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~ Abstract. Let f be a random variable with values in a metric
space (X, d). For some class of metric spaces we define in terms of the
metric d mathematical expectation of f as a.closed bounded and
non-empty subset of X. We then prove :Kolmogorov’s version of
Strong Law of Large Numbers corresponding to that mathematwal
expectation. :

0. Introduction. In this paper we introduce a concept of mathematical
expectation of a random variable with values in a Polish metric space of
negative curvature. This class of metric spaces contains complete simply
connected Riemannian manifolds of non-positive (sectlonal) curvature with the
geodesic metric. In [3, Chaper 5] Bussemann has studied a similar metric
generalization of a non-positively curved Riemannian manifold (see also [6],
Proposition 8.17 and ‘Remark 8.18).

In Section 1 we introduce convex combinations of elements of a metnc
space. In Section 2 we define mathematical expectation of a random variable
with values in a Polish space (X, d) of negative curvature. In Section 3 we
prove Strong Law of Large Numbers for independent and identically dis-
tributed X-valued random variables together with its converse.

Results of this’ paper were partlally announced in {8].

" 1. Convex combination. Let (X, d) be a metric space. By (F (X), h) w
denote a metric space of closed bounded and non-empty subsets of X equlpped
with the Hausdorff metric defined as : : ;-

h(F, F') = max {supd(x, F'), supd(x’, F)}.
xeF x'eF’ .
We note the following 1dent1ty B
. h({x}, F) = supd(x, y) for xe X, FeF(X),
yeF
which will be used throughout this paper w1thout reference.
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DeriNITION 1.1, Let (X, d) be a metric space. For any system of non-
-negative reals {p,, ..., p,} with )| p,=1 and any subset {al,. .y Gy} of
X we define inductively a subset of X as follows:

1. If n=1, we define: la, = {a,}.

2. Letn>1, {al,. ., @} < X and {p,, ..., p,} = [0, 1] with 3|_ p,= 1.
Suppose the sets Z -1 q,b are already deﬁned for all k < n and any subsets

{b . bk}cX _and {ql,. ,qk}c:[O 1] with Zq,—l
. . - , 1 e e
We then deﬁne aez S p,a 1ff there exrst nonvemptyv dls_]omt and complemen-
tary subsets I, and I, of {1, ..., n} and elements a' €) iy, pta;, a* €Y 41, P a;,
where p! = p,/> i1, p; for zeI L and p, = p,/z,,s,2 p; for iel, (with the conven-
tlon 0/0 = 0), such that
d(a al) = (Z p)d(a a®), d(a, az) =(X p)d(a?,' a’).
lelz dely

We say that a metric space (X d) is convex (strtctl y convex) if for any two
elements a,, a, of X the set pa1+(1 )a2 is non-empty (has exactly one
element) for any pe[O0, 1]. : ' '

Remark 1.1. Given two elements a, be X and a real pe[O 1], Defini-
tlon 11 reads as follows:

pa+(1 p)b = {ceX d(c a) = (1 —p)d(a b) and d(c b) pd(d b)}
1If a metric space (X, d) is stnetly convex we 1dent1fy the set pa+(1 —p)b
w1th its umque element. ‘

Remark 12, If a metrlc space (X d) is complete the above deﬁmtlon of
convexity of a metric space agrees with the classical deﬁmtlon of Menger (see
[2], Definition 14.1 and Theorem 14.1).

Remark 1.3. If a metric space (X, d) is convex (strictly convex) then the

‘set Z —, P;a; is a closed (finite) non-empty subset of X for. any {al, .. a,,} c X '
and {Pu Py < [0,1] with Y7 pi=1.. o

This remark is a direct consequence of Deﬁmtlon 1. 1 by the use of an
inductive argument.

DerFINITION 1.2. We say that a strictly convex metric space (X, d) is of
negative curvature iff for any four elements a- v a,, bl, b, of X and any’ pe [0 1] '
the following estimation holds: R

(Pal +(1—p)a,, pby+(1 '“P)bz) Pd(alé b,)+(1—p)d(a,, b,).

