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Abstract Let 0 <a < o0, ¢ # 1, and & be a non-empty ‘'subset of
R, the d-dimensional Euclidean space. It is shown that if & satisfies '
| a¥+ b = & whenever a, b> 0 with &*+5° = 1, then & is a convex .
cone with. vertex at 0, This, in particular, confirms a conjecture of Port -
and Vitale [4]. Using this result, an elementary, completely geometric and
unified proof is provided for the following known result concerning: the -
positivity properties of densities of o-stable laws on R, 0 <a < 2, 0 # 1:
Let X be a strictly a-stable random vector in B? with truly d-dimensional
law g, and let p(t, -) and o be the density of ¢}/ u, the law of t=X, and
the spectral measure of p, respectively. If 0 < & < 1 and the support of ais . -
contained in a half-space, then, for any t > 0, p(t, x) > 0.if and only if -
. x belongs to the interior of the convex cone generated by support of o;
and, in all other cases, p(t, x)> 0 for all t>0 andxeR‘ :

Let X be a strictly a-stable random vector in R? with a truly d-dimensional
law u, where 0 < o < 2 and a # 1; and let p(t, :) be the bounded continuous
density of £1/#- y, the law of t2X, t > 0. Let ¢ and (o) denote, respectively, the
spectral measure of 4 and the interior of the convex cone (equivalently, the
closed convex cone) generated by supp(s), the support of o. Fmally, let
8(t) = {x: p(t, x) > 0} for any ¢ > 0.

It follows from the definition of p(-,-) that

w ol x) = p(l g
for all t> 0 and xeR" and usmg the charactenstnc property
(t+s)“’ = glfa u*s”" u for t> 0, s>0 .

of the law U, we tham

@ - pt+ts, )—p(t )*P(S )
for all t,5>0. As noted in [4, p. 1019], it follows from (1) (2) .and the

contmmty of p(t, -} that
(s+1)YS = sVeS 4 piieg for all s, t>0;
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equivalently, _
3) aS+bS =8

for all a, b > 0 with a*+b* =1, where § = §(1).

_ In [7], Taylor proved that if 0 <a <1 and supp(s) is contained in
a half-space (throughout, by a half-space we mean a set of the type {y > 0} for
some 'y # 0), then p(t, x) = 0 for all ¢ > 0 and x ¢ ¢(s); and he conjectured that
p(¢, x) > 0 for all ¢t > 0 and x € (o). Further, he formulated a theorem stating
that in all other cases (e.g., 1 < a < 2 or 0 < a < 1 and supp(o) is not contained
in a half-space) p(t, x) >0 for all t >0 and xeR."

Port [3] pointed out that Taylor’s proof of the above stated theorem is
incomplete and he provided a complete proof. Later, Kesten [2], using the
Lévy-Ito representatlon of d-dimensional Lévy processes in an essential way, -
supplied a proof of Taylor’s conjecture and gave also a different proof of the
theorem for the case 0 < o < 1; but, for the case 1 < a < 2,-Kesten could
provide a proof of the theorem only under the additional restrictive condition
that supp(o) is not contained in a half—space Port’s proof of the theorem seems
simpler and, unlike Kesten’s proof, does not depend on properties of stochastic
processes. Recently, Port and Vitale [4] provided an alternate proof of Taylor’s
conjecture; in addition, they showed that the analog of the theorem also holds
for a = 1. Port’s proof of the theorem in [3] uses only (3) and some geometric
arguments; and, as noted above, dos not make use of any ideas from the theory
of stochastic processes. Similar remarks apply for the proof of the analog of the
theorem for a = 1 given in [4], except that, in this case, Port and Vitale use
a modified version of (3). On the other hand, both the proofs of the conjecture
given in [2] and [4] use, in an essential way, certain properties of stochastic
processes. Port and Vitale [4] asked if a proof of the conjecture can be
provided which (like the proofs of the theorem and its analog for & = 1 givenin
[3] and [4], respectively) is based entirely on purely geometrlc methods and
which does not rely on any properties of processes

