 
functions on T with limits from the left. Let D(T) have Skorohod's J,-topology 
or its natural extension to non-compact intervals: a sequence {x,, n 2 1) 
converges to x in D(T) if the restrictions of x, converge to the restrictions of 
x in D[a, b] for each compact interval [a, b] c T such that a and b are 
continuity points of x or endpoints of T. This mode of convergence agrees with 
the previous extension of the J,-topology given by Stone and Lindvall (see [8]). 
In the case T = [0, oo) we can consider D(T) with Lindvall's metric defined in 
131 or with Whitt's metric defined in [S] while in the case T = ( - a ,  a) we 
consider D(T) with Whitt's metric. D(T) with the mentioned metrics is a Polish 
metric space. 

Let {c,) = {c,, k 2 1)  be an increasing sequence of positive numbers 
tending to infinity and let {r,} = jr,, k 2. 1) be the sequence of mappings of 
D(T) into D(T) defined as 

x(t) f o r O G t c c , ,  
for t 2. c, 

when T = [0, co), and as 

x(-c,) for t < -c,, 

for -c, < t < c,, 

\ 

when T = ( - a ,  co). 
Let h be a mapping of D(T) into a separable metric space S, and let h,, 

k 2 1,. be mappings of D(T) into S ,  defined as h,(x) = h(rk(x)) for x E D(T). 
Obviously, the mappings h,, k 1, are measurable and the following fact 
holds: 

Remark 2. Let X be a random element of D(T). The sequence of 
mappings h,, k 2 1, defined above approximates h on X in probability if 

h(rk(X)) 4 h )  as k  -, m 
and 

P{X(c,) = X(ck-)) = 1  for each k 2 1 

when T = [0, a ) ,  while 

P { X ( c & = X ( c , - ) } = P { X ( - c , ) = X ( - c , - ) ) = I  for each k 2 1  

when T = (-m, a). 

Henceforth, let h be defined on D(T) as follows: h at XE D(T) is equal to 
supt3,x(t) if it is finite and h is equal to zero otherwise. Obviously, this 
mapping is measurable. As in Remark 2, let us define mappings h,, k 2 1, on 
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I 
I Proof. We put 
I Ok,,, = sup X,(t), n, k 2 1, 

O d t Q c k  

Now let us notice that for any XED(T) and c > O we have 

sup x(t)- sup x(t) = max { sup x(t), sup x(t)) - sup x(t) 
t B 0 OQtQc  OQtQc  t > c  O < t < c  

= max {O, sup x (t) - sup x(t)} 
t>c  O Q t Q c  

=max{O, sup (x(t+c)-x(c))+x(c)- sup x(t)). 
O < t < m  0 4 t s c  

Hence 

Pisup Xn(t)- sup Xn(t) > 0) = P(51k.n-ek,n +Xn(ck) > 0). 
taO O b t Q c k  

But by a, the above does not exceed 

2.5 + P {qk,n- Ok," + Xn(Cd > 0, Vk," < b, Ok,, 2 - b} G 2~ + P{Xn(ck) > .-2b). 

Hence and from a, we have 

GP{sup&(t)- sup &(t) > 0) Q ~E+GP{x,(c,) > -2b) 
n 820 O b t Q c k  n 

A 

Now by a, we get 

l i & ~  {sup ~ , ( t )  - sup Xn(t) > 0) < 2.5. 
k n t 3 O  O b t C c k  

Since E was arbitrary, we get the assertion. a 

Note  3. From the proof of Lemma 3 it follows that if 

1im&I?{X,,(ck)> - b } = O  for each b > O  
k n 

and a, hold, then 1, holds. 

The following remark gives the sufficient conditions for a,. 

Remark 4. The condition a, holds whenever the sequence {suptB X,(t), 
n 2 1) is tight and one of the following conditions (a), (b) or (c) holds: 

(a) the sequence {supo < < m ( ~ n ( t  + ck)- Xn(ck)), n, k'> 1) is tight; 
(b) X,, n 2 1, have stationary increments; 
(c) for each n, k 2 1 and x > 0 the following inequality holds: 

P{ sup (Xn(t +c,) -Xn(c&) > x} 6 P{sup X,(t) > x} . 
O < t < m  tao 
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Now, using h a r k s  2-4, Lemma 3 and Theorem 3 we get 

COROLLARY 5. Let X and X,, n 2 1, be random elements of D(T)  satisfying 
a, and a,. Then the following implications hold: 

(i,) The condition 5, and the convergence X, -% X imply the convergence 

(i,) The conditions a, and a, and one of the conditions (a), (b) o 
Remark 4 imply 1,. 

To consider the asymptotic stationarity of queueing systems it is useful to 
have an analogue of Corollary 5 in the case where D(- oo, ao) is replaced by 
the space R" ,, i.e. the space of sequences x = (x,, - ao < k < ao), where 
x, E R, while h at x ER?, is equal to supjso xj if it is finite and zero otherwise. 
Obviously, each element x of R" can be meant as an element x of D(- a,, a,) 
if we write x(t) = x[,,, t ER. Now, since . supjsO xj = supjbO x - ~  
= sup,,,x(-t), the case considered now is a special case of the case 
considered in Corollary 5. In spite of this we rewrite Corollary 5 in a suitable 
form for our .later applications. 

