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Abstract. Let f be a random variable with values in a metric 
space (X, d). For some class of metric spaces we define in terms of the 
metric d mathematical expectation of f as a closed bounded and 
non-empty subset of X. We then prove Kolmogorov's version of 
Strong Law of Large Numbers corresponding to that mathematical 
expectation. 

0. Introduction. In this paper we introduce a concept of mathematical 
expectation of a random variable with values in a Polish metric space of 
negative curvature. This class of metric spaces contains complete simply 
connected Riemannian manifolds of non-positive (sectional) curvature with the 
geodesic metric. In [3, Chaper 51 Bussemann has studied a similar metric 
generalization of a non-positively curved Riemannian manifold (see also [6], 
Proposition 8.17 and Remark 8.18). 

In Section 1 we introduce convex combinations of elements of a metric 
space. In Section 2 we define mathematical expectation of a random variable 
with values in a Polish space (X, d )  of negative curvature. In Section 3 we 
prove Strong Law of Large Numbers for independent and identically dis- 
tributed X-valued random variables together with its converse. 

Results of this paper were partially announced in [S]. 

1. Convex csmbination. Let (X, d) be a metric space. By (F(x), h) we 
denote a metric space of closed bounded and non-empty subsets of X equipped 
with the Hausdorff metric defined as 

h(F, F') = max {sup d ( x ,  F'), sup d(xl, F)) . 
x d  x'EF' 

We note the following identity: 

h({x},F)= supd(x,y) for XEX,  FEF(X), 
WF 

which will be used throughout this paper without reference. 
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DEFINITION 1.1. Let (X, 6) be a metric space. For any system of non- 
-negative reals {p,, . . . , p,} with C;=, pi = 1 and any subset {a,, . . . , a,} of 
X we define inductively a subset of X as follows: 

1. If n = 1, we define: la, = {a,}. 
2. Let n > 1, {a,, ..., a,) c X and {p,, ... , p,} c [O, 11 with x:=, pi = 1. 

Suppose the sets z=, qibi are already defined for all k < n and any subsets 

tary subsets I, and I, of (1, . . . , n} and elements a' E CiEl, p! air a2 E xiE12 p?ai, 
where p,l = p,lCiEI, pi for i E Il and p: = pi/xiel, pi for i E I, (with the conven- 
tion 0/0 =t 0), such that 

d(a, a') = (C pi)d(al, a2), d(a, a2) = (x  pi)d(al, a'). 
i d 2  i ~ I 1  

We say that a metric space (X, d) is convex (strictly convex) if for any two 
elements a,, a, of X the set pa, +(1 -p)a, is non-empty (has exactly one 
element) for any p E [0, 1). 

Remark 1.1. Given two elements a,  EX and a real p~ [0, 11, Defini- 
tion 1.1 reads as follows: 

pa+(l-p)b = {cEX: d(c, a) = (1-p)d(a, b) and d(c, b) = pd(a, b)}. 

If a metric space (X, 6) is strictly convex, we identify the set pa+(l -p)b 
with its unique element. 

Remark 1.2. If a metric space (X, d) is complete, the above definition of 
convexity of a metric space agrees with the classical definition of Menger (see 
[2], Definition 14.1 and Theorem 14.1). 

Remark 1.3. If a metric space (X, d)  is convex (strictly convex), then the 
set C;=, piai is a closed (finite) non-empty subset of X for any {a,, . . . , a,,) c X 
and {p,, . .., p,} c [0, 11 with Cf=, pi = 1. 

This remark is a direct consequence of Definition 1.1 by the use of an 
inductive argument. 

DEFINITION 1.2. We say that a strictly convex metric space (X, d) is of 
negative curvature iff for any four elements a,, a,, b,, b, of X and any p~ [0, 11 
the following estimation holds: 

Re mark 1.4. Let (X, g) be a complete simply connected Riemannian 
manifold and let d be a geodesic metric on X induced by g. Then the metric 
space (X, d) is of negative curvature if and only if the manifold (X, g) is of 
non-positive (sectional) curvature. 
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This property of sectional curvature of a Riemannian manifold was 
established by Bussemann in 131. 