Remark 14. Let (X, g) be a complete simply connected Riemannian
manifold and let d be a geodesic metric on X induced by g. Then the metric
space (X, d) is of negative curvature if and only if the manifold (X, g) is of
non-positive (sectional) curvature.
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This property - of sectional curvature of a Riemannian manifold was
established by Bussemann.in [3]. : '

Remark 1.5. Let (X, || 1) be a strictly convex real Banach'space (cf. [5]),
i.. such that the metric space (X, d) is strictly convex, where d(x, y) = |x—y].
Then one verifies easily the following: '

(a) For any subsets {a,,...,a,} <X and {Ps-ees P..} < [0, 1] with
Y., pi=1thesetYy '  pa,(in the sense of Definition 1.1) is a one-element set
containing a linear combination of ay, ..., a, with the coeffi01ents P15 - p,,

(b) The metric space (X, d) is of negatlve curvature

Remark 1.6. A metric space (X, d) is said to be outer convex iff for any
two elements a, be X and any pe[0, 1] there is an element ce X such that
b =pa+(1—p)c. : :

Let (X, d) be a complete convex and outer convex metric space. In
[1, Theorem 3.1] the authors have proved that the metric space (X, d) is
isometric with a strictly convex real Banach space if and only if for any triplet
ay, a,, ay of elements of X the set $a, +3a,+3a, is a one-element subset of X.

PRrOPOSITION 1.1. Suppose (X, d) is a metric space of negative curvature.

Then for any finite subsets {a,,...,a,}, {by,..., b,} of X and any subset
{P1s > Pa} of [0, 1] with ¥_ p,=1 the following estimation holds:

(1.1) o h(z Pia;, _‘;1 Pil%i)s _Zn:l p:d(a;, b;)

- Proof. We proceed by induction. For all one-clement sets {a,}, {b,} our
proposition is true. Suppose it lS true for all finite subsets of X with cardinality
k <n, where n> 1.

Let {a,, ..., a,}, {bl,. b,} € X and {p,, ..., p,} < [0, 1] with Y, p,

= 1. It is sufficient to prove (by symmetry) that for each element aez -1 p, ;
there is an element bez iy p,b such that «

d(a, b) Zp,d(a.».

Suppose aEZl , Pia;. Thus there are two non-empty disjoint and com-
plementary subsets | . I, of {1, ..., n} and two elements a'€Y ir,pla, and
a*€) i1, Pt a;, where p} = P;/Z-en pl for iel, and p? = p,/z,e,2 p, for zeIz, such

that
=(X p)a' +(Z p,)

el ielz -

(see Definition 1.1 and Remark 1. 1) 1t follows from the inductive hypothGSIS
that there are elements b* ez,ﬂl p, !b, and b*€Y 1, p?b; such that

d(at, bl) Y pi d(a,, ) and d(a?, b)) < Zp d(a,,b)

iely iel2
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Let b = (Yicr; pi)b' +(3iers p,-i)b2 Since (X, d) is of negative curvature, we

obtain
.d(a, b) <(Z p,)d(a1 bY)+( Y p)d(a?, b2)
iely ielz . o
Z pxd(aw b)+ Z pld(al’ l 5 Z pid(ai"bi)
i€l - iel>

which completes the induction and the proof of Proposmon 1.1

LemMaA 1.1, Suppose (X, d) is a strictly convex metnc space. Then for any
a,beX and PP '€f0, 1] the following holds:

d(pa+(1—p)b, p'a+(1— p)b) = Ip— Pld(a, b).
Proof Suppose p = p’ and let
C—(p/p)(pa+(1 -p)b)+(1—-p/p)b.
We shall prove that ¢ = p a+(1 —p)b. To prove this 1t is suﬁ'lment to show that
d(c, b) p'd(a, b) and d(c, @) = (1—p')d(a, b) (Remark 11)
We have ‘
d(c, b) = (p’/p)d(pa+(1——p)b, b) and d(pa+(L—p)a, b) = pd(a, b)
(Remark 1.1), and hence d(c, b) = p'd(a, b). s
By the triangle inequality we have
d(c, @) < d(c, pa+(1—p)b)+d(pa+(1-p)b, a).
But (Remark 1.1) T : ‘
" d(c, pa+(1—p)b) = (1 —p'/p)d(pa+(1—p)b, b) = (1- p/p)pd(a, b)
and
o d(pa+(1— p)b a)=(1-p)d(a,b).
Hence we obtain d(c a) < (1—p')d(a, b). But this means (together with d(c, b)
= p'd(a, b)) that d(c, a)—(l p’)d(a b), whlch shows finally that c=p'a -
+(1—=p"b. ‘
We thus obtain
(pa+(1 —p)b, pa+(l p)b) = d(pa+(1-p)b, ¢} o .
= (1—p/p)d(pa+(1—p)b, b) = (1 p/p)pd(a b) = (p—p)d(a, b),
which completes the proof of Lemma 1.1.

LemMA 1.2. Let (X, d) be a metric &paée of negative curvature and let
(Fo(X), h) be a subspace of (F(X), h) of non-empty finite subsets of X. Then the
map ¢ of [0 l]xFO(X)xFo(X) into Fo(X) defined as \

o, F, G) = - {ceX: c=pa+(1—-pb, acF, beG}

is continuous.
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Proof. We shall show that for any x, x’, y, y'e X and any p, p'€[0, 1] the
following inequality holds:

(12)  dpx+tL-p)y, ¥ +1—p)y) < pd(x, X)+(1=p)d(y, ¥)
S +lp—pld(x, y).
By the triangle inequality we have
(Px+(1 p)y, P+~ p)x) < d(px +(1—p)y, px +(1—p)y)
| | CHd(px' +(1—p)y, X (1= ~pY)-

Smce (X d) is of negatlve curvature, we obtain

_ dlpx+1=-p)y, px' +(1=p)y) < pd(x, X)+(1~p)d(y, ¥)
(Deﬁmtlon 12) From Lemma 1.1 we have o

d(px' +(1=p)y, P +(1—p)x) = [p—pld(, y).

Thus we obtain (1.2). - | . |

The continuity of qo follows dlrectly from the estimation (1 2) and the
definition of the Hausdorff metric h. '

ProrosITION 1.2. Suppose (X, d) is a metric space of negative curvature.
Then for any finite subset {a,, ..., a,} of X the application

- n
'/’(pi’ sery pn) = Z Pi4;
: i=1
is a contmuous map of a symplex

‘_A,,'={(P‘1,- ’pn) Zpl—l pl 0 =1:"n} o

into (F(X), h).

Proof. We proceed by induction. For all one-clement sets {a,} our
proposition is true. Suppose it is true for all finite subsets of X with cardmahty
k <n, where n> 1.

Let ¢ be a map defined in Lemma 12 and let 9 be a famlly of -all
non-empty sets I = {1, ..., n} with non-empty complements I'. For each I #

let ¢, be an apphcatlon of 4, 1nto (F(X), h) defined as

Vs 2) = (TP Yptas, ¥ pla ,)

iel iel iel’
where ' ' ‘
pi “P./ZP. for iel, p,-2=p,./Zp,- for iel'.

iel : el
It follows from Lemma 1.2 and the inductive hypothesis that the application y,
is a continuous map from 4, into (F(X), h) for any I € 2. By the Definition 1.1
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of a convex combination of n elements of X we have

!ll(pl" ’pn)_ U!pl(pl" b ] pn) fOl’ (Pl""”pn)éAnb"

Ie® . : :
This means that i is a continuous map of 4, into (F(X), h) as a finite union of
continuous maps Y,, which completes the induction and the proof of
Proposition 1.2. : '

2. Mathematical expectation. Let (X, d) be a convex metric space and let
(@, o/, P) be a probability space. By & = #(Q, &, P; X) we denote the set of
simple random variables (r.v.) with values in X i.e., Borel ~maps of Q into
X having a finite number of values.’