To state the above question more precisely, we recall the deﬁmtlon of the
open set § (= §(1)). The crucial step in the Port-Vitale proof of Taylor’s
conjecture is to prove the following result: If 0 < « < 1, then (3) implies that
~ 8 is a convex cone with vertex at 0. In one stage of the proof of this result they
use properties of processes together with certain geometric arguments (see [4,
p. 1020] for more on this point). In order to make their proof of Taylor’s
conjecture free of any properties of processes, they asked for a proof which is
based on purely geometric arguments. In fact, they conjectured that the
conclusion of this result is valid for any open subset & (i.e., one which is not
necessarily of the type $(1)) satisfying (3) for any ae(0, 1), and they asked for
a geometric proof of this conjecture. (It must be pointed out that, except in the
special case where & = $(1), no proof, geometric or otherwise, of this
con_]ecture appears to be available in the literature. There seems to be some
ambiguity about this point in [4].) : :
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The main purpose of this paper is to provide an elementary and simple
geometric proof of the Port—Vitale conjecture; in fact, a slightly more general
result is proved in which we do not require that & be open, and, moreover,
o can be any positive real number not. equal to 1. Spemﬁcally, we prove the -
following resuit: : : -

THEOREM 1. Let & be a non-empty subset of R" and >0, a# 1. If
& satisfies '

(%) : e AbS =S
for any a, b >0 with a*+b* = 1, then & is a convex cone with vertex at 0.

- Using Theorem 1, some separation arguments and known properties of
a-stable densities on R, we obtain easily the positivity properties of densities of
a-stable laws on R, 0 < a <2, @ #'1 (Theorem 2). As noted above, the results
included in Theorem 2 are known; however, since’ our methods provide
a unified proof for both 0 <o < 1 and l<a< 2 cases, as opposed to the
earlier known proofs, and since our proof is more succinct, at least for the case
x> 1, we have included this proof here. In the statement and proof of Theo-
rem 2, we have used the notation introduced above.

THEOREM 2. Let p be a truly d-dimensional strlctly cz-stable law onR? and let
o be the spectral measure of p. If 1 <a<2orif 0 <a <1 and supp(a) is.not
_ contained in a half-space, then p(t, x) >0 for all t >0 and xe R Ifo<ax<l1
and supp(o) is contained in a half- space, then, for any t > 0, p(t, x)>0 1f and
only if x belongs to ¥(o).

We now proceed to prove Theorem 1. For the proof we need the followmg
lemma: »

LEMMA. Let n be a positive integer and let 0<a < oo, a#1, and
B=oa(@—1)"1. Let a,, b, (k = 1, ..., n) be real numbers satisfying a, > 0,b, > 0
and Zk b = 1. Then we have the Sollowing: B

(i) If0< o<1, then Y, _ a.b, 2@,‘: af)\.

(i) If a> 1, then Y, _ 1a,‘b < (Zk a{)f“’

Proof of the Lemma. (i) Let a, =1/a and ﬁl 1/(1 oc) then
1<a; <o and 1/a,+1/B, = 1. Hence, we have

=Y b= Y (ab)a;®

k=1 . k=1 . S _
<(3 (b)) 3 a s = (3 b (T a e,
= - k=1 o k=1 k=1

which yields (i). The proof of (ii) follows by Hoélder’s mequahty

Proof of Theorem 1. We first show that ifo<a<l1 (resp. o > 1), then
s¥ < & whenever 0 < s < 1 (resp. s > 1). Both of these facts are known and
are proved, for instance, in [3, p. 368]. The proofs of these facts are easy and
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are included here for completeness First note that
{a+(1—a°‘)1"‘ <1} =[21"1 17 (resp. [1, 2" La])

whenever 0 < a < 1 (resp. o« > 1). Hence, from (#) it follows that if 0 <a < 1
(resp. a > 1), then s = & whenever 217 1/* < s < 1 (resp. 1 < 5 < 2'71%), The
proof of these two facts now follows by iteration. o

Next we shall prove that if 0 <« < 1, then -

S s <& for some s> [24/(20—1)] /1 5_1,
and if o >-1, then _ _
Gy ‘ s <& for some s < [24/(2'— 1)]1/a 1.

Once thls is done, the proof of the theorem follows eas1ly Indeed, (4) and (5)
and what we have proved above show that & is a cone; and this fact along
- with (+) implies that & =2~ Y(¥ +%) = ¥+, and hence & is a convex
cone with vertex at 0.

