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Abstract. A nondegenerate probability measure v on R" is an 
n-dimensional version of a symmetric measure p on R if there exists 
c: Rn -t [0, a) such that t(ta) = fi(ltlc(a)), t E R, a E R". If the function 
c is an L,-norm on Rn, we call the measure v p-elliptically contoured. 
The main result of this paper is that if p has an &-order for E > 0, then 
every its n-dimensional version is pelliptically contoured for some 
p ~ ( 0 ,  23. We show also that s u p p Q  = R if only p has an 
n-dimensional version which is not 2-elliptically contoured. 

Distributions on Rn having all one-dimensional projections the same up to 
a scale parameter play a particular role in statistics and probability theory. For 
example, symmetric Gaussian measures and symmetric stable measures have 
this property. The investigation of this class of measures was started by 
Eaton [4] in 1981 and continued by Cambanis et al. [2] in 1983. It i$ still 
unknown however how large this class is, and this paper is devoted to the 
investigatioh of some its properties. 

By a nondegenerate distribution on R" we will ufiderstand a distribution for 
which the linear support is equal to R". By 9 ( X )  we denote the distribution of 
a random vector X. 

DEFINITION 1. The nondegenerate distribution v of a symmetric "random 
vector (XI, . . . , X,) E R" is said to be an n-dimensional version of a symmetric 
distribution p of a random variable X E R if for every a = (a , ,  . . . , a,) E Rn there 
exists c(a)'> 0 such that 

Y ( c  aiXi)  = Y ( c ( a ) ~ )  
or, equivalently, 

v^(ta)=@(c(a)t),  a € R n ,  t € R ,  

where v^ and @ are the corresponding characteristic functions. 

In general, we know very little about the function c. It is known (see [4]) 
that c(ta) = Itlc(a) for every ~ E R  and a € R n .  It is almost evident also that c is 
a continuous function on R", so it is equivalent to ahy norm on R". 

There are very close connections between measures p having n-dimen- 
sional versions and symmetric stable measures on R, as the above definition is 
almost the same as the definition of stable distribution. The only difference is 
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that we do not assume here the independence of X,'s. It is trivial then that if at 
least two of X,'s are independent, then all X,'s and X are symmetric and stable 
on Rn. 

If v is a symmetric p-stable measure on Rn, then (see, e.g., [6]) its 
characteristic function is of the form 

i i(a)=exp{-~(a)~),  a€Rn, 
where 

(*) ~ ( a ) ~ = j  ...jl( a,x)lP1(dx), a€Rn, 
s"- 1 

for some finite measure 1 on the unit sphere Sn-I G Rn. This means that every 
symmetric p-stable measure v' on Rn is an n-dimensional version of the 
symmetric p-stable measure y, on R with the characteristic function 
exp { - It)*}. Moreover, every n-dimensional version of the measure y, is 
symmetric and p-stable as stable is a distribution having all one-dimensional 
projections symmetric and p-stable. 

As we can see it will not be surprising if it turns out that every function 
c: Rn + [0, m), appearing in Definition 1, is given by the formula (*) for some 
p > 0 and a finite measure 1 on Sn-l c Rn. In fact, as far as we know, there 
exists no example of a measure v on Rn being an n-dimensional version of some 
measure p on R with the function c which cannot be written in the form (*) for 
any p~(O,2]  and any finite measure 1. That is why we introduce the following 

DEFINITION 2. A symmetric measure v on Rn is called p-elliptically 
contoured, p > 0, if its characteristic function is of the form 

v^(ta)=f(tc(a)), aeRn, ~ E R ,  

wheref: [0, m) -, R is a continuous function and c(a) is given by the formula 
(*) for some finite measure 1 on Sn-l. 

There is a full characterization of p-elliptically contoured measures in 
finite and infinite dimensional spaces for p = 2 and p = 1 (see [2], [lo]-[12]). 
In [I] one can find a full characterization of measures on R having 
n-dimensional p-elliptically contoured version for every  EN. But we know 
very little about p-elliptically contoured measures on Rn if p 4 {I, 2) 'and n E N 
is fixed. 

Now let c: Rn 4 [O, m). We define M(c, n) as the set of all probability 
measures p on R having an n-dimensional version v on Rn with a given function 
c, i.e., such that 

$(ta)=$(tc(a)), a€Rn, ~ G R .  

It is easy to see that the set M(c, n) is convex, weakly sequentially closed 
and closed with respect to convolution. The following theorem asserts that 
every n-dimensional version of a measure having p-th order, p~(O,2], is 
p-elliptically contoured. 
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THEOREM 1. Assume that there exists E > 0 and p0 EM(c, n), po # So, such 
that J lxlEpo(dx) < co. Then there exists p ~ ( 0 ,  21 such that c(a) can be given by 
the formula (*)for somefinite measure 1 on Sn-l. Moreover, ifp, is the greatest 
such p, then y, E M(c, n) for every q 6 p,. 