We say that 7 = {4,, ..., 4;} < & is a partition if 4; nA @ for i # j,
i,j=1,...,k and U -1A4,=Q. If n and ¢ are partltlons we write 7 < o 1f
each element of g is mcluded in some element of .

Given a function fe & we denote by I1(f) the set of all partitions = such-
that f(w) = f(w) for any Aen and any w, d€A.

DeriNITION 2.1. Given f e #(@, o, P; X) and @ = {4,, ..., A,} e (f) we
define _

E.[f1= Y P(4)a;, where a;,=f(w) for wed;,, i=1,...,k,

and

E[fl=d( U E,[f)).

=ell(f)

Remark 2.1. Suppose (X, d) is a complete convex and outer convex
metric space. In [1, Theorem 2.1] the authors have proved that a metric space
(X, d) is isometric with a real strictly convex Banach space if and only if for any
triplet of elements a,, a,, a; of X the following equality holds:

201 +3Ga,+1a;) = 3(3a, +1a)+3Ga, +1a,).
Thﬁs, in general glven f €& the set E Lf ] depends on the partiﬁori neﬂ -

LemmAa 2.1. Given fe &, the operator E,[ f ] is increasing: If n; o€ H( §a)
and 7 <0, then E [fl<E,[f]. , :

- The proof results clearly from Deﬁmtlon 1.1 of a convex combmatlon

LEMMA 2.2. Suppose a metric space (X d) is of negatwe curvature. Then for
any f,ge ¥ and any neI(f)~II(g) the following inequality holds:

HE,Lf], E.[g]) < Id(f (@), g(W))dP(w)

‘The proof resu]ts clearly from Proposition 1.1.

LemMA 2.3. If (X, d) is of negative curvature, then for any f €Y the set
E[f] is a bounded. subset of X. ' o
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Proof. Since the set I1(f) is directed by the relation < and the operator
Eglf ] is increasing (Lemma 2.1), it is sufficient to prove that '

(2.1)  sup dlamE Lf]1< oo
: ‘ nell(f)
Let e II(f) and let g(w) = a, we Q for some fixed element a of X From
Lemma 2.2 we have :

h(E,Lf], {a}) < | d(f (@), a)dP(w),
_ _ LS4 P ,
which implies (2.1). ’

PROPOSITION 2.1. Let (X, d) be a metric space of negative curvature Then
Jfor anyf,ge.ff’(.() A, P; X)

22) HELSL Bl < d(f(a;), g(w))ap@). |

Proof. To prove (2.2) it is sufficient to show that for any partition
nell(f) and any element ae E_[ f] there is a partition g€ II(g) and an element
beE,[g] such that d(a, b) < j'ﬂd(f, g)dP..

For any partition ne IT(f) there is a partition o eII(f) N I1(g) such that

< o. Since h(E,[f], E,[g]) < jgd(f g)dP (Lemma 2.2) and E,[ ] < E,[g]
(Lemma 2.1), for any ae E,[ f] there is be E_[g] such that d(a, b) < fd(f, g)ar.

Suppose (X, d) is a Polish metric space of negative curvature. We say that
an X-valued random variable f is integrable iff [,d(x, f(w))dP(w) < for
xeX. We denote by & = £(Q, o/, P; X) the set of all integrable r.v.’s. and by
L=L(Q, o, P; X) the set of all equivalence classes (for equality as.) of
integrable r.v.’s. By S = S(Q, «, P; X) we denote a subset of L correspondmg
to the set of simple r.v.’s. Let d, be a metnc on L given by

d,(f,9) = Id(f (), g(w))dP(w)--

Since the metric space (X, d) is Pohsh S is a dense subset of (L, d 1) (see
Lemma 3.1). It is clear that E[f] —E[g] if f, gey and f =g as, ie. an
operator E acts on S. By Proposition 2.1, E is a uniformly continuous map of
(S, d,) into (F (X), h). It is known that if a metric space (X, d) is complete, then
a metric space (F(X), h) is also complete [9, Vol. 1, §33, IV]. Thus E admits
a unique uniformly continuous extension to a map of (L, d,) into (F(X), h)
which satisfies (2.2), for all f, ge L(Q, &, P; X). :