Now we proceed to prove (4) and (5) Let x be an arbltrary non-zero
element of &. Then, using (+) witha=b =27 1z and a recursive argument, we
can choose a positive integer n < d and vectors u, v;(j=1,2,...,n from
&% such that u;_; =27 "u,+v), 1<k<n, u € Sp{tdo, Uy, ..., Uy i), 1<k
< n—1, and u, (hence v,) € sp{ug, u,, ..., U,~1}, Where u0 =x and sp(4)
denotes the lmear span of the set A. Set A (= A(@) =2!~ 1"’, w, = u,, and
wy = A"ty — 22y, _,,2 <k <'n Then, clearly, w,, w,, ..., w, are hnearly
1ndependent

6) T Uy, Uy, v,,esp‘{wl,wz,...,w,,}, 1<k<n,
) L U= A7¥w +wy+ o AWt W),
and _ ' » ‘

® by = ATHWy Wyt e+ W W)

for i<k<g<n-1. _
From (6)‘ we have

©) u=A™" Y bw, and p,=A"" z' CeWy
k=1

for some (unique) b,’s and ¢, ’s. We shall show that we can choose tes tk =0,
&, g€{—1,1}, k —1 2,...,n—1, such that the numbers

n—1 ’ . n—1
b=2""b+ Y 1, and c=i"T"c,;+ ) 4
k=1 k=1
satisfy the equations ' ‘
' n-1 ' ) :
(10) ‘ U, + Z tk(W1+Wz +wk+£kw,,+1) = le .

k=1

z
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and’
n—1

an v, + Z t,,(w1+w2+ +wk+skwk+1)—cw1,

respectlvely Recallmg ) and comparlng the coeﬂiments of w ’s in (10) we see
that (10) is equlvalent to the followmg set of equatlons

n-l

A‘"b1+ Yt=b, i” "b,,+t,._1e,,_1 =0,
j=1
(12) '

n—1

AT+ Y i+ ti-1o, =0, 2<k<n—1.
i=k

~ The choice of ts and g’s is now obvious. In fact, take t,_, = A™"|b,| and

&-1 = —sgn(A™"b,/t,_ ;), with the convention that sgn(0/0) = 1; havmg spec1-
fied ty-1, fs—2, ..., t; and &,_;, &3, ..., &, we take :

by = ]A"‘b,‘+ Z t] - and- 'ek_l = {[}.""b‘k+ Z ‘tr-]/tkv_l} Zs k<n.
Then, clearly, b satlsﬁes (12) and hence also ( 10) a snmllar chowe of t,, and sk 1s‘

used to show that ¢ satisfies (11). ;
From («) we clearly have ¢; ¥ +a, %+ ... ¥a, 9 = & whenever a; 20

with Z , @ = 1. Using this fact, (10), (11) and the fact that u; and v; belong to

&, we {nfer from ] and (8) that (1 + Zk /l"“’tk) 1’“bw1 belongs to .5” Thus
recallmg that” _ , ‘
: ' ’ ‘n—1
b=2""bi+ Y 1,
k=1
and writing

T n—1 . i
dy =1+ Y gAY il 1<kg<n—
: J=1 . : -

and :
fm 14 S e,
we obtain | o ‘ ! » | ’
(13) | 50 = (1 +. :i: Akat;: —,1115 = "i: dkj.-k+b1dnﬁ.—"
= k=
and so s,x belongs to & (recall that w, = uov = X). Similarly, sox belongs to &,
where . ’
(14) So = (1+ Z ,l"“t’“) ”’c 'S Z diA~ "+c1d’).‘

k=1

and di’s are defined as d,’s by replacmg t; by tj.

6 — PAMS 131
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Next, recalling that u, +v, = 2'/*u, _, using (7) and (9), and comparing the
coefficient of w,, we have b, +¢, = 2'/*-2171* = 2, Therefore, either b1 =1
and ¢; <1 or b; <'1 and ¢, > 1. In the first case, writing f = a(x—1)"* and
noting that Zk Jdi= 1 and that n< d, we 1nfer from the lemma and (12) and
(13)-that . o 3 , ,

So = Z'dkﬂ;k_?(
k=1

= -

/t )l/ﬂ _ (1 1/211)1 l/a > (1 1/2dj1;1/¢
k=1 )

= (22—t f0<a<; |
similarly, usin rather. than we see that
imilarly, using (14) rather. than (13), h
< (Y-D)HOTt i a> 1.

In the second case also (us1ng (14) for the case 0 <o <1and (13) for the case
a > 1) one gets similar-inequalities. This proves (4) and (5); and the proof is
completed.

