ON AN INVARIANCE PRINCIPLE FOR UNIFORMLY STRONG MIXING STATIONARY SEQUENCES WHEN $\mathcal{E}X^2 = \infty$

on March & March March

RV

ZBIGNIEW S. SZEWCZAK (TORUN)

Abstract. We prove that for uniformly strong mixing strictly stationary sequences a weak invariance principle holds for random variables with the second moment divergent. This is an extension of the result of Peligrad [8] for random variables with finite variance.

1. Introduction and notation. Let $\{X_k\}_{k\in\mathbb{Z}}$ be a strictly stationary random sequence on probability space $(\Omega, \mathcal{F}, \mathcal{P})$ and let \mathcal{F}_k^m denote the σ -field generated by $\{X_i; m \leq i \leq k\}$. Define:

$$\begin{split} \varphi_{\mathbf{n}} &= \varphi_{\mathbf{n}}(\{X_k\}) = \sup\{|\mathscr{P}(B/A) - \mathscr{P}(B)|; \ A \in \mathscr{F}_{-\infty}^0 \ , \ B \in \mathscr{F}_{\mathbf{n}}^\infty \ , \ \mathscr{P}(A) > 0\}, \\ \varrho_{\mathbf{n}} &= \varrho_{\mathbf{n}}(\{X_k\}) = \sup\{|\mathrm{Corr}(f,\,g)|; \ f, \ g - \mathrm{real}, \ f \in L^2(\mathscr{F}_{-\infty}^0), \ g \in L^2(\mathscr{F}_{\mathbf{n}}^\infty)\}. \end{split}$$

The sequence $\{X_k\}_k$ is said to be uniformly strong mixing or φ -mixing if $\lim_{n\to\infty} \varphi_n = 0$. It is well known that $\varrho_n \leq 2\varphi_n^{1/2}$.

In this note, unless otherwise stated, we shall deal with strictly stationary φ -mixing sequences only.

Let $S_n = \sum_{k=1}^n X_k$ and define the random element in $\mathcal{D}(0, 1]$:

$$\mathscr{X}_n(t) = \sigma_n^{-1} S_{[nt]}, \quad t \in (0, 1],$$

where $\sigma_n^2 = \operatorname{Var} S_n$ and [] denotes the greatest integer function. \mathscr{X}_n satisfies the weak invariance principle (WIP) if \mathscr{X}_n converges weakly (\Rightarrow_w) to the standard Wiener measure \mathscr{W} .

Peligrad [8] proved that in the case $\mathscr{E}X_1^2 < \infty$ WIP is equivalent to the Lindenberg condition. On the other hand, in the iid case the Central Limit Theorem holds for random variables with the second moment barely divergent [2].

The purpose of this note is to formulate and prove a WIP when $\mathscr{E}X_1^2 = \infty$. We use the following notation: let $b_n \to_n + \infty$ for every $n \in \mathbb{N}$ and denote by

 $\{\hat{X}_k\}_k$ an independent copy of $\{X_k\}_k$;

$$\begin{split} X_{i}^{n} &= X_{i}I(|X_{i}| < b_{n}) - \mathscr{E}X_{i}I(|X_{i}| < b_{n}); \\ \hat{X}_{i}^{n} &= \hat{X}_{i}I(|\hat{X}_{i}| < b_{n}) - \mathscr{E}\hat{X}_{i}I(|\hat{X}_{i}| < b_{n}); \\ U_{i}^{n} &= X_{i}^{n} - \hat{X}_{i}^{n}; \quad T_{k}^{n} &= \sum_{i=1}^{k} X_{i}^{n}; \quad Z_{k}^{n} &= \sum_{i=1}^{k} U_{i}^{n}; \quad T_{n} &= T_{n}^{n}; \quad Z_{n} &= Z_{n}^{n}; \\ Y_{i}^{n} &= X_{i}I(|X_{i}| \geqslant b_{n}); \quad R_{k}^{n} &= \sum_{i=1}^{k} Y_{i}^{n}; \quad R_{n} &= R_{n}^{n}; \\ \hat{S}_{n} &= \sum_{i=1}^{n} \hat{X}_{i}; \quad (\tau_{k}^{n})^{2} &= \text{Var } T_{k}^{n}; \quad (z_{k}^{n})^{2} &= \text{Var } Z_{k}^{n}; \quad \tau_{n} &= \tau_{n}^{n}; \\ Z_{n} &= Z_{n}^{n}; \quad \mathscr{W}_{n}'(t) &= \tau_{n}^{-1} T_{n}^{n}; \quad \mathscr{W}_{n}''(t) &= \tau_{n}^{-1} S_{n}; \\ \mathscr{W}_{n}(t) &= \tau_{n}^{-1} \big(S_{n} - [nt] \mathscr{E}X_{1} I(|X_{1}| < b_{n}) \big). \end{split}$$