DEFINITION 2.2. Let (X, d) be a Polish metric space, (22, o7, P) a probabili-
ty space, and fe Z(Q, o, P; X). We say that a non-empty closed bounded
subset E[f] of X 1is a mathematical expectation of f For any f g
eZQ, &, P; X) an estlmatlon (2.2) holds.

Remark 2.2 Suppose (X,d) is a Polish metric sp_ace of negative
curvature. Then any fe £(Q, o, P; X) is integrable in the sense of Doss ([7],

5 — PAMS 131
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Definition 1). ThlS is a consequence of the estimation (2. 2) apphed to f and
g(w) = x, weQ , . .

Remark 2.3. Suppose (X, || ||} is a strictly convex real separable Banach
space and fe%(Q, o, P; X), where X is equipped with the metric
d(x,y) = |x—yll. Then E[f] is a one-clement set containing a Bochner
integral of f (see Remark 15)

3. Strong Law of Large ‘Numbers. We say that a metric space (X, d) is
finitely compact iff each closed bounded subset of X is compact. Throughout
this section we assume that (X, d) is a finitely compact metric space of negative
curvature. - o ' .

* 'We put Lim, F, = F iff lim, h(F,, F) = 0. We note the following known
properties of the convergence in (F(X), h) ([9], Vol. 11, §42,1 and §42, 2)

(o) F, = F, implies' Lim, F, ¢ Lim, F;.

B) If UnF, is relatlvely compact in (X d) then {F },, L 18 relatively
- compact in (F(X) h). . ,

- THEOREM 3.1. Suppose {f,}i=1 is a sequence of independent and identically
distributed (i.i.d.) integrable random variables with values in X and let

= i %fi‘((u)' er weQ, n=1,2,...
i : i=1
Then . - ..
(3.1) _ - R . leF (w) E[fl] a.s.

We shall precede the proof ‘of Theorem 3.1 bS{ three lemmas.
~ LEMMA 3.1. Suppose f,e (@, o, P; X) (n =1, 2, ..) are iid. rv.’s. Given
& > 0 there exists a sequence g.€L(Q, A, P; X)(n=1,2,...)of i.id. rv’s such
that d(f,, g,) (n=1,2,..) are iid. (real) rv’s and [od(f,, g,)dP <.
Proof. Let £ > 0 be given and let x be a fixed element of X. Since the
metric space (X, d) is Polish, there. exists a cornpact subset K of X such that

1) d(x fl(a)))dP(w) 8/2
: : Af K
Let K = UL;B where B, are non-empty pairwise d1s101nt Borel subsets of
X with diam(B) < ¢/2 fori=1, ..., k. Suppose g;eB;fori=1, ..., k'and let
us define . ] : L
d Ma; if wef,"(B) fori=1,...,k,
9() = {x if o¢f,m 1 (K).

It is clear that {9} and {d(f,, g}, are iid. sequences and

jd(fl, g.)dP = _f d(fi, g,)dP+ _f d(f;, x)dP < g/2+¢/2 = &.
o -1x) _ asi® ,
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-LeMMA 3.2. Let feF(Q, o, P; X). Then for éach ¢ >0 there exists
a partltlon nell(f) such that h(E [f], E[f]) <

Proof. Given fe ¥ (Q, o, P; X) the set F = U,,E,,mE [f] is bounded
(Lemma 2.3), and thus relatively compact. Let {a,, ..., a,} be an é-net in F.
Then {a,, ..., a;} = E,[ f] for some nell(f), since H(f) is directed by < and
the operator Eg[ f] is increasing (Lemma 2.1). It is clear that

WE.Lf], ELf]) = h(E,[f],clF)<e.

