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SOME REMARKS ON MEASURES WITH n-DIMENSIONAL VERSIONS
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* . Abstract. A nondegenerate probability measure v on R" is an
n-dimensional -version of a symmetric measure u on R if there exists
.¢: R" [0, o) such that ¥(ta) = fi(|t|c(a)), te R, ac R". If the function

" cisan L ,-Norm. on R", we call the measure v p-elhpacally contoured.
The main resu]t of this paper is that if i has an's-order for & > 0, ‘then
every its n-dimensional version is p-elliptically contoured for some
pe(0, 2] We show also that supp(u)=R. if only u has an

- n-dimensional version which.is not. 2-elliptically contoured.-

D1str1butlons on R" having all one-dimensional projections the same up to
a scale parameter play a particular role in statistics and probability theory. For
example, symmetric Gaussian measures and symmetric stable measures have
this property. The investigation of this class of measures was started by
Eaton [4] in 1981 and:continued by Cambanis et al. [2] in 1983. It is still
unknown however how large this class is, and this paper is devoted to the
1nvest1gat10n of some its propertles

By a nondegenerate distribution on R" we will uniderstand a distribution for
which the linear support is equal to R". By _?(X) we denote the distribution of
a random vector X.

DerNITION. 1. The nondegenerate dlstrlbutlon v of a symmetric’ ‘random
vector (X, ..., X,)eR" is said ‘to be an n-dimensional version of a symmetric
distribution p of a random variable X ER 1f for every a = (al, ...y a,)€R" there
exists c(a) > 0 such that B

5,”(2 a,.X,.) = f(c(a)lX)

¥(ta) = fi(c(a)t), acR", teR,

where ¥ and fi are the correspondmg characteristic functions.

or,’ equiValently,

In general we know very little about the function c. It i is known (see 4]
that c(ta) = |t|c(a) for every teR and aeR". It is almost evident also that cis
a continuous function on R", so it is equxvalent to any norm on R

There are very close connections between measures p having n-dimen-
sional versions and symmetric stable measures on R, as the above definition is
almost the same as the definition of stable distribution. The only difference is
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that we do not assume here the independence of X’s. It is trivial then that if at
least two of X s are independent, then all X,;’s and X are symmetric and stable
on R"

~ If v is a symmetric p-stable measure on R", then (see, e.g., [6]) its
characteristic function is of the form

f(a) = exp{—c(a)’}, acR",
where ~ " R DRI
(%) c(a)y —__[ _fl(a x)l”l(dx), aeR",

for some finite measure 4 on the unit sphere s eR" This means that every
symmetric p-stable measure v on R" is an n-dimensional version of the
symmetric p-stable .measure y, on R with the characteristic function
exp{—|t|’}. Moreover, every n-dimensional version of the measure y, is
symmetric and p-stable as stable is a d1str1but10n havmg all one—dlmensmnal
projections symmetric and p-stable.

As we can see it will not be surprising if it turns out that every function
c¢: R" - [0, o), appearing in Definition 1, is given by the formula () for some
p > 0 and a finite measure 4 on S"~! = R". In fact, as far as we know, there
exists no example of a measure v on R" being an n-dimensional version of some
measure z on R with the function ¢ which cannot be written in the form (=) for
any pe(O 2] and any finite measure A. That i is why we introduce the followmg

DEFINITION 2. A symmetric measure v on R" is called p-elllptlcally
contoured, p> 0, if its characteristic function is. of the form

" P(ta) = f(tc(a)), aeR", teR,

where f: [0, c0) = R is a continuous function and c(a) is given by the formula
() for some finite measure 4 on S"71. :

There is a full characterization of p- elllptlcally contoured measures in.
finite and infinite dimensional spaces for p = 2 and p = 1 (see [2], [10]-[12]).
In [1] one can find a full characterization of measures on R having
n-dimensional p-elliptically contoured version for every ne N. But we know
very little about p-elliptically contoured measures on R" if p¢ {1, 2} 'and neN
is fixed.

Now let ¢: R"— [0, o0). We define M(c, n) as the set of all probability
measures 4 on R having an n-dlmensmnal version v on R" w1th a given function
¢, ie., such that

V(ta) = fi(tc(a)), acR", teR.

It is easy to see that the set M(c, n) is convex, weakly sequentlally closed
and closed with respect to convolution. The following. theorem asserts that,
every n-dimensional version of a measure having p-th order, pe(0, 2], i
p-elhptlcally contoured. : ‘
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THEOREM 1. Assume that there exists ¢ > 0 and u,e M(c, n), py # 64, such
that [|x°uo(dx) < co. Then there exists pe (0, 2] such that c(a) can be given by
the formula (%) for some finite measure A on S"~'. Moreover, if p0 is the greatest
such p, then y,e M(c, n) for every q < p,.