. -As noted above,: for the proof of Theorem 2, we shall need positivity
properties of a-stable densities on R. These properties are known and are
summarized (without proof), e.g., in [6]; these can also be deduced from results
proved in [5] (note that the proofs of the results in [5] do not make use of any
properties, of 1-dimensional stable.laws)..In order to make our - proof of
Theorem 2 completely self—contamed we: prov1de ‘here elementary proofs of
these positivity propertles of a-stable densities on R, 0 <a <2, a # 1. Our
proof of these properties depends only on Theorem 1 and some standard facts-
about a-stable laws on R Letubea strlctly a-stablelawon R, 0 <a < 1, a # 1,
and let

dF(x) = ¢, I(x > O)x"(1+")dx+c21(x < 0)|x] " *9dx
denote the Lévy measure of u, where 0 < c¢,, ¢, < 0, ¢;+c, > 0. We shall
prove that if 0 <a <1 and ¢, =0 (resp. ¢; =0), then § = {p(1, x) > 0}
=R* =(0, ) (resp. S = R~ =(—0, 0)); and, in all other cases, S = R.
To prove the above result, ﬁrst we note that from Theorem 1 and (3)
we have

(15) ~ S=R*or R or R |
Let now 0 <« < 1 and ¢, = 0; then u, the characteristic function of U, is
given by b c '

A0 = exp[f(e"* 1) c‘l‘f’ﬁ],

:hence u is the weak limit of the.sequence {v} of Poisson laws with

.00 = exb[ T, C“”‘]
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Thus, since supp(v,) < [0, o), we have supp(y) < [0, ). Therefore, by (15),
we have § = R*. If ¢, = 0,"a similar argument shows that § = R™; if both ¢,
and c, are positive, then u ='p, * u,, where p, (resp. u,) is the a-stable law with
Lévy measure ¢, I(x > 0)x ™A *9dx (resp. ¢, I(x < 0) |x|” ™ **dx). Hence, since
{(as shown above) the density of-u, (resp. of u,) is positive on R* (resp. on R™),
it follows that the density of u is positive on R. Now, let o« > 1. Then, in view of
(15), in order to show that § = R, it is enough to prove that supp(u) intersects
both R* and R™. This fact can be deduced from a result in L1, p. 539], which -
glves a criterion for the support of an i.d. probablllty measure to be contained

in [0, o). We shall, however, provide an alternative, more elementary proof for
the above fact: If this fact were not true, then either supp(p) < [0, ) or

supp(s) € (— o0, 0]. Suppose supp(p) c [0, ). Let X's be iid. with the law

of X, = p. Then, using the characterlstlc property of U the fact that > 1 and

that X p= 0 as., we have

X 1X1+X2+ +X X +X2+ +X["l/¢]
_1." , il _,/.~ - nua,

X A N+X /\ N+ +X[,,1,I¢] AN
‘ } 1/:: N ‘ .a..S.,

where X; A N denotes min(X;, N). But, by Chebyshev’s 1nequa11ty, the
right-hand side of this 1nequahty converges in probability to E(X, A N) as
n—oo for any N, Therefore, using the above inequalities, we obtain
X, 2 E(X, A N) as. forevery N. This, along with the- monotone convergence
theorem, implies that X, > E(X,) a.s.; which, in turn, implies that X, = E(X,)
a.s., a contradiction. Similarly, the assumptlon supp(y) < (— o0, 0] leads to
a contradlctlon R . . .

" Proof of Theorem 2. First We note that, by Theorem 1 and equation
(3),S = 8§(1) is a convex cone with vertex at 0. Using this and (1), we have
8(t) = S; thus, it is enough to prove the theorem for p(1, ) Now consider the
first case; since § is a convex cone with vertex at 0, either S =RY or
Sc{x yx) > O} for some y # 0. The second alternative is not possible; far, if
it were true, then, on the one hand, the non-degenerate strictly a-stable law
#y = poy~* on R will be supported by [0, c0). On the other hand, as shown
below, supp(u,) = R. In fact, if « > 1, then the fact that supp(uy) =Ris proved
above. If 0 <« < 1, then F,, the Lévy measure of uy, is : :

ciI(x > 0).x“1+°‘)dx+czl(x < O)le"“""dx
' where ¢y = ctF N(aR oo)) and = aF,((—o0, =1]). Usmg the formula

E(A) = _[ _[ IA(su)s“”“’dsa‘(d,u)
tlui=1) 0 A
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for the Lévy measure F of u, we obtain