Remark 1.5. Let ( X ,  11 ( I )  be a strictly convex real Banach space (cf. [5]), 
i.e. such that the metric space ( X ,  d)  is strictly convex, where d(x ,  y) = Ilx -yll. 
Then one verifies easily the following: 

(a) For any subsets (a,, ..., a,) c X and {ply  ..., p,} c [0, 11 with z=, pi = 1 the set x:=, piai (in the sense of Definition 1.1) is a one-element set 
containing a linear combination of a,, .. ., an with the coefficients p,, . .., p,. 

(b) The metric space ( X ,  d) is of negative curvature. 

Remark 1.6. A metric space ( X ,  d) is said to be outer convex iff for any 
two elements a ,  b e X  and any ~ € 1 0 ,  11 there is an element C E X  such that 
b = pa+(l -p)c. 

Let ( X ,  d)  be a complete convex and outer convex metric space. In 
[ I ,  Theorem 3.11 the authors have proved that the metric space ( X ,  d) is 
isometric with a strictly convex real Banach space if and only if for any triplet 
a,, a,, a, of elements of X the set +a, +$a, +*a, is a one-element subset of X.  

PROPOSITION 1.1. Suppose ( X ,  d) is a metric space of negative curvature. 
Then for any Jinite subsets {a,, . . ., a,), {b,, . . . , b,) of X and any subset 
( p l ,  . . . , pn) of [0, 11 with x ; = ,  pi = 1 the following estimation holds: 

Proof. We proceed by induction. For all one-element sets (a,}, {b,) our 
proposition is true. Suppose it is true for all finite subsets of X with cardinality 
k < n, where n > 1. 

Let {a,, ..., a,}, {b,, ..., b,) c X and {p,, . .. , p,} c [O, 11 with  pi 
= 1. It is sutrcient to prove (by symmetry) that for each element a ~ z ,  piai 
there is an element b E X ; ,  pibi such that 

Suppose a E x ;= ,  piai. Thus there are two non-empty disjoint and com- 
plementary subsets I,, I ,  of (1 ,  . . . , n) and two elements a' E xi,Il pf a, and 
a2 E xi,r2 pf ai, where p: = p,lCi,,, pi for i E II and p? = piaiE12 pi for i E I,, such 
that 

a = ( X pi)al + ( C pi)a2 
iEIl i d 2  

(see Definition 1.1 and Remark 1.1). It follows from the inductive hypothesis 
that there are elements b1 E C ~ , ~ ,  pf bi and b2 E xiel, p? bi such that 

d(al,bl).< Zp:d(a i ,b i )  and d ( a 2 , b 2 ) 4  x p j d ( a i , b i ) .  
ieI 1 i d 2  
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Let b = (xi,,, p:)bl + (xi,z, piz)b2. Since ( X ,  6) is of negative curvature, we 
obtain 

I which completes the induction and the proof of Proposition 1.1. 
I 

LEMMA 1.1. Suppose ( X ,  d) is a strictly convex metric space. Then for any 
a,  b E X  and p, p' E [0, 11 the following holds: 

d(pa+(l -p)b, pla+(l -p1)b) = Ip-plld(a, b). 

P r o  of. Suppose p >, p' and let 

c = W / P ) ( P ~ + ( ~  -p)b)+(l-p'Ip)b. 

We shall prove that c = pla+(l -pl)b. To prove this it is suficient to show that 
I 

d(c, b) = pld(a, b) and d(c, a) = (1 -pl)d(a, b) (Remark 1.1). 
We have 

d ( c , b ) = W / p ) d ( p a + ( l - p ) b , b )  and d(pa+(l-p)a,b)=pd(a,b) 

(Remark 1, I ) ,  and hence d(c, b) = p' d(a, b). 
By the triangle inequality we have 

I 
I d(c, a) < d ( c , ~ a + ( 1 - p ) b ) + d ( ~ a + ( l - p ) b ,  a). 
I 
I 
I But (Remark 1.1) 

and 
d(pa+(l -p)b, a) = (1 -p)d(a, b). 

