PROBABILITY
AND
MATHEMATICAL STATISTICS
Vol. 13, Fasc. 1 (1992), pp. 59-70

MATHEMATICAL EXPECTATION AND STRONG LAW OF LARGE NUMBERS FOR RANDOM VARIABLES WITH VALUES IN A METRIC SPACE OF NEGATIVE CURVATURE

RV

WOJCIECH HERER (WARSZAWA)

Abstract. Let f be a random variable with values in a metric space (X, d). For some class of metric spaces we define in terms of the metric d mathematical expectation of f as a closed bounded and non-empty subset of X. We then prove Kolmogorov's version of Strong Law of Large Numbers corresponding to that mathematical expectation.

0. Introduction. In this paper we introduce a concept of mathematical expectation of a random variable with values in a Polish metric space of negative curvature. This class of metric spaces contains complete simply connected Riemannian manifolds of non-positive (sectional) curvature with the geodesic metric. In [3, Chaper 5] Bussemann has studied a similar metric generalization of a non-positively curved Riemannian manifold (see also [6], Proposition 8.17 and Remark 8.18).

In Section 1 we introduce convex combinations of elements of a metric space. In Section 2 we define mathematical expectation of a random variable with values in a Polish space (X, d) of negative curvature. In Section 3 we prove Strong Law of Large Numbers for independent and identically distributed X-valued random variables together with its converse.

Results of this paper were partially announced in [8].

1. Convex combination. Let (X, d) be a metric space. By (F(X), h) we denote a metric space of closed bounded and non-empty subsets of X equipped with the Hausdorff metric defined as

$$h(F, F') = \max \{ \sup_{x \in F} d(x, F'), \sup_{x' \in F'} d(x', F) \}.$$

We note the following identity:

$$h(\lbrace x\rbrace, F) = \sup_{y \in F} d(x, y) \quad \text{for } x \in X, F \in F(X),$$

which will be used throughout this paper without reference.

DEFINITION 1.1. Let (X, d) be a metric space. For any system of non-negative reals $\{p_1, \ldots, p_n\}$ with $\sum_{i=1}^n p_i = 1$ and any subset $\{a_1, \ldots, a_n\}$ of X we define inductively a subset of X as follows:

1. If n = 1, we define: $1a_1 = \{a_1\}$.

2. Let n > 1, $\{a_1, \ldots, a_n\} \subset X$ and $\{p_1, \ldots, p_n\} \subset [0, 1]$ with $\sum_{i=1}^n p_i = 1$. Suppose the sets $\sum_{i=1}^k q_i b_i$ are already defined for all k < n and any subsets

$$\{b_1, \ldots, b_k\} \subset X$$
 and $\{q_1, \ldots, q_k\} \subset [0, 1]$ with $\sum_{i=1}^k q_i = 1$.

We then define: $a \in \sum_{i=1}^{n} p_i a_i$ iff there exist non-empty disjoint and complementary subsets I_1 and I_2 of $\{1, \ldots, n\}$ and elements $a^1 \in \sum_{i \in I_1} p_i^1 a_i$, $a^2 \in \sum_{i \in I_2} p_i^2 a_i$, where $p_i^1 = p_i / \sum_{i \in I_1} p_i$ for $i \in I_1$ and $p_i^2 = p_i / \sum_{i \in I_2} p_i$ for $i \in I_2$ (with the convention 0/0 = 0), such that

$$d(a, a^1) = (\sum_{i \in I_2} p_i) d(a^1, a^2), \quad d(a, a^2) = (\sum_{i \in I_1} p_i) d(a^1, a^2).$$

We say that a metric space (X, d) is convex (strictly convex) if for any two elements a_1 , a_2 of X the set $pa_1 + (1-p)a_2$ is non-empty (has exactly one element) for any $p \in [0, 1]$.

Remark 1.1. Given two elements $a, b \in X$ and a real $p \in [0, 1]$, Definition 1.1 reads as follows:

$$pa+(1-p)b = \{c \in X: d(c, a) = (1-p)d(a, b) \text{ and } d(c, b) = pd(a, b)\}.$$

If a metric space (X, d) is strictly convex, we identify the set pa + (1-p)b with its unique element.

Remark 1.2. If a metric space (X, d) is complete, the above definition of convexity of a metric space agrees with the classical definition of Menger (see [2], Definition 14.1 and Theorem 14.1).

Remark 1.3. If a metric space (X, d) is convex (strictly convex), then the set $\sum_{i=1}^{n} p_i a_i$ is a closed (finite) non-empty subset of X for any $\{a_1, \ldots, a_n\} \subset X$ and $\{p_1, \ldots, p_n\} \subset [0, 1]$ with $\sum_{i=1}^{n} p_i = 1$.

This remark is a direct consequence of Definition 1.1 by the use of an inductive argument.