LemMa 3.3. Suppose a probability space (Q, o, P) is non-atomic. Then for
any partition n = {A,,..., A,} there exists a sequence {m,}>, of partmons
Cm= {4l B I<i<k l<j<mi1<I<r,) (n=1,2.) "

such that
Al c A, P4\ U.A ) <1ln, P )= PB) = 1jn

for 1<i<k 1<j<mi, I<i<r, (=12, ).

Proof Constructlon of the sequence {n }e 1 is clear in view of the
well-known property of a non-atomic measure: {P(B): Bes/, Bc A}
= [0, P(4)] for any Ae . S

Proof of Theorem 3.1 If (Q </, P) has an atom, then the existence of
a sequence of iid. r.v’s defined on Q implies that o = {Q Q} and' our
S.L.L.N. is trivially true. Thus we suppose that (Q .sal P) iS a non-atomic
probability space.

Assume first that f is a s1mp1e random vanable Let e>0 be given. By
Lemma 3.2 there exists meII(f) such that h{E.[f;], E[f,]) < e Suppose
n={Ay,..., A4} and f(w) = a, for weAd;, i=1,..., k. Let {n,}2; be a se-
quence of partltlons constructed for that =« in Lemma 3.3. Let {f)}, be
a sequence of simple r.v.’s defined as

fi@)=a, for oed =1,....,0,
where . ’ oy :
o, m o mb
= U A}.JU U B;‘ "~ and A:’ = U Ai.j for l=2, vevy k.
i=1 =1 =1 o .

We shall prove thgt ‘
(B.2) lim h(F,,(co), E,,"[ f,,’]) = 0 for all weQ\N with P(N) =0.

Let us deﬁne for each wel:

,,(w) = card{s: 1 <n f(w) =a;} (i’= 1,..., k, n= 1; 2,.0). |
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We thus have (Definition 1.1)

1, 2 . I
vn(w) Vin(cw) va(w)
% — " p— - A ~ ~ - =

F"(d))4#.n"?a1+ cotnTlag+n gt AT gt AT g+ T g

and

E.[f]
mn+rn ) me. ‘ o me

A A A
r " T ™ s N s p— ~

=n"ta+...+nta tn" eyt A0 a4 4T gt L 0T G,

Hence, by Proposition 1.1 we see that for each wEQ and i=1, 2,...

h(F (), E,,[£])

< sup da;, a)

1<i,j<k no : n o n

(lvn (C!)) mn _ rnl |V,, (CD) mn - + IVk,,(CO)— m:l) .

- Forfixed i =1, ..., k the random variables v, (n = 1, 2, ...) are the n-th partial
~sums of a sequence of iid. r.v.’s with mean P(4,). By the construction of the

partitions m,, P(4)—1/n<mi/n<P(4) and r,<k for i=1,...,k,
n'=1,2,... We thus infer, by the (real) S.L.L.N., that the right-hand side of the

last inequallty converges to zero for almost every we 2, which proves (3.2).

. Let xeX and weQ be fixed. An application . of mequahty (1.1) of
Proposmon 1.1 (for a, = X, by =f(®), p;=1mfori=1,2,...; n) shows that
h({x}, F (m)) Z -ld(x f(w)) for all weQ.

From the (real) S.LLN. apphed toa sequence {d(x, f,,)},,=1 of mtegreble iid.
r.v’s we obtain s

: llmsuph({x} F (a))) fd(x fl)dP a.s.

. This estimation means that for weQ\N’ with P(N)=0 the set U F (co) is
- bounded, and thus relatively compact.