The Theorem we shall prove, in the case $b_n = +\infty$ for all $n \in \mathbb{N}$, is Corollary 2.2 in [8]. As an application two corollaries will be proved, the second one is a recent result of Peligrad [9].

- 2. Auxiliary results and definitions. In this section we group some facts adapted for this note from more general theorems.
- (2.1) $\{\max_{1 \le i \le n} \tau_n^{-2}(X_i^n)^2\}_n$ is uniformly integrable if and only if so is $\{\max_{1 \le i \le n} \tau_n^{-2}(T_i^n)^2\}_n$

(see the proof of Proposition 2.1 in [8]).

(2.2) Let $\{X_k\}_k$ be a centered L^2 -stationary random sequence; then

$$(1 - \varrho_p)^{1/2} \max_{1 \le i \le n} \sigma_i \le \sigma_n + 2p\sigma_1$$

(see Lemma 4.2 in [7]).

(2.3) For any $\{X_k\}_k$ such that

$$\varphi_1 + \max_{1 \leq i \leq n} \mathscr{P}(|S_n - S_i| > x_0) \leq \eta < 1,$$

for $x \ge x_0$ we have

$$\mathscr{P}(\max_{1 \leq i \leq n} |S_i| > 2x) \leq (1 - \eta)^{-1} \mathscr{P}(|S_n| > x)$$

(see Lemma 1.1.6 in [4]).

(2.4) Let $\{X_k^*\}_k$ denote an iid sequence with $\mathcal{L}(X_1^*) = \mathcal{L}(X_1)$; then for x > 0:

$$(1-\varphi_1)\mathscr{P}(\max_{1\leqslant i\leqslant n}|X_i^*|>x)\leqslant \mathscr{P}(\max_{1\leqslant i\leqslant n}|X_i|>x)\leqslant (1+\varphi_1)\mathscr{P}(\max_{1\leqslant i\leqslant n}|X_i^*|>x)$$

(see Proposition 3.1 in [9]).

(2.5) $\mathcal{L}(X_1)$ is said to be in the domain of attraction of the normal law $(\mathcal{L}(X_1) \in \mathcal{D} \mathcal{A}(2))$ if there exist sequences $\{A_n\}_n$ and $\{b_n\}_n$ such that

$$\mathscr{L}(b_n^{-1}\sum_{k=1}^n X_i^* - A_n) \xrightarrow{\mathbf{w}} \mathscr{N}(0, 1), \quad n \to +\infty.$$

This is equivalent [2] to the slow variation of $\mathscr{E}X_1^2I(|X_1| < x)$, and then $b_n := \inf\{x; \ x^{-2}\mathscr{E}X_1^2I(|X_1| < x) \le 1/n\}.$

(2.6) If $\mathscr{E}X_1^2I(|X_1| < x)$ is slowly varying, then for $\{b_n\}_n$ from (2.5) we obtain

$$\frac{n}{b_n}\mathscr{E}|X_1|I(|X_1|>b_n)\stackrel{n}{\longrightarrow}0, \quad n\to+\infty$$

(this follows easily from Theorem 2, VIII, §9, in [2]).