DEFINITION 1.2. We say that a strictly convex metric space (X, d) is of negative curvature iff for any four elements a_1, a_2, b_1, b_2 of X and any $p \in [0, 1]$ the following estimation holds:

$$d(pa_1 + (1-p)a_2, pb_1 + (1-p)b_2) \leq pd(a_1, b_1) + (1-p)d(a_2, b_2).$$

Remark 1.4. Let (X, g) be a complete simply connected Riemannian manifold and let d be a geodesic metric on X induced by g. Then the metric space (X, d) is of negative curvature if and only if the manifold (X, g) is of non-positive (sectional) curvature.

This property of sectional curvature of a Riemannian manifold was established by Bussemann in [3].

Remark 1.5. Let $(X, \| \|)$ be a *strictly convex* real Banach space (cf. [5]), i.e. such that the metric space (X, d) is strictly convex, where $d(x, y) = \|x - y\|$. Then one verifies easily the following:

(a) For any subsets $\{a_1, \ldots, a_n\} \subset X$ and $\{p_1, \ldots, p_n\} \subset [0, 1]$ with $\sum_{i=1}^n p_i = 1$ the set $\sum_{i=1}^n p_i a_i$ (in the sense of Definition 1.1) is a one-element set containing a linear combination of a_1, \ldots, a_n with the coefficients p_1, \ldots, p_n .

(b) The metric space (X, d) is of negative curvature.

Remark 1.6. A metric space (X, d) is said to be *outer convex* iff for any two elements $a, b \in X$ and any $p \in [0, 1]$ there is an element $c \in X$ such that b = pa + (1-p)c.

Let (X, d) be a complete convex and outer convex metric space. In [1, Theorem 3.1] the authors have proved that the metric space (X, d) is isometric with a strictly convex real Banach space if and only if for any triplet a_1, a_2, a_3 of elements of X the set $\frac{1}{3}a_1 + \frac{1}{3}a_2 + \frac{1}{3}a_3$ is a one-element subset of X.

PROPOSITION 1.1. Suppose (X, d) is a metric space of negative curvature. Then for any finite subsets $\{a_1, \ldots, a_n\}$, $\{b_1, \ldots, b_n\}$ of X and any subset $\{p_1, \ldots, p_n\}$ of [0, 1] with $\sum_{i=1}^n p_i = 1$ the following estimation holds:

(1.1)
$$h(\sum_{i=1}^{n} p_{i}a_{i}, \sum_{i=1}^{n} p_{i}b_{i}) \leq \sum_{i=1}^{n} p_{i}d(a_{i}, b_{i}).$$

Proof. We proceed by induction. For all one-element sets $\{a_1\}$, $\{b_1\}$ our proposition is true. Suppose it is true for all finite subsets of X with cardinality k < n, where n > 1.

Let $\{a_1, \ldots, a_n\}$, $\{b_1, \ldots, b_n\} \subset X$ and $\{p_1, \ldots, p_n\} \subset [0, 1]$ with $\sum_{i=1}^n p_i$ $p_i = 1$. It is sufficient to prove (by symmetry) that for each element $a \in \sum_{i=1}^n p_i a_i$ there is an element $b \in \sum_{i=1}^n p_i b_i$ such that

$$d(a, b) \leqslant \sum_{i=1}^{n} p_i d(a_i, b_i).$$

Suppose $a \in \sum_{i=1}^n p_i a_i$. Thus there are two non-empty disjoint and complementary subsets I_1 , I_2 of $\{1, \ldots, n\}$ and two elements $a^1 \in \sum_{i \in I_1} p_i^1 a_i$ and $a^2 \in \sum_{i \in I_2} p_i^2 a_i$, where $p_i^1 = p_i / \sum_{i \in I_1} p_i$ for $i \in I_1$ and $p_i^2 = p_i / \sum_{i \in I_2} p_i$ for $i \in I_2$, such that

$$a = \left(\sum_{i \in I_1} p_i\right) a^1 + \left(\sum_{i \in I_2} p_i\right) a^2$$

(see Definition 1.1 and Remark 1.1). It follows from the inductive hypothesis that there are elements $b^1 \in \sum_{i \in I_1} p_i^1 b_i$ and $b^2 \in \sum_{i \in I_2} p_i^2 b_i$ such that

$$d(a^1, b^1) \leqslant \sum_{i \in I_1} p_i^1 d(a_i, b_i)$$
 and $d(a^2, b^2) \leqslant \sum_{i \in I_2} p_i^2 d(a_i, b_i)$.

Let $b = (\sum_{i \in I_1} p_i^1) b^1 + (\sum_{i \in I_2} p_i^2) b^2$. Since (X, d) is of negative curvature, we obtain

$$d(a, b) \leq (\sum_{i \in I_1} p_i^1) d(a^1, b^1) + (\sum_{i \in I_2} p_i^2) d(a^2, b^2)$$

$$\leq \sum_{i \in I_1} p_i d(a_i, b_i) + \sum_{i \in I_2} p_i d(a_i, b_i) = \sum_{i=1}^n p_i d(a_i, b_i),$$

which completes the induction and the proof of Proposition 1.1.