We shall prove that (3.1) holds for every weQ\(N U N’). We may assume
by (B), extracting a subsequence if necessary, that {F,(w)}:%; is convergent in
(F(X), h). Thus for weQ\(N uN’) we have, by (3.1), '

LimF, (w) = Lim E, [ f].
Sixice, by construction,

lim [ d(f;, f)dP =0,

n 2

" we have Lim SELM1=E[f,].ButE, [f,]c E[ﬁ,] forn=1,2,. ahd thus
by (&) we obtain Lim, F,(w)< E[f;]- .
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Let us consider the sequence of partitions o, ={4], ..., A (n=1,2,..).

" Since

lim P(47A4) = 0 for i=1,. k

by Proposmon 1.2 we obtain Lim, E,, [ f;] = E [ fl.Bute, <m(n=1,2,..),
and hence, by (o),

E.[fi]]<LmE, [f,] =Lim Fn(a)).
We thus finally obtain o . " ‘ .
E.[fi]< hmF W) < E[f]] for all we @\(NUN')..

This 1mp11es by the mequahty h(E.[fi], E[f,]) < ¢, that h(Lim, F,(w), E[f,])
< &. Since & > 0 was chosen arbitrarily, the proof of (3 1)in the case of a simple
r.v. f, is complete.
~ Let now f,e Z(Q, &, P; X) be arbitrary and let ¢ >0 be given. By
Lemma 3.1 there is a sequence {g,}; of simple X-valued iid. r.v.’s such that
{d(f,» g)}n=1 is an ij.d. sequence and [,d(f,, g,)dP <e.
Let G, (@)=Y,  n 'g(w) for eQ, n=1,2,... From Proposition 1.1

we obtain
n

H(F (), Gy() < Z n~ld(f; (a)), -(w)) fo.r‘.a)er.”

Strong Law of Large Numbers applied to a sequence {d ( f,,, g,,)} =1 1mp11es that
lim sup h(F (), G,(w)) < ¢ as.

By the triangle inequality we have

h(F (@), ELf,]) < h(F, (@), G (w))+h(G (@), E[91])+h(E[91] ELfi]D-
Since lim h(G (), E[gl]) 0 as.and
| h(E[g,), ELf,]D) < I d(f,»9,)dP <
(see Definition 2'..2), we obtain . . e
- " limsup h(F,,(c'o), E[f,]) <2 as.
Since e> O.wae chosen afbitrarily,‘ tiliseompletes the .prbef of Tyheorem‘3.1.
Strong Law of Large Numbers of Theorem 3.1 admits the following converse:

- THEOREM 3.2. Let {f,}=>, be a sequence of iid. X-valued t.v’s and let
F,(w) = Z n~! fi(w) for weQ, n=1,2,... Suppose there exists FeF(X)
such that lim h(F (w), F) =0 as. Then flez’(ﬂ s, P; X) and E[f,] =F.

Proof In- view of Theorem 3.1 we need to prove only that
fieZ(®Q, o, P; X), that is [ﬂd(x fl)dP < oo for xeX. To prove th1s it is
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sufficient to show that for a fixed xe X there is a constant M such that
(3.3) lim supn™'d(x, f (@) <M

(for Kolmogorov’s proof ofthe converse of the S.L.L.N. see, e.g., [10 Theorem 3.2.2]).
For each weQ let {a,(w)}s=, be an arbitrary sequence of elements
a,(w)eF,_i(w) and let :
by(w) =" for n=2,3,...
(Definition 1.1). By the triangle inequality we obtain
(B4 ntd(x, () <ntd(x, 3,)+d(a,(@), b)),
cer, n=2,3,...

Smce 11m JH(F, (@), F)=0 as., we have
hmh({x} F (@) = h({x} F)=1M as.

This implies. (smcea (a))eF (co) b (co)eF (), h({x} F,(w) = supyeF"(,,,)d(x y))
that =~

limsup d(x, a(w)) iM and limsupd(x, b,,(a)))g%M as.

By the triangle incquality we obtain _
lim supd(a (w), b (co)) M as.,

whlch 1mp11es (3.3) in view of 3. 4)
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