‘oi= [ o and = [ @iy,

{y>0}ﬁ{llull 1} ‘ {y<0}n{I|uII 1}

Since, by the hypothe51s on supp(a)

o(fy>0}n {||u||=1})>0 and a({y<0} {nun—l})>o

¢y and ¢, are both posmve Hence, from the 1-d1mens1ona1 result proved above

again supp(u,) =
‘For the second case, one needs to prove that @ (0') S We first show that

%(c) < S or, equivalently, ¢(s) = §, the closure of §, since %(o) is open and
Int(S) = Int(S) = §. If the inclusion €(c) = § were not true, then there would
be a non-zero z in #(¢) such that z¢S. Then, using a standard separation
result, we can find a y € R? such that y(z) < 0 and y(x) > O for all x 8. Thus, on
the one hand, p,([0, ©))=1; therefore, using the 1-dimensional result
proved above, ‘we infer that the constant ¢, in the Lévy measure
¢ I(x > 0)x"“+“)dx+czl(x < 0)x|""*9dx of p, must be 0. On the other -
hand, since z = Ytz iZj» t; > 0and z;esupp(o), there exists a zoesupp(a) such
that y(z,) <O. Therefore as in the previous paragraph,

= |y('u)|“a'(du)>o.g
Lv<0}n{llu|l 1} .

Hence we must have % (a) c S and so €(0) = S A s1m11ar and in fact s1mp1er

- argument shows that § < %(o), thus completing the proof.

Remarks. (i) If {X(5): £ >0} is a strictly a-stable process, 0 < a <2,
o # 1, with stationary and independent increments such that X (0) =0 and
such that the law of X(f) is equal to t'/*- u, where p is a truly d-dimensional
stnctly ‘a-stable law on RY, then, clearly, the density of X () is p(¢, - ) as defined
in this note. The authors of [3], [4] and [7] defined the densities p(t, *), t > 0,
by 1ntroducmg the process {X (¢): t > 0} as above. However, since we are not
concerned with any aspeets of stable processes in this note, we have introduced
these _densities in an alternate and more direct manner.

(i) As noted earlier, Port and Vitale [4] proved that if {X (): t =0} is
a Cauchy (ie., a-stable, « = 1) process in R? and p(t,-) is the density of X (),
then p(t, x) > O for all £ > 0 and x e R This, along with Theorem 2, prov1des
purely geometric proofs for the positivity properties of densities of a-stable laws
on R for all ae(0,2). In this regard, we would like to mention here that

‘Rajput. [5], independently of [4], proved several positivity and analyticity

properties of densities of more general id. laws on R’ and deduced the
above-noted positivity properties of stable densities as corollaries to these more
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general results. However, his methods of proof, unlike those used in Theo-
rem 2 and Theorem 2 of [4], are non-geometric and use advanced resuits from
measure theory (via known results on supports of i.d. laws) and the theory of
complex variables.

(iii) We conclude this note 'by making two minor observations con-
cerning the Port—Vitale proof of Theorem 2 of [4]. First, we note that, by
using the elementary (and easy to prove) fact that the only dense convex
subset of R? is R? itself, their proof can be simplified somewhat. This is
pointed out next where we have used the same notation as in the proof of
Theotrem 2 of [4].

~ As noted in [47, using the property of l-dlmenswnal Cauchy density and

a separation argument, we infer that conv(S), and hence conv(S) = R’ Hence,
from (15) of [4] we have

(1) o R?=S—L(=S8-[0, 11b).
From (13) of [4] we have S 2 §—[0, (2/n)1hrm]‘a for any m; hence

@) | 52 5+[0, co)b,

~ where (recall) b = —[(2/m)In(d + 1)]a. Now, using (1’), (2') and an argument

similar to the one used towards the end in the last but one paragraph of [4],
one sees easily that § = R ,
The second observation concerning the Port—Vitale proof is that
there seems to be a minor oversight in their proof: They seem to imply
that b = b(d) = —[(2/m)In(d + 1)]a, used in equation (15) of [4], and b(2), used
in the end of the last but one paragraph of the proof, are equal. But, as
obviously it is not so, one cannot necessarily conclude, contrary to the
assertion in [4], that (1—A4)b(d) belongs to L(2) = [0, 1]1b(2); hence a minor -
modification in the proof is needed: By iterating §+L(2) < S, one ob-
tains §+[0, c0)b(2) (= §+([0, 0)b(d) = §; therefore, necessarily z+b(d)
= z+ Ab(d)+(1—A)b(d)e §. This completes the proof of the fact that § = R?.
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