LEMMA 1.1. Suppose (X, d) is a strictly convex metric space. Then for any $a, b \in X$ and $p, p' \in [0, 1]$ the following holds:

$$d(pa+(1-p)b, p'a+(1-p')b) = |p-p'|d(a, b).$$

Proof. Suppose $p \ge p'$ and let

$$c = (p'/p)(pa + (1-p)b) + (1-p'/p)b.$$

We shall prove that c = p'a + (1 - p')b. To prove this it is sufficient to show that d(c, b) = p'd(a, b) and d(c, a) = (1 - p')d(a, b) (Remark 1.1).

We have

$$d(c, b) = (p'/p)d(pa+(1-p)b, b)$$
 and $d(pa+(1-p)a, b) = pd(a, b)$

(Remark 1.1), and hence d(c, b) = p'd(a, b).

By the triangle inequality we have

$$d(c, a) \leq d(c, pa + (1-p)b) + d(pa + (1-p)b, a).$$

But (Remark 1.1)

$$d(c, pa+(1-p)b) = (1-p'/p)d(pa+(1-p)b, b) = (1-p'/p)pd(a, b)$$

and

$$d(pa+(1-p)b, a) = (1-p)d(a, b).$$

Hence we obtain $d(c, a) \le (1 - p')d(a, b)$. But this means (together with d(c, b) = p'd(a, b)) that d(c, a) = (1 - p')d(a, b), which shows finally that c = p'a + (1 - p')b.

We thus obtain

$$d(pa+(1-p)b, p'a+(1-p')b) = d(pa+(1-p)b, c)$$

= $(1-p'/p)d(pa+(1-p)b, b) = (1-p'/p)pd(a, b) = (p-p')d(a, b),$

which completes the proof of Lemma 1.1.

LEMMA 1.2. Let (X, d) be a metric space of negative curvature and let $(F_0(X), h)$ be a subspace of (F(X), h) of non-empty finite subsets of X. Then the map φ of $[0, 1] \times F_0(X) \times F_0(X)$ into $F_0(X)$ defined as

$$\varphi(p, F, G) = \{c \in X : c = pa + (1-p)b, a \in F, b \in G\}$$

is continuous.

Proof. We shall show that for any x, x', y, $y' \in X$ and any p, $p' \in [0, 1]$ the following inequality holds:

$$(1.2) d(px + (1-p)y, p'x' + (1-p')y') \le pd(x, x') + (1-p)d(y, y') + |p-p'|d(x', y').$$

By the triangle inequality we have

$$d(px+(1-p)y, p'x'+(1-p')x') \le d(px+(1-p)y, px'+(1-p)y') + d(px'+(1-p)y', p'x'+(1-p')y').$$

Since (X, d) is of negative curvature, we obtain

$$d(px+(1-p)y, px'+(1-p)y') \leq pd(x, x')+(1-p)d(y, y')$$

(Definition 1.2). From Lemma 1.1 we have

$$d(px'+(1-p)y', p'x'+(1-p')x') = |p-p'|d(x', y').$$

Thus we obtain (1.2).

The continuity of φ follows directly from the estimation (1.2) and the definition of the Hausdorff metric h.

PROPOSITION 1.2. Suppose (X, d) is a metric space of negative curvature. Then for any finite subset $\{a_1, \ldots, a_n\}$ of X the application

$$\psi(p_1,\ldots,p_n)=\sum_{i=1}^n p_i a_i$$

is a continuous map of a symplex

$$\Delta_n = \{(p_1, \ldots, p_n): \sum_{i=1}^n p_i = 1, p_i \ge 0, i = 1, \ldots, n\}$$

into (F(X), h).

Proof. We proceed by induction. For all one-element sets $\{a_1\}$ our proposition is true. Suppose it is true for all finite subsets of X with cardinality k < n, where n > 1.

Let φ be a map defined in Lemma 1.2 and let $\mathscr P$ be a family of all non-empty sets $I \subset \{1, ..., n\}$ with non-empty complements I'. For each $I \in \mathscr P$ let ψ_I be an application of Δ_n into (F(X), h) defined as

$$\psi_I(p_1, \ldots, p_n) = \varphi(\sum_{i \in I} p_i, \sum_{i \in I} p_i^1 a_i, \sum_{i \in I'} p_i^2 a_i),$$

where

$$p_i^1 = p_i / \sum_{i \in I} p_i$$
 for $i \in I$, $p_i^2 = p_i / \sum_{i \in I'} p_i$ for $i \in I'$.

It follows from Lemma 1.2 and the inductive hypothesis that the application ψ_I is a continuous map from Δ_n into (F(X), h) for any $I \in \mathcal{P}$. By the Definition 1.1

of a convex combination of n elements of X we have

$$\psi(p_1,\ldots,p_n)=\bigcup_{I\in\mathscr{P}}\psi_I(p_1,\ldots,p_n)\quad\text{ for }(p_1,\ldots,p_n)\in\Delta_n.$$

This means that ψ is a continuous map of Δ_n into (F(X), h) as a finite union of continuous maps ψ_I , which completes the induction and the proof of Proposition 1.2.

2. Mathematical expectation. Let (X, d) be a convex metric space and let (Ω, \mathcal{A}, P) be a probability space. By $\mathcal{S} = \mathcal{S}(\Omega, \mathcal{A}, P; X)$ we denote the set of *simple* random variables (r.v.) with values in X, i.e., Borel maps of Ω into X having a finite number of values.