Proof. Without loss of generality we can assume that £< 2 and that
_[ |x|°uo(dx) = 1. If the measure v on R" is the n-d1mens1ona1 version of the
measure U,, then for every acR" we have

c(af = fle(@)xlho(dx) = | .. [ KKa, x){"v(dx).

Now, in the nsual way (see, e.g., -[6]) we construct an .inﬁnitely divisible
probability measure exp{m} on R" as the weak limit of measures exp {m,,} when
0 N 0, where : _

my(A) = j'v(A/s)s‘"“ds, A BRY.
o
We obtain

[exp{m}] (ta)—exp{ 5 j"j'(l—-cos(ta sx))s"‘ 1dsv(dx)}
—exp{ _[ _ﬁt(a x)[‘v(dx)}

= exp{— |tl“c(a)“}

We see then that exp{—-c(a)”} isa pos:tlve definite functlon on R" (as the
characteristic function of the measure exp {m}) s0 the functlon c(a)’is negatlve
definite on R” We define - , : |

p= sup{ae(O, 2]:,c‘(a)" is negative deﬁnite on R*}.

As the limit of negative definite functions is also negative definite, it follows
that c(a)’ = limc(a) as ¢ — p is negative definite on R", and exp{—c(a)’} is the
characteristic function of some probability measure v, on R".

Observe that all one-dimensional projections of v, are symmetnc, p-stable
and belong to M(c, n). Hence (see [8] and 9D v, is p-stable so there exists
a finite measure A on s ! such that

c(a)” j jl(a x)l"l(dx) acR". |

Now y,eM(c, n). To see that 7,€M(c, n) for every 0 < g < p notice that the
fo_llqwing measure is an n-dimensional version of the measure y, with the same
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function ¢ as for v,:

L vorgpd)i=1v (As'l/P)yq,p(ds), Ac AR,
where y,, is the (g/p)-stable measure on (0, o) with the Laplace transform
exp{—t%7}. Indeed we have : :

(v,0tap)" (@) = | V(P a)yp(ds)

0

8

jexp{—sc(a)?} i (ds) = exp{—é(a)q}- .

<

| 'The maximal p we have found in Theorem‘ 1'is a characterizing constant of
the set M(c, n) or of the function ¢ on R" Therefore, let us define :

p(c) = sup{pe(0, 2k IpeM(c, n), u # dy, [ |x|P u(dx) < oo}

© or, equivalently,

p(c) = sup{pe(0, 2]: c(a)’ is negative definite on R"},

where sup@ = 0. Now, if p(c) > 0, then every n-dimensional version of any
measure from M (c, n) has to be p(c)-elliptically contoured. So only in the case
p(c) = 0 maybe we would be able to find ¢ which is not. any LP-norm for any
pe(0, 2]. In 1985 Kuritsyn and Schestiakov [7] showed that the function
exp{—(Ix|”+|y|?)"/?} is a characteristic function for every p > 2. They expressed
in this way the fact that every two-dimensional normed space embeds
isometrically into some L!-space or, equivalently, that every norm on R? is

negative definite.. The two-dimensional measures obtained in [7] are special

cases of 1-elliptically contoured measures. So the problem whether or not there
exists an n-dimensional version of a symmetric measure on R other than
p-elliptically contoured, pe(0, 2], remains open ‘

The following result gives- us some more mformatlon about measures
having an n—d1mens1onal vers1on

THEOREM 2. Let peM(c, n), p # 04y, n = 2, and let v be an n-dimensional
version of u. Then: either supp(u) is'a compact set (and then v zs 2-elltptlcally
contoured) or supp(u) = ’

Proof. It is easy to see that if p eM(c, ), ﬁ > 2, then HeM(C, 2), where
d(a) = c((a,, a,, 0, ..., 0)) for a = (a,, ay)eR* Assume then, without loss of
generality, that ue M(c, 2}, ¢(1, 0) = 1, and v is a two-dimensional version of u.
Smoe -

j _(exp {z(ta, x)}v(dx) [exp{ic(ta)x}-p(dx) = fA(tc(a)),
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for every t, seR, t <s, we have
v{t {'%);—)<s}=u{t<_x%3}.

Suppose now that supp(u) # R; then there exist t,seR, t< s, such that
u{t <x< s} =0 (by symmetry of u we can assume that ¢ > 0). The sets

o= fi G ). e

are open cylinders in R? and it is easy to see that

{xeR*: x| > Mt} = | A(a),

where M = sup{c(a): |lall =1, aeR?} and |- | is the Euclidean norm on R>.
Now let K < {xeR?: |x| > Mt} be a compact set. There exists a finite set
., @, €R?* such that K = () 4(a)) and we obtam

WK) <) v(A(@)) =0

| This means that u as well as v have compact supports, so they in particular
: have the second moment, and then

[TI<a, x)*v(dx) = [le(@)xpu(dx) = c@)? fIx2p(dx) < co.

Consequently, the function c¢(a) is given by an L?>-norm on R?, ie., the measure
v is 2-elliptically contoured. m
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