- (2.7) If $x^2 \mathcal{P}(|X_1| > x)$ is a slowly varying function, then so is $\mathcal{E}X_1^2 I(|X_1| < x)$ (see the same Theorem as in (2.6)); however, according to Exercise 32, VII, § 10, in [2], the converse is not true.
- (2.8) If $x^2 \mathcal{P}(|X_1| > x)$ is a slowly varying function, then $n\mathcal{P}(|X_1| > a_n) \xrightarrow{n} 1, \quad a_n = \inf\{x; \mathcal{P}(|X_1| > x) \le 1/n\}$

(see Lemma 1.8 in [10]).

(2.9) If $x^2 \mathcal{P}(|X_1| > x)$ is a slowly varying function, then $\mathcal{E}|X_1|I(|X_1| > x) \sim 2x\mathcal{P}(|X_1| > x), \quad x \to +\infty$

(see Theorem 8.1.4 in [1]).

(2.10) Assume $n\mathcal{P}(|X_1| > b_n) \xrightarrow{n} 0$, and $\tau_n \to +\infty$, $n \to +\infty$, and $\{\tau_n^{-2} T_{nj_n}^{2n}\}$ is uniformly integrable. Then

$$(W'_n(1)) \xrightarrow{\mathbf{w}} \mathcal{N}(0, 1), \quad n \to +\infty$$

(see Theorem 3 in [6]).

3. Results and proofs.

THEOREM. Assume that

(3.1)
$$\lim n\mathscr{P}(|X_1| > b_n) = 0,$$

$$\lim_{n\to\infty}\tau_n=+\infty,$$

(3.3)
$$\lim_{n\to\infty} \tau_n^{-2} \mathscr{E}\left(\max_{1\leqslant i\leqslant n} (X_i^n)^2\right) = 0.$$

Then

$$\mathscr{W}_n \xrightarrow{w} \mathscr{W}, \quad n \to +\infty.$$

Conversely, if $\varphi_1 < 1$ and (3.4) holds, then (3.3) is satisfied.

COROLLARY 1. Let $\mathcal{L}(X_1) \in \mathcal{DA}(2)$, $\mathcal{E}X_1 = 0$ and

(3.5)
$$\liminf_{n\to\infty} \tau_n b_n^{-1} > 0,$$

where b_n is defined in (2.5). Then

$$\mathcal{W}_n'' \stackrel{\mathsf{w}}{\Longrightarrow} \mathcal{W}, \quad n \to +\infty.$$

COROLLARY 2. Assume $x^2 \mathcal{P}(|X_i| > x)$ is slowly varying, $\mathcal{E}X_i = 0$, $\varphi_1 < 1$. Then (3.6) holds, and

(3.7)
$$\sqrt{\pi/2} \mathscr{E}|S_n| \sim \tau_n, \quad n \to +\infty,$$

for some $\{b_n\}_n$.

Proof of the Theorem. We shall consider only the case $\mathscr{E}X_1^2 = \infty$, i.e., $b_n \stackrel{n}{\longrightarrow} +\infty$, since the other case can be proved analogously. From (3.1) we see that

$$\max_{1 \le k \le n} \tau_n^{-1} |R_k^n| \xrightarrow{\mathscr{P}} 0, \quad n \to +\infty.$$

Thus in the proof we can restrict ourselves to W'_n random elements.

The direct half. An examination of the proof of Theorems 1 and 2 in [5] shows that it is enough to prove that

$$\max_{1 \le i \le [n\delta_{-1}]} \frac{(\tau_i^n)^2}{(\tau_n)^2} \xrightarrow{n} 0, \quad n \to +\infty,$$

for any $\{\delta_n\}_n$ such that $\lim_n \delta_n = 0$. By (2.2), for any $\varepsilon > 0$ and $n \in \mathbb{N}$ such that $\delta_n \leq \varepsilon$, we have

$$\max_{1 \leq i \leq \lceil n\delta_n \rceil} \frac{\tau_i^n}{\tau_n} \leq (1 - \varrho_p)^{-