We say that $\pi = \{A_1, \ldots, A_k\} \subset \mathscr{A}$ is a partition if $A_i \cap A_j = \emptyset$ for $i \neq j$, $i, j = 1, \ldots, k$, and $\bigcup_{i=1}^k A_i = \Omega$. If π and σ are partitions, we write $\pi \leq \sigma$ if each element of σ is included in some element of π .

Given a function $f \in \mathcal{S}$ we denote by $\Pi(f)$ the set of all partitions π such that $f(\omega) = f(\tilde{\omega})$ for any $A \in \pi$ and any ω , $\tilde{\omega} \in A$.

DEFINITION 2.1. Given $f \in \mathcal{S}(\Omega, \mathcal{A}, P; X)$ and $\pi = \{A_1, \ldots, A_k\} \in \Pi(f)$ we define

$$E_{\pi}[f] = \sum_{i=1}^{k} P(A_i)a_i$$
, where $a_i = f(\omega)$ for $\omega \in A_i$, $i = 1, ..., k$,

and

$$E[f] = \operatorname{cl}(\bigcup_{\pi \in \Pi(f)} E_{\pi}[f]).$$

Remark 2.1. Suppose (X, d) is a complete convex and outer convex metric space. In [1, Theorem 2.1] the authors have proved that a metric space (X, d) is isometric with a real strictly convex Banach space if and only if for any triplet of elements a_1 , a_2 , a_3 of X the following equality holds:

$$\frac{1}{2}a_1 + \frac{1}{2}(\frac{1}{2}a_2 + \frac{1}{2}a_3) = \frac{1}{2}(\frac{1}{2}a_1 + \frac{1}{2}a_2) + \frac{1}{2}(\frac{1}{2}a_1 + \frac{1}{2}a_3).$$

Thus, in general, given $f \in \mathcal{S}$ the set $E_{\pi}[f]$ depends on the partition $\pi \in \Pi(f)$.

LEMMA 2.1. Given $f \in \mathcal{S}$, the operator $E_{\bullet}[f]$ is increasing: If π , $\sigma \in \Pi(f)$ and $\pi \leq \sigma$, then $E_{\pi}[f] \subset E_{\sigma}[f]$.

The proof results clearly from Definition 1.1 of a convex combination.

LEMMA 2.2. Suppose a metric space (X, d) is of negative curvature. Then for any $f, g \in \mathcal{S}$ and any $\pi \in \Pi(f) \cap \Pi(g)$ the following inequality holds:

$$h(E_{\pi}[f], E_{\pi}[g]) \leq \int_{\Omega} d(f(\omega), g(\omega)) dP(\omega).$$

The proof results clearly from Proposition 1.1.

LEMMA 2.3. If (X, d) is of negative curvature, then for any $f \in \mathcal{S}$ the set E[f] is a bounded subset of X.

Proof. Since the set $\Pi(f)$ is directed by the relation \leq and the operator $E_{\bullet}[f]$ is increasing (Lemma 2.1), it is sufficient to prove that

$$\sup_{\pi \in \Pi(f)} \operatorname{diam} E_{\pi}[f] < \infty.$$

Let $\pi \in \Pi(f)$ and let $g(\omega) = a$, $\omega \in \Omega$, for some fixed element a of X. From Lemma 2.2 we have

$$h(E_{\pi}[f], \{a\}) \leq \int_{\Omega} d(f(\omega), a)dP(\omega),$$

which implies (2.1).

PROPOSITION 2.1. Let (X, d) be a metric space of negative curvature. Then for any $f, g \in \mathcal{S}(\Omega, \mathcal{A}, P; X)$

(2.2)
$$h(E[f], E[g]) \leq \int_{\Omega} d(f(\omega), g(\omega)) dP(\omega).$$

Proof. To prove (2.2) it is sufficient to show that for any partition $\pi \in \Pi(f)$ and any element $a \in E_{\pi}[f]$ there is a partition $\sigma \in \Pi(g)$ and an element $b \in E_{\sigma}[g]$ such that $d(a, b) \leq \int_{\Omega} d(f, g) dP$.

For any partition $\pi \in \Pi(f)$ there is a partition $\sigma \in \Pi(f) \cap \Pi(g)$ such that $\pi \leq \sigma$. Since $h(E_{\sigma}[f], E_{\sigma}[g]) \leq \int_{\Omega} d(f, g) dP$ (Lemma 2.2) and $E_{\pi}[f] \subset E_{\sigma}[g]$ (Lemma 2.1), for any $a \in E_{\pi}[f]$ there is $b \in E_{\sigma}[g]$ such that $d(a, b) \leq \int d(f, g) dP$.