Hence we obtain d (c, a) 6 (1 -pl)d(a, b). But this means (together with d(c, b) 
= pld(a, b)) that d(c, a) = (1 -pl)d(a, b), which shows finally that c = p'a 
+ (1 -pl)b. 

We thus obtain 

d(pa+(l--p)b,  pla+(l -p')b) = d(pa+(l-p)b, c) 

= (1-pl/p)d(pa+(l -p)b, b) = (1 -pl/p)pd(a, b) = (p-pf)d(a, b), 

which completes the proof of Lemma 1.1. 

LEMMA 1.2. Let ( X ,  d) be a metric space of negative curvature and tet 
(Fo(X) ,  h) be a subspace of (F(X) ,  h) of non-empty finite subsets of X .  Then the 
map cp of [0, I ]  x Fo(X)  x Fo(X)  into Fo(X)  defined as 

is continuous. 
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Proof. We shall show that for any x, x', y, y ' ~  X and any p ,  p ' ~  [0, 11 the 
following inequality holds: 

+I~-p'ld(x', y'). 

By the triangle inequality we have 

+ d(pxf +(1 -p )  y', pfx'+(1 -p') y'). 

Since (X, d) is of negative curvature, we obtain 

d(px+(l-p)y, pxf+(l -ply') G pd(x, xf)+(l-p)d(y,  y') 

(Definition 1.2). From Lemma 1.1 we have 

d(pxf+(l -p)yf, pfxf+(1-pf)x') = Ip-pfld(x', y'). 

Thus we obtain (1.2). 
The continuity of cp follows directly from the estimation (1.2) and the 

definition of the Hausdorff metric h. 

PROPOSITION 1.2. Suppose ( X ,  d) is a metric space of negative curvature. 
Then for any finite subset {a,, . . . , a,) of X the application 

I 

$ ( P I ,  m e . 9  p n )  = C Piai 
i =  1 

is a continuous map of a symplex 
A 

A,=(@ ,,..., p,): C p i =  l , p i > , O , i = l  ,..., n] 
i= 1 

into (F(X) ,  h). 

Proof. We proceed by induction. For all one-element sets (a,} our 
proposition is true. Suppose it is true for all finite subsets of X with cardinality 
k < n, where n > 1. 

Let rp be a map defined in Lemma 1.2 and let S be a family of all 
non-empty sets I c (1 ,  . . . , n} with non-empty complements I'. For each I E  9 
let $, be an application of A, into ( F ( X ) ,  h) defined as 

p;=pi/Cpi for iE I ,  p : = p i / z p i  for i ~ l ' .  
i d  id'  

It follows from Lemma 1.2 and the inductive hypothesis that the application $I 

is a continuous map from A, into (F(X) ,  h) for any I EP. By the Definition 1.1 
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of a convex combination of n elements of X we have 

$ 1 . .  P = $ 1  , P I  for b,, ..., P")EA,. 
I€@ 

This means that $ is a continuous map of An into ( F ( X ) ,  h) as a finite union of 
continuous maps $,, which completes the induction and the proof of 
Proposition 1.2. 

2. Mathematical expectation. Let ( X ,  d) be a convex metric space and let 
( S E ,  d, P) be a probability space. By Y = Y j Q ,  d, P; X )  we denote the set of 
simple random variables (r.v.) with values in X ,  i.e., Bore1 maps of 51 into 
X having a finite number of values. 

We say that a =  {A,,  ..., A,) c d  is apartition if A i n A j = B  for i # j ,  
i ,  j = 1, . . . , k, and Ut= A, = B If n and a are partitions, we write n < o if 
each element of a is included in some element of n. 