Let S, be a separable metric space and let (c, Y) and (c,, V,) ,  n 2 1, be 
random elements of the metric space R" x S2 such that and c,, n 2 1, are 
random elements of R" while Y and Y,, n 2 1, are random elements of S,. 
The random elements c and tn9 n 2 1, are written as 5 = (c,, - ao < k < a,) 
and t, = (r,,, - oo < k < oo}, n 3 1, where 5, and t , ,  are random variables. 
Henceforth we assume that { and t,, n 2 1, satisfy the following condition: 

(14) ~ { s u p t j < o o ] = l  and P ( ~ u p & , ~ c o o ) = l ,  n 2 1 .  
i d 0  jd0  

Now, compiling Corollary 5, Theorem 3 and Corollary 3 we get 

COROLLARY 6. Under the assumed conditions the following implications hold: 
(4) rS (&,, Y,) 5% Y) as n -* and 

- 
(15) lirnlirnP{s~p(,,~- sup <n,j > O ]  =0,  

k n j < O  - k S  j S O  

then 

(16) ce.,supe..,, u % ( t 9 s u p t j .  Y) QS n + m .  
j so  IS0 

(i,) On the contrary, if the convergence 

(tn9suptn9j)Z(C9supQ as n + m  
jS0 j < O  

holds and furthermore r-, & -GO as k + ao and the sequence 
( ~ u p j < ~ ( ~ ~ , ~ - ~ - ~ ~ , - k ) ~  n, k 2 1) is tight, then (15) holds true. 
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Now we give an analogue of Corollary 6 in the case where instead of the 
convergence 9 (g,, x )  + 9({, Y) we consider the convergence 

written as Y(g, Y) =% 9 ( t ,  Y) and called the weak convergence in mean. 

COROLLARY 6a. If [ and g,, n >, 1, satisfy (14), then the following 
implications hold: 

(i,) If (17) holds and 
n 

l i rnGn-I  P{supt,,,- sup ti,j >O) =0,  
k n i=1  jS0  - k d j S O  

then 

(19) 9(rn,sUPCn,j9 Y . )Zg(g ,SuPt j9  Y )  as n+co. 
j G 0  jQ0 

(i,) On the contrary, if the convergences 

~ ( ~ , , s u p t ~ , ~ ) & 9 ( g , s u p t ~ )  as n 4 c o  and < - k A - c o  as k 4 o o  
jd0 jd 0 

hold and the sequence of probability measures 
n 

n-' C g(~~p(t i ,~-k-t i , -k)) ,  n, k 2 1, 
i = 1  jS0 

is tight, then (18) holds. 

EXAMPLE 1. Here we illustrate an application of Corollaries 6 and 6a to 
prove Theorem 1 from [4]. The proof of this theorem given here is easier and 
clearer than the proof given in [4]. Besides, the case (ii) of Theorem 4 
formulated below is stronger than the case (ii) of Theorem 1 from [4]. 
Moreover, Condition AB formulated below and Condition AB in mean are free 
of an initial condition w,, however Condition AB under the assumptions of 
Theorem 4 is equivalent to Condition AB from [dl. Other applications of 
Theorem 4 are given in [5]. 

Let (v, u) = {(v,, ud, k 2 1) be a generic sequence for a single server queue 
(see [4]), let wk be the waiting time of the k-th unit, and let, 
(w,  v, a) = {(w,, v,, u3, k >, 1). Furthermore, denote by (vo, uO) = {(u:, u:), 
k 2 1) a stationary representation of (v, I) in the sense of weak convergence 
or weak convergence in mean (see [4]), and by (a*, a*) = {(vf, ut), 
- oo < k < GO) a two-sided stationary sequence such that {(of, uf), k 2 1) and 
(oO, uO) have the same distribution. Also let X, = u,-u,, So = 0, S, 
=X,+X,+ ...+ Xk, k >  1, and Xf=v:-ut, Sg=O, S t = ~ ~ = , + , X :  for 
k < 0. 



Weak convergence under mapping 5 5 

We say that (v, u) satisJies Condition AB or Condition AB in mean if 

respectively. 

THEOREM 4 (see 141, Theorem 1). Let ( v ,  u) be either (i) weakly asymptotical- 
ly stationary or (ii) weakly asymptotically stationary in mean and assume that it 
satisfies Condition AB in the case (i) and Condition AB in mean in the case (ii). 
Furthermore, let the stationary representation (vO, uO) in both cases be such that 
S" + - m a.e. as k -, m. Then the sequence (w,  v, u) is weakly asymptotically 
stationary in the case (i) and weakly asymptotically stationary in mean in the case 
(ii). Moreover, the stationary representation of (w,  v ,  u) is given by (4.14) in 141. 