Suppose (X, d) is a Polish metric space of negative curvature. We say that an X-valued random variable f is integrable iff $\int_{\Omega} d(x, f(\omega)) dP(\omega) < \infty$ for $x \in X$. We denote by $\mathcal{L} = \mathcal{L}(\Omega, \mathcal{A}, P; X)$ the set of all integrable r.v.'s. and by $L = L(\Omega, \mathcal{A}, P; X)$ the set of all equivalence classes (for equality a.s.) of integrable r.v.'s. By $S = S(\Omega, \mathcal{A}, P; X)$ we denote a subset of L corresponding to the set of simple r.v.'s. Let d_1 be a metric on L given by

$$d_1(f, g) = \int_{\Omega} d(f(\omega), g(\omega))dP(\omega).$$

Since the metric space (X, d) is Polish, S is a dense subset of (L, d_1) (see Lemma 3.1). It is clear that E[f] = E[g] if $f, g \in \mathcal{S}$ and f = g a.s., i.e. an operator E acts on S. By Proposition 2.1, E is a uniformly continuous map of (S, d_1) into (F(X), h). It is known that if a metric space (X, d) is complete, then a metric space (F(X), h) is also complete $[9, \text{Vol. 1}, \S 33, \text{IV}]$. Thus E admits a unique uniformly continuous extension to a map of (L, d_1) into (F(X), h) which satisfies (2.2) for all $f, g \in L(\Omega, \mathcal{A}, P; X)$.

DEFINITION 2.2. Let (X, d) be a Polish metric space, (Ω, \mathcal{A}, P) a probability space, and $f \in \mathcal{L}(\Omega, \mathcal{A}, P; X)$. We say that a non-empty closed bounded subset E[f] of X is a mathematical expectation of f. For any $f, g \in \mathcal{L}(\Omega, \mathcal{A}, P; X)$ an estimation (2.2) holds.

Remark 2.2. Suppose (X, d) is a Polish metric space of negative curvature. Then any $f \in \mathcal{L}(\Omega, \mathcal{A}, P; X)$ is integrable in the sense of Doss ([7],

Definition 1). This is a consequence of the estimation (2.2) applied to f and $g(\omega) = x$, $\omega \in \Omega$.

Remark 2.3. Suppose $(X, \| \|)$ is a strictly convex real separable Banach space and $f \in \mathcal{L}(\Omega, \mathcal{A}, P; X)$, where X is equipped with the metric $d(x, y) = \|x - y\|$. Then E[f] is a one-element set containing a Bochner integral of f (see Remark 1.5).

3. Strong Law of Large Numbers. We say that a metric space (X, d) is finitely compact iff each closed bounded subset of X is compact. Throughout this section we assume that (X, d) is a finitely compact metric space of negative curvature.

We put $\lim_n F_n = F$ iff $\lim_n h(F_n, F) = 0$. We note the following known properties of the convergence in (F(X), h) ([9], Vol. II, §42,1 and §42,2):

(a) $F_n \subset F'_n$ implies $\lim_n F_n \subset \lim_n F'_n$.

(β) If $\bigcup_n F_n$ is relatively compact in (X, d), then $\{F_n\}_{n=1}^{\infty}$ is relatively compact in (F(X), h).

THEOREM 3.1. Suppose $\{f_n\}_{n=1}^{\infty}$ is a sequence of independent and identically distributed (i.i.d.) integrable random variables with values in X and let

$$F_n(\omega) = \sum_{i=1}^n \frac{1}{n} f_i(\omega)$$
 for $\omega \in \Omega$, $n = 1, 2, ...$

Then

(3.1)
$$\operatorname{Lim}_{n} F_{n}(\omega) = E[f_{1}] \text{ a.s.}$$

We shall precede the proof of Theorem 3.1 by three lemmas.

LEMMA 3.1. Suppose $f_n \in \mathcal{L}(\Omega, \mathcal{A}, P; X)$ (n = 1, 2, ...) are i.i.d. r.v.'s. Given $\varepsilon > 0$ there exists a sequence $g_n \in \mathcal{L}(\Omega, \mathcal{A}, P; X)$ (n = 1, 2, ...) of i.i.d. r.v.'s such that $d(f_n, g_n)$ (n = 1, 2, ...) are i.i.d. (real) r.v.'s and $\int_{\Omega} d(f_1, g_1) dP \leq \varepsilon$.

Proof. Let $\varepsilon > 0$ be given and let x be a fixed element of X. Since the metric space (X, d) is Polish, there exists a compact subset K of X such that

$$\int\limits_{\Omega\setminus f_1^{-1}(K)}d\big(x,f_1(\omega)\big)dP(\omega)\leqslant \varepsilon/2.$$

Let $K = \bigcup_{i=1}^k B_i$, where B_i are non-empty pairwise disjoint Borel subsets of X with $\operatorname{diam}(B_i) \leq \varepsilon/2$ for $i = 1, \ldots, k$. Suppose $a_i \in B_i$ for $i = 1, \ldots, k$ and let us define

$$g_n(\omega) = \begin{cases} a_i & \text{if } \omega \in f_n^{-1}(B_i) \text{ for } i = 1, \dots, k, \\ x & \text{if } \omega \notin f_n^{-1}(K). \end{cases}$$

It is clear that $\{g_n\}_{n=1}^{\infty}$ and $\{d(f_n, g_n)\}_{n=1}^{\infty}$ are i.i.d. sequences and

$$\int\limits_{\Omega}d(f_1,\,g_1)dP=\int\limits_{f_1^{-1}(K)}d(f_1,\,g_1)dP+\int\limits_{\Omega\backslash f_1^{-1}(K)}d(f_1,\,x)dP\leqslant \varepsilon/2+\varepsilon/2=\varepsilon.$$

LEMMA 3.2. Let $f \in \mathcal{S}(\Omega, \mathcal{A}, P; X)$. Then for each $\varepsilon > 0$ there exists a partition $\pi \in \Pi(f)$ such that $h(E_{\pi}[f], E[f]) \leq \varepsilon$.