Given a function ~ E Y  we denote by n ( f )  the set of all partitions K such 
that f (a) = f (6) for any A E K  and any co, ~ E A .  

DEFINITION 2.1. Given f E Y ( S E ,  d, P; X )  and K = { A l ,  . . . , A,) E If( f) we 
define 

k 

E f f [ f ]  = P(Ai)ai, where ai = f (o) for O E  Ai, i = 1, . . . , k, 
i= 1 

and 
ECf l  = cl( U E,CfI). 

non(S) 

Remark 2.1. Suppose ( X ,  d )  is 'a complete convex and outer convex 
metric space. In [ I ,  Theorem 2.11 the authors have proved that a metric space 
( X ,  d)  is isometric with a real strictly convex Banach space if and only if for any 
triplet of elements a,, a,, a, of X the following equality holds: 

+al ++(+a, ++a,) = +($a, +3a,)++(+al +fa,). 

Thus, in general, given f E Y the set E, [ f] depends on the partition n E n( f ). 
LEMMA 2.1. Given f E 9, the operator Ee [ f ] is increasing: If K ,  o E n( f )  

and n < a, then E , [ f ]  c E b [ f ] .  

The proof results clearly from Definition 1.1 of a convex combination. 

LEMMA 2.2. Suppose a metric space ( X ,  4 is of negative curvature. Then for 
any f ,  g~ Y and any n~ n ( f )  n n(g) the following inequality holds: 

The proof results clearly from 'Proposition 1.1. 

LEMMA 2.3. If ( X ,  d) is of negative curvature, then for any f €9' the set 
E [ f ]  is a bounded subset of X .  
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Proof. Since the set l7( f )  is directed by the relation < and the operator 
Ee[f] is increasing (Lemma 2.1), it is sufficient to prove that 

(2.1) sup diam E, [ f] < co . 
n~nw) 

Let .n E D(f) and let g(o) = a, o E 8 ,  for some fixed element a of X. From 
Lemma 2.2 we have 

h(E,Cfl, {a)) G j d(f (4, a)dP(o), 
0 

which implies (2.1). 

PROPOSITION 2.1. Let (X, d) be a metric space of negative curvature. Then 
for any f9 ~ E Y ( Q ,  d 9  4'; X) 

(2.2) h(ECf 1, Erg]) G j d(f (4, g(o))dP(u). 
R 

Proof. To prove (2.2) it is suficient to show that for any partition 
n E Z7( f )  and any element a E E, [f ] there is a partition a E n(g) and an element 

I b~E,[g] such that d(a, b) < j,d(f, g)dP. 
For any partition .n E n(f )  there is a partition cr E l7( f )  n D(g) such that 

.n < 6. Since h(E,[f I, E,[g]) < Jn d(f, g)dP (Lemma 2.2) and En[ f ] c E,[g] 
I (Lemma 2.1), for any a~E,[ f ]  there is b~ E,[g] such that d(a, b) < jd(f, g)dP. 

1 Suppose (X, d) is a Polish metric space of negative curvature. We say that 
, an X-valued random variable f is integrable iff j,d(x, f (o))dP(w) -c co for 

XEX. We denote by 9 = 9 ( 8 ,  d ,  P; X) the set of all integrable r.v.'s. and by 
L = L(8, d, P;  X) the set of all equivalence classes (for equality as.) of 
integrable r.v.'s. By S = S(Q, d ,  P; X) we denote a subset of L corresponding 
to the set of simple r.v.'s. Let dl be a metric on L given by 

Since the metric space (X, d) is Polish, S is a dense subset of (L, dl) (see 
Lemma 3.1). It is dear that E [ f ] = E [g] if f, g E Y and f = g as., i.e. an 
operator E acts on S. By Proposition 2.1, E is a uniformly continuous map of 
(S, dl) into (F(X), h). It is known that if a metric space (X, d) is complete, then 
a metric space (F(X), h) is also complete [9, Vol. 1, $33, IV]. Thus E admits 
a unique uniformly continuous extension to a map of (L,  dl) into (F(X), h) 
which satisfies (2.2). for all f, g E L(B, d, P; X). 