P r o  of. First we show that S, - co as n + cz in the case (i) and 
n-I x;=, P { S j  > -a)  -+O as n -4 m, for any a > 0, in the case (ii). For that 
purpose let us notice that Condition AB and Condition AB in mean imply 

n 

P{Sn>O}+O and n- l  x P { S j > O ) + O  a s n + m ,  
j = 1  

respectively. Hence for any E > 0 and b > 0 there exists nl such that for n > nl 
we have P{S,, > b} < in the first case and n-I z=, P{S j  > b )  < E in the 
second case. But for any a > 0 we have 

P{Sn < -a )  2 P{Sn < -a,  Sn-k < a/2) 2 P{Sn-Sn-k < - 4 2 ,  Sn-k < a/2} 

2 P{Sn-Sn-k < -a/2}-P{Sn-, > a/2) 

and 

By the weak asymptotic stationarity of v-u in the first case and the weak 
asymptotic stationarity in mean in the second case, for any a > 0,  E > 0 and 
k 2 1 there exists nk such that for n > nk we have 

P{Sn-sn-,  < -a} 2 P { E k  < -a)-& in the first case 

and 
n 

n-' P{Sj -S j -k  < -a)  2 P{STk < -a)-& in the second case. 
j=k 

Now, in view of SEk -P -GO a.e. we see that for any E > 0 there exists k, such 
that for k > k, we have P { S t k  < -a) 2 1 - E .  Compiling the above facts 
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we infer that for any E > 0 and a > 0 there exists no such that P{S, < -a}  
2 1 - 3e in the first case and n- x;=, P {Sj < - a }  >, 1 - 3.5 in the second case, 
which gives the required convergences. 

Now define sequences (fin, 4) = ((fln,k, - ao < k < a), C, = {gn,k, 
- oo < k < m}, n 2 1, and C = (c,, - oo < k < a)' in the following way: 

fin,k=v,+k, i i n , k = ~ n + k  for k >  - n + l  and i7;,k=fin,k=0 for k < - n ,  

0 

tnPk = C (chi - iin,i) for k < 0 and 5n,k = 0 for k 2 0, 
i = k + l  

0 

r,= C (ut-uT)for k c 0  and { , = O f o r k a O .  
i = k + l  

Then in the case (i) we have the convergences 

(20) Y(Cn,rZ,)*9(v*,u*) and Y(t,)*Y(6) a s n - a ,  

while in the case (ii) we have (20) with & instead of *. Moreover, c - k  = STk 
-+ - ao a.e. as k + ao. Since 

we have 

(21) % + I  = max(t,,-,+wl, ~ u p t ~ , ~ ) ,  n 2 1. 
j 6 0  

In view of Lemma 14 from [4], to show the convergence 9(wn, on, u,) 
* Y(wO, vO, uO) in the case (i) and the convergence 2% in the case (ii) it is 
enough to show the convergence Y(wn+ a,, u,) =- Y (wy, vO, uO) in the case 
(i) and the convergence 2% in the case (ii). Here 

Define the mapping f: R" x xR" - RR" , as 

and 
0 

z k =  C (xi-yJfor k < O  and z,=Ofor k 2 0 .  
i = k + l  

Now let us notice that 
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where 'h (x )  = supjso xj if it is finite and' zero otherwise. Hence 

(wn+l, En, iid = (ma~(t,,-.+w~, s9 ii,) 
j < O  

= (max(t,-.+w,, h(f (9, a)), 6,. 8,). 

But in view of (20) and of the continuity off  we have the convergence 

(22) 9 7 1 0  .(t,,-n+w,),f (#,, r?,), g", in) = 2(O,f (tl*, @*I, v*, u*) 

in the case (i) and the convergence 2%- in the case (ii), where I, denotes the 
indicator of {O). Now let us notice that 

= P i s u p  {,,j- sup Sn,j>O) <P{max(Sn-Sn-j)>O). 
j S  -k  - k b j b O  k < j d n  

Since (u ,  U) satisfies Condition AB with the initial condition w, in the case (i) 
and Condition AB in mean with the initial condition w, in the case (ii), by (23) 
the sequence (6,) satisfies condition (15) of Corollary 6 in the case (i) and 
condition (1'8) of Corollary 6a in the case (ii). Thus using Corollary 6 in the case 
(i) and Corollary 6a in the case (ii) with the following specification: 

we get the convergence 9(w,+,, U;I, fin) * ~ ( w Y ,  v*, u*) in the case (i) and the 
convergence in the case (ii). This immediately implies the'assertion. a 

Remark 5. Under the assumptions of Theorem 4 the Condition AB in the 
case (i) and the Condition AB in mean in the case (ii) are necessary for the weak 
convergence of {Y(wk)) as k -, ao in the case (i) and the weak convergence in 
mean of this sequence in the case (ii). 

Proof. If the sequence {Y(wk)) is either (i) weakly convergent or 
(ii) weakly convergent in mean, then (8(wk)} is tight in the case (i) while the 
sequence (n - I  ELl 9(wi), n 2 1) is tight in the case (ii). But 

Hence and from the second part of Corollary 6 we infer that the condition (15) 
is necessary in the case (i) of Remark 5, which implies that Condition AB is 
necessary in the case (i). Similarly, from the second part of Corollary 6a we see . 

that the condition (18) is necessary in the case (ii) of Remark 5, which implies 
that Condition AB in mean is necessary in the case (ii). 
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