Proof. Given $f \in \mathcal{S}(\Omega, \mathcal{A}, P; X)$ the set $F = \bigcup_{\pi \in \Pi(f)} E_{\pi}[f]$ is bounded (Lemma 2.3), and thus relatively compact. Let $\{a_1, \ldots, a_k\}$ be an ε -net in F. Then $\{a_1, \ldots, a_k\} \subset E_{\pi}[f]$ for some $\pi \in \Pi(f)$, since $\Pi(f)$ is directed by \leqslant and the operator $E_{\bullet}[f]$ is increasing (Lemma 2.1). It is clear that

$$h(E_{\pi}[f], E[f]) = h(E_{\pi}[f], \operatorname{cl} F) \leq \varepsilon.$$

LEMMA 3.3. Suppose a probability space (Ω, \mathcal{A}, P) is non-atomic. Then for any partition $\pi = \{A_1, \ldots, A_k\}$ there exists a sequence $\{\pi_n\}_{n=1}^{\infty}$ of partitions

$$\pi_n = \{A_{i,j}^n, B_l^n: 1 \le i \le k, 1 \le j \le m_n^i, 1 \le l \le r_n\} \quad (n = 1, 2, ...)$$

such that

$$A_{i,j}^n \subset A_i, \quad P(A_i \setminus \bigcup_{i=1}^{m_n^i} A_{i,j}^n) < 1/n, \quad P(A_{i,j}^n) = P(B_i^n) = 1/n$$

for
$$1 \le i \le k$$
, $1 \le j \le m_n^i$, $1 \le l \le r_n$ $(n = 1, 2, ...)$.

Proof. Construction of the sequence $\{\pi_n\}_{n=1}^{\infty}$ is clear in view of the well-known property of a non-atomic measure; $\{P(B): B \in \mathcal{A}, B \subset A\}$ = [0, P(A)] for any $A \in \mathcal{A}$.

Proof of Theorem 3.1. If (Ω, \mathcal{A}, P) has an atom, then the existence of a sequence of i.i.d. r.v.'s defined on Ω implies that $\mathcal{A} = \{\emptyset, \Omega\}$ and our S.L.L.N. is trivially true. Thus we suppose that (Ω, \mathcal{A}, P) is a non-atomic probability space.

Assume first that f_1 is a simple random variable. Let $\varepsilon > 0$ be given. By Lemma 3.2 there exists $\pi \in \Pi(f_1)$ such that $h(E_{\pi}[f_1], E[f_1]) \le \varepsilon$. Suppose $\pi = \{A_1, \ldots, A_k\}$ and $f(\omega) = a_i$ for $\omega \in A_i$, $i = 1, \ldots, k$. Let $\{\pi_n\}_{n=1}^{\infty}$ be a sequence of partitions constructed for that π in Lemma 3.3. Let $\{f'_n\}_{n=1}^{\infty}$ be a sequence of simple r.v.'s defined as

$$f'_n(\omega) = a_i$$
 for $\omega \in A_i^n$ $(i = 1, ..., k),$

where

$$A_1^n = \bigcup_{j=1}^{m_n^1} A_{1,j}^1 \cup \bigcup_{l=1}^{r_n} B_l^n$$
 and $A_i^n = \bigcup_{j=1}^{m_n^1} A_{i,j}$ for $i = 2, ..., k$.

We shall prove that

(3.2)
$$\lim h(F_n(\omega), E_{\pi_n}[f'_n]) = 0$$
 for all $\omega \in \Omega \setminus N$ with $P(N) = 0$.

Let us define for each $\omega \in \Omega$:

$$v_n^i(\omega) = \text{card}\{s: 1 \le s \le n, f_s(\omega) = a_i\} \quad (i = 1, ..., k; n = 1, 2, ...).$$

We thus have (Definition 1.1)

$$F_n(\omega) = \overbrace{n^{-1}a_1 + \ldots + n^{-1}a_1}^{\nu_n^1(\omega)} + \overbrace{n^{-1}a_2 + \ldots + n^{-1}a_2}^{\nu_n^2(\omega)} + \ldots + \overbrace{n^{-1}a_k + \ldots + n^{-1}a_k}^{\nu_n^k(\omega)}$$
 and

$$E_{\pi_n}[f'_n]$$

$$= n^{-1}a_1 + \dots + n^{-1}a_1 + n^{-1}a_2 + \dots + n^{-1}a_2 + \dots + n^{-1}a_k + \dots + n^{-1}a_k.$$