DEFINITION 2.2. Let (X, d) be a Polish metric space, (8, d9 P) a probabili- 
ty space, and f E Y(Q, d ,  P; X). We sap that a non-empty closed bounded 
subset E[ f] of X is a mathematical expectation of J: For any f, g 
EY(Q, d9 P; X) an estimation (2.2) holds. 

- I  

Remark 2.2. Suppose (X, d) is a Polish metric space of negative 
curvature. Then any f E Y(8,  d ,  P ;  X) is integrable in the sense of Doss ([7], 

5 - PAMS 13.1 
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Definition 1).  h his is a consequence of the estimation (2.2) applied to f and 
g ( u )  = x, O E Q .  

Remark  2.3. Suppose ( X ,  1 1  1 1 )  is a strictly convex real separable Banach 
space and f E Y(Q, d ,  P;  X ) ,  where X is equipped with the metric 
d(x ,  y) = llx- yll . Then E [ f ] is a one-.element set containing a Bochner 
integral off (see Remark 1.5). 

3. Strong Law of Large Numbers. We say that a metric space (X, d) is 
finitely compact iff each closed bounded subset of X is compact. Throughout 
this section we assume that ( X ,  d)  is a finitely compact metric space of negative 
curvature. 

We put Lim, F, = F iff limn h(F,, F) = 0. We note the following known 
properties of the convergence in ( F ( X ) ,  h) ([9], Vol. 11, §42,1 and §42,2): 

(a) F, c Fn implies Limn F, c Limn Fn. 
(p) If u, F, is relatively compact in ( X ,  d), then {FnF,),"=l is relatively 

compact in (F(X) ,  h). 

THEOREM 3.1. Suppose {f,),"! is a sequence of independent and identically 
distributed (i.i.d.) integrable random variables with values in X and let 

Then 

(3.1) Lim F n ( o )  = E [ fi] a.s. 
n 

We shall precede the proof of Theorem 3.1 by three lemmas. 

LEMMA 3.1. Suppose f n  E Y ( Q ,  d ,  P ;  X )  (n  = 1,  2, . . .) are i.i.d. r.v.'s. Given 
E > 0 there exists a sequence g , ~  Y ( Q ,  d ,  P;  X )  (n  = 1,  2, . . .) of i.i.d. r.v.'s such 
that d ( f n ,  g,) (n  = 1, 2,  ...) hre i.i.d. (real) r.v.'s and j,d(fl, gl)dP < E. 

P r o  of. Let E > 0 be given and let x be a fixed element of X.  Since the 
metric space ( X ,  d)  is Polish, there exists a compact subset K of X such that 

j d ( x , f l ( u ) ) d p ( 4 < & / 2 .  
a\f; ' ( K )  

k 
Let K = U i = ,  B,; where B, are non-empty pairwise disjoint Bore1 subsets of 
X with diam(Bi) < ~ / 2  for i = 1, ..., k. Suppose a i€Bi  for i = 1,  ..., k and let 
us define 

a, if u € f , - l ( B i )  for i = l ,  ..., k ,  
x if o #h- (K) .  

It is clear that {g,),",, and {d(fn, g,)),",l are i.i.d. sequences and 
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LEMMA 3.2. Let f E Y ( Q ,  d, P; X ) .  Then for each E > 0 there exists 
a partition . n ~ n ( f )  such that h(E,[ f ] ,  E[f]) < E. 