Proof. Without loss of generality we can assume that E 6 2 and that 
JJxlEp0(dx) = 1. If the measure v on Rn is the n-dimensional version of the 
measure p09 then for every aeRn we have 

c(a)" = J lc(a)xlPpo(dx) = J.. . J /(a, x)lPv(dx). 

Now, in the usual way (see, e.g., [6])  we construct an infinitely divisible 
probability measure exp{m} on Rn as the weak limit of measures exp {m,} when 
6 1 0, where 

We obtain 

= exp{-ltl"c(a)"}. 

We see then that exp{ - c(a)"} is a positive definite function on Rn (as the 
characteristic function of the measure exp{m}), so the function c(a)" is negative 
definite on Rn. We define 

p = SUP {E  E (092] : ~ ( a ) ~  is negative definite on Rn) . 

As the limit of negative definite functions is also negative definite, it follows 
that c(a), = limc(a)" as E + p is negative definite on Rn, and expi-c(a)P} is the 
characteristic function of some probability measure v, on Rn. 

Observe that all one-dimensional projections of v, are s 
and belong to M(c, n). Hence (see [8] and [9]) v, is p-stable, so there exists 
a finite measure 1 on Sn-' such that 

c(a)" = j.. .jl(a9 x>lP1(dx), a€Rn. 
S"- I  

Now y,~M(c, n). To see that y,~M(c,  n) for every 0 < q < p notice that the 
following measure is an n-dimensional version of the measure y, with the same 
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function c as for v,: 

v,?Y$P(A) : = J vp(As - llP)pqlp(d~), A WR"), 

where y;, is the (q/p)-stable measure on (0, co) with the Laplace transform 
exp ( - tqIp} . Indeed, we have 

a3 

(vp ~ ~ q l p )  A (a) = J vp(sllP a) y,;,(ds) 
O 

a3 

= J exp { - ~ c ( a ) ~ )  y,';,(ds) = exp{ - ~ ( a ) ~ ) .  
0 

The maximal p we have found in Theorem 1 is a characterizing constant of 
the set M(c, n) or of the function c on R". Therefore, let us define 

or, equivalently, 

p(c) = sup(p E (0, 21: ~ ( a ) ~  is negative definite on Rn), 

where s u p 0  = 0. Now, if p(c) > 0, then every n-dimensional version of any 
measure from M(c, n) has to be p(c)-elliptically contoured. So only in the case 
p(c) = 0 maybe we would be able to find c which is not any LP-norm for any 
p ~ ( 0 ,  21. In 1985 Kuritsyn and Schestiakov [7] showed that the function 
exp { - (lxlP + IyIP)llP) is a characteristic function for every p > 2. They expressed 
in this way the fact that every two-dimensional normed space embeds 
isometrically into some L1-space or, equivalently, that every norm on R2 is 
negative definite. The two-dimensional measures obtained in 171 are special 
cases of 1-elliptically contoured measures. So the problem whether or not there 
exists an n-dimensional version of a symmetric measure on R other than 
p-elliptically contoured, p E (0, 21, remains open. 

The following result gives us some more information about measures 
having an n-dimensional version. 

THEOREM 2. Let p E M(c, n), p + a,, n 2 2, and let v be an n-dimensional 
version of p. Then either supp(p) is a compact set (and then v is 2-elliptically 
contoured) or suppQ = R. 

Proof.  It is easy to see that if p ~ M ( c ,  n), n > 2, then p ~ M ( c ' ,  2), where 
c'(a) = c((al, a,, 0, . . . , 0)) for a = (a,, a,)sR2. Assume then, without loss of 
generality, that p~ M(c, 2), c(1, 0) = 1, and v is a two-dimensional version of p. 
Since 

j j exp { i  (ta, x)) v(dx) = j exp {ic(ta)x) p(dx) = p(tc(a)), 
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for every t ,  s E R, t < S, we have 

Suppose now that supp(p) # R; then there exist t, SER, t < S, such that 
pi t  < x < s) = 0 (by symmetry of p we can assume that t > 0). The sets 

are open cylinders in R2 and it is easy to see that 

{x€R2: llxll > Mt} E U A(a), 
a 

where M = sup{c(a): llall = 1, a€R2} and II-II is the Euclidean norm on lt2. 
Now let K E {x€R2: llxll > Mt) be a compact set. There exists a finite set 
a,, . . . , a, €R2 such that K c U A(ai) and we obtain 

v(K) < xv(A(ai)) = 0. 

This means that p as well as v have compact supports, so they in particular 
have the second moment, and then 

Consequently, the function c(a) is given by an L2-norm on R2, i.e., the measure 
v is 2-elliptically contoured. a 
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