Hence, by Proposition 1.1 we see that for each $\omega \in \Omega$ and i = 1, 2, ...

$$h(F_n(\omega), E_{\pi_n}[f'_n])$$

$$\leq \sup_{1 \leq i,j \leq k} d(a_i, a_j) \left(\frac{|v_n^1(\omega) - m_n^1 - r_n|}{n} + \frac{|v_n^2(\omega) - m_n^2|}{n} + \dots + \frac{|v_n^k(\omega) - m_n^k|}{n} \right).$$

For fixed $i=1,\ldots,k$ the random variables v_n^i $(n=1,2,\ldots)$ are the *n*-th partial sums of a sequence of i.i.d. r.v.'s with mean $P(A_i)$. By the construction of the partitions π_n , $P(A_i)-1/n < m_n^i/n \le P(A_i)$ and $r_n \le k$ for $i=1,\ldots,k$, $n=1,2,\ldots$ We thus infer, by the (real) S.L.L.N., that the right-hand side of the last inequality converges to zero for almost every $\omega \in \Omega$, which proves (3.2).

Let $x \in X$ and $\omega \in \Omega$ be fixed. An application of inequality (1.1) of Proposition 1.1 (for $a_i = x$, $b_i = f_i(\omega)$, $p_i = 1/n$ for i = 1, 2, ..., n) shows that

$$h(\lbrace x \rbrace, F_n(\omega)) \leq \sum_{i=1}^n n^{-1} d(x, f_i(\omega))$$
 for all $\omega \in \Omega$.

From the (real) S.L.L.N. applied to a sequence $\{d(x, f_n)\}_{n=1}^{\infty}$ of integrable i.i.d. r.v.'s we obtain

$$\lim \sup_{n} h(\lbrace x \rbrace, F_n(\omega)) \leq \int_{\Omega} d(x, f_1) dP \text{ a.s.}$$

This estimation means that for $\omega \in \Omega \setminus N'$ with P(N') = 0 the set $\bigcup_n F_n(\omega)$ is bounded, and thus relatively compact.

We shall prove that (3.1) holds for every $\omega \in \Omega \setminus (N \cup N')$. We may assume by (β), extracting a subsequence if necessary, that $\{F_n(\omega)\}_{n=1}^{\infty}$ is convergent in (F(X), h). Thus for $\omega \in \Omega \setminus (N \cup N')$ we have, by (3.1),

$$\operatorname{Lim} F_n(\omega) = \operatorname{Lim} E_{\pi_n}[f'_n].$$

Since, by construction,

$$\lim_{n} \int_{\Omega} d(f'_n, f_1) dP = 0,$$

we have $\lim_n E[f'_n] = E[f_1]$. But $E_{\pi_n}[f'_n] \subset E[f'_n]$ for n = 1, 2, ..., and thus by (α) we obtain $\lim_n F_n(\omega) \subset E[f_1]$.

Let us consider the sequence of partitions $\sigma_n = \{A_1^n, ..., A_k^n\}$ (n = 1, 2, ...). Since

$$\lim P(A_i^n \Delta A_i) = 0 \quad \text{for } i = 1, \dots, k,$$

by Proposition 1.2 we obtain $\lim_{n} E_{\sigma_n}[f'_n] = E_{\pi}[f_1]$. But $\sigma_n \leq \pi_n \ (n = 1, 2, ...)$, and hence, by (α) ,

$$E_{\pi}[f_1] \subset \operatorname{Lim} E_{\pi_n}[f'_n] = \operatorname{Lim} F_n(\omega).$$

We thus finally obtain

$$E_{\pi}[f_1] \subset \lim F_n(\omega) \subset E[f_1]$$
 for all $\omega \in \Omega \setminus (N \cup N')$.

This implies, by the inequality $h(E_{\pi}[f_1], E[f_1]) \le \varepsilon$, that $h(\text{Lim}_n F_n(\omega), E[f_1]) \le \varepsilon$. Since $\varepsilon > 0$ was chosen arbitrarily, the proof of (3.1) in the case of a simple r.v. f_1 is complete.

Let now $f_1 \in \mathcal{L}(\Omega, \mathcal{A}, P; X)$ be arbitrary and let $\varepsilon > 0$ be given. By Lemma 3.1 there is a sequence $\{g_n\}_{n=1}^{\infty}$ of simple X-valued i.i.d. r.v.'s such that $\{d(f_n, g_n)\}_{n=1}^{\infty}$ is an i.i.d. sequence and $\{g_n(f_n, g_n)\}_{n=1}^{\infty}$ is an i.i.d.

 $\{d(f_n, g_n)\}_{n=1}^{\infty}$ is an i.i.d. sequence and $\int_{\Omega} d(f_1, g_1) dP \leq \varepsilon$. Let $G_n(\omega) = \sum_{i=1}^n n^{-1} g_i(\omega)$ for $\omega \in \Omega$, n = 1, 2, ... From Proposition 1.1 we obtain

$$h(F_n(\omega), G_n(\omega)) \leq \sum_{i=1}^n n^{-1} d(f_i(\omega), g_i(\omega))$$
 for $\omega \in \Omega$.