Proof. Given f E Y(S1, d ,  P; X )  the set F = UnEncn E, [ f ]  is bounded 
(Lemma 2.3), and thus relatively compact. Let (a,, . .. , a,} be an &-net in F. 
Then {a,, . . . , a,} c E,[ f ] for some n: E 17( f ), since IZ( f )  is directed by < and 
the operator E @ [ f ]  is increasing (Lemma 2.1). It is clear that 

LEMMA 3.3. Suppose a probability space (9, d ,  P) is non-atomic. Then for 
any partition x = (A, ,  . . . , A,) there exists a sequence {a,),"= of partitions 

such that 
mi, 

A l j c A i ,  P(Ai\U A t j ) < l / n ,  P(A!, j)=P(B't)=l/n 
j= 1 

for 1 < i < k ,  1 < j < m : ,  l < l G r n  ( n = l , 2  ,... ). 
Proof. Construction of the sequence {nn),"= is 

well-known property of a non-atomic measure; {P(B): B E & ,  B c A )  
= [O, P(A)] for any A E d. . 

Proof of Theorem 3.1. If (9, d ,  P) has an atom, then the existence of 
a sequence of i.i.d. r.v.3 defined on S1 implies that at = {a, SE) and our 
S.L.L.N. is trivially true. Thus we suppose that (a, d ,  P) is a non-atomic 
probability space. 

Assume first that fl is a simple random variable. Let E > 0 be given. By 
Lemma 3.2 there exists x E 17( f l )  such that h(E,[f l] ,  E [  f l ] )  < E. Suppose 
x = { A 1 ,  ..., Ak)  and f ( o )  = ai for ~ E A ~ ,  i = 1,  ..., k. Let (7~,},"=~ be a se- 
quence of partitions constructed for that n in Lemma 3.3. Let {f,'),"=, be 
a sequence of simple r.v.'s defined as 

f,,'(w)=ai for o ~ A q ( i = l ,  ..., k), 

where 
mt, In . mi 

A: = U A : , j u  U B f  and A f =  U Ai,j for i = 2  ,..., k. 
j= 1 1=1 j= 1 

We shall proye that 

(3.2) lim h ( ~ , ( w ) ,  E,,, [f,,']) = 0 for all w E 9\N with P(N)  = 0, 
n 

k t  us define for each o ~ 9 :  
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We thus have (Definition 1.1) 

and and 

Enn CXl 
mA + r ,  2 

mn 
k 

mn 

Hence, by Proposition 1.1 we see that for each c o ~ O  and i = 1,2, . . . 

For fixed i = 1, . . . , k the random variables vt (n = 1, 2, . . .) are the n-th partial 
sums of a sequence of i.i.d. r.v.3 with mean P(Ai). By the construction of the 
partitions n,, P(Ai)- l/n < m Q n  6 P(Ai) and r < k for i = 1,. . ., k, 
n = 1, 2, . . . We thus infer, by the (real) S.L.L.N., that the right-hand side of the 
last inequality converges to zero for almost every o~bl, which proves (3.2). 

Let X E X  and ~ € 0  be fixed. An application of inequality (1.1) of 
Proposition 1.1 (for ai = x, bi =A@), pi = 1/n for i = 1, 2, . . ., n) shows that 

n 

h((x),Fn(o))6 xn-'d(x,&(o)) for all ~ E Q .  
i= 1 

From the (real) S.L.L.N. applied to a sequence {d(x, S,)),", of integrable i.i.d. 
r.v.'s we obtain 

lim sup h({x}, F,(o)) 6 j d(x, fl)dP a.s. 
n 62 

This estimation means that for o E Q\N' with P(N1) = 0 the set Un Fn(a) is 
bounded, and thus relatively compact. 

We shall prove that (3.1) holds for every w E Q\(N v N'). We may assume 
by (P), extracting a subsequence if necessary, that {Fn(w)),", is convergent in 
(F(X), h). Thus for w E Q\(N u N') we have, by (3.1), 

Lim Fn(o) = Lim Erin [$I. 
n n 

Since, by construction, 
lim j d(fn', fl)dP = 0, 

n R 

we have Lim,E[fn'] = EL fl]. But Enn[fn'] c E[fn'] for n = 1,2, . . . , and thus 
by (a) we obtain Lim,Fn(o) c E[fl]. 
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Let us consider the sequence of partitions on = {A;,  ..., A:) (n = 1, 2, . . .). 
Since 

limP(A?AA,)=O for i = 1 ,  ..., k, 
n 

by Proposition 1.2 we obtain Limn Em" [f,'] = En [ f,]. But on < xn (n = 1, 2, . . .), 
and hence, by (a), 