Strong Law of Large Numbers applied to a sequence $\{d(f_n, g_n)\}_{n=1}^{\infty}$ implies that $\limsup h(F_n(\omega), G_n(\omega)) \leq \varepsilon$ a.s.

By the triangle inequality we have

$$h(F_n(\omega), E[f_1]) \leq h(F_n(\omega), G_n(\omega)) + h(G_n(\omega), E[g_1]) + h(E[g_1], E[f_1]).$$

Since $\lim_{n} h(G_n(\omega), E[g_1]) = 0$ a.s. and

$$h(E[g_1], E[f_1]) \leqslant \int_{\Omega} d(f_1, g_1) dP \leqslant \varepsilon$$

(see Definition 2.2), we obtain

$$\limsup h(F_n(\omega), E[f_1]) \leq 2\varepsilon$$
 a.s.

Since $\varepsilon > 0$ was chosen arbitrarily, this completes the proof of Theorem 3.1.

Strong Law of Large Numbers of Theorem 3.1 admits the following converse:

THEOREM 3.2. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of i.i.d. X-valued r.v.'s and let $F_n(\omega) = \sum_{i=1}^n n^{-1} f_i(\omega)$ for $\omega \in \Omega$, n = 1, 2, ... Suppose there exists $F \in F(X)$ such that $\lim_n h(F_n(\omega), F) = 0$ a.s. Then $f_1 \in \mathcal{L}(\Omega, \mathcal{A}, P; X)$ and $E[f_1] = F$.

Proof. In view of Theorem 3.1 we need to prove only that $f_1 \in \mathcal{L}(\Omega, \mathcal{A}, P; X)$, that is $\int_{\Omega} d(x, f_1) dP < \infty$ for $x \in X$. To prove this it is

sufficient to show that for a fixed $x \in X$ there is a constant M such that $\limsup n^{-1}d(x, f_{-}(\omega)) \leq M$ (3.3)

(for Kolmogorov's proof of the converse of the S.L.L.N. see, e.g., [10, Theorem 3.2.2]). For each $\omega \in \Omega$ let $\{a_n(\omega)\}_{n=2}^{\infty}$ be an arbitrary sequence of elements $a_n(\omega) \in F_{n-1}(\omega)$ and let

$$b_n(\omega) = \frac{n-1}{n} a_n(\omega) + \frac{1}{n} f_n(\omega)$$
 for $n = 2, 3, ...$

(Definition 1.1). By the triangle inequality we obtain

$$(3.4) n^{-1}d(x, f_n(\omega)) \leqslant n^{-1}d(x, a_n(\omega)) + d(a_n(\omega), b_n(\omega)),$$

Since $\lim_{n} h(F_n(\omega), F) = 0$ a.s., we have

$$\lim h(\{x\}, F_n(\omega)) = h(\{x\}, F) = \frac{1}{2}M$$
 a.s.

This implies (since $a_n(\omega) \in F_n(\omega)$, $b_n(\omega) \in F_n(\omega)$, $h(\{x\}, F_n(\omega)) = \sup_{v \in F_n(\omega)} d(x, y)$) that

$$\limsup d(x, a_n(\omega)) \leq \frac{1}{2}M$$
 and $\limsup d(x, b_n(\omega)) \leq \frac{1}{2}M$ a.s

By the triangle inequality we obtain

$$\limsup d(a_n(\omega), b_n(\omega)) \leq M \text{ a.s.,}$$

which implies (3.3) in view of (3.4).

REFERENCES

- [1] E. Z. Andalaste, J. E. Valentine and S. G. Wayement, Triangle median properties which characterize Banach spaces, Houston J. Math. 5, No. 3 (1979), pp. 307-312.
- [2] L. M. Blumenthal, Theory and Applications of Distance Geometry, Oxford 1953.
- [3] H. Bussemann, Spaces with non-positive curvature, Acta Math. 80 (1948), pp. 259-310.
- [4] The Theory of Geodesics, Academic Press, New York 1955.
- [5] J. Diestel, Geometry of Banach Spaces, Springer-Verlag, Berlin 1975.
- [6] M. Gromov, Structures métriques pour les variétés riemanniennes, Cedic, Paris 1981.
- [7] W. Herer. Espérance mathématique au sens de Doss d'une variable aléatoire à valeurs dans un espace métrique, C. R. Acad. Sci. Paris Sér. I 302 (1983), pp. 131-134.
- [8] Espérance mathématique d'une variable aléatoire à valeurs dans un space métrique à courbure négative, ibidem 306 (1988), pp. 681-684.
- [9] K. Kuratowski, Topology, Vol. I, II, Academic Press, New York 1966, 1968.
- [10] W. F. Stout, Almost Sure Convergence, Academic Press, New York 1974.

Institute of Mathematics, Technical University of Warsaw pl. Politechniki 1, 00-661 Warsaw, Poland

ai te daii evoso (II) May aski ya xifiada at ia

Received on 17.2.1989; revised version on 12.12.1991