E,[ f,] c Lim E,,, [ f;] = Lim Fn(w). 
n n 

We thus finally obtain 

E,[ f,] c lim Fn(w) c E[ f,] for all o E Q\(N u N'). 
n 

This implies, by the inequality h(E,[f,], E[fl]) < E, that h(LimnFn(o), E[fl]) 
< E. Since e > 0 was chosen arbitrarily, the proof of (3.1) in the case of a simple 
r.v. f, is complete. 

Let now f, EY(Q, d ,  P; X) be arbitrary and let e > 0 be given. By 
Lemma 3.1 there is a sequence {g,),"= , of simple X-valued i.i.d. r.v.'s such that 
{d(f,, g,,)),",, is an i.j.d. sequence and [,d(f,, g,)dP < E. 

Let Gn(o) = z:=, n-'g,(o) for w E Q, n = 1, 2, . . . From Proposition 1.1 
we obtain 

n 

h(F,(w),G,(m))< C n-'d(f;.(o),g,(o)) for 0 ~ 0 .  
i =  1 

Strong Law of Large Numbers applied to a sequence {d(fn, g,)),", , implies that 

lim sup h(Fn(o), G,(w)) ,< E a.s. 
n 

By the triangle inequality we have 

h(Fn(ul9 EEfll) h(Fn(4, Gn(w))+h(Gn(o), ECg,l)+h(EEg,J, E[f,]). 

Since limn h(G,(o), E [g,]) = O a.s. and 

h(ECg11, ECfll) G j d(f1, g1)dP G 

(see Definition 2.2), we obtain 

lim sup h(Fn(o), E [  fl]) < 2~ a.s. 
n 

Since E > 0 was chosen arbitrarily, this completes the proof of Theorem 3.1. 

Strong Law of Large Numbers of Theorem 3.1 admits the following converse: 

THEOREM 3.2. Let if,),"=, be a sequence of i.i.d. X-valued r.v.3 and let 
F,(o) ,=~~Fln-l&(co) for OEQ, n = l , 2 ,  ... Suppose there exists FEF(X) 
such that hm, h(Fn(m), F) = 0 a.s. Then f, E Y(Q, d ,  P; X) and E [ f,] = F. 

Proof. In view of Theorem 3.1 we need to prove only that 
fl E 9 ( Q ,  d ,  P; X), that is jDd(x, f,)dP < CQ for x E X. To prove this it is 
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sufficient to show that for a fixed X E X  there is a constant M such that 

(3.3) limsup n-'d(x, fn(w)) < M 
n 

(for Kolmogorov's proof of the converse of the S.L.L.N. see, e.g., [lo, Theorem 3.2.21). 
For each ~ E Q  let {an(w))p=2 be an arbitrary sequence of elements 

an@) E Fn - , (a) and let 

bn(w)=ean(w)+i fn(w)  for n = 2 , 3  ,... 
(Definition 1.1). By the triangle inequality we obtain 

(3.4) n-1d(x,f,(w))<n-1d(x9an(w))+d(an(w),bn(w))9 
WEB' n = 2, 3, ... 

Since limn h(F,(o), F) = 0 as., we have 

lim h({x), Fn(w)) = h((x), F) = 3M a.s. 
n 

This implies (since an(w) E Fn(w), bn(w) E Fn(w), h((x) , Fn(w)) = ~up,,,,~,,d(x, y)) 
that 

lim sup d(x, an(o)) < 3 M and lim sup d(x, bn(w)) < $ M  a.s. 
n n 

By the triangle inequality we obtain 

lim sup d(a,(w), bn(w)) < M as., 
n 

which implies (3.3) in view of (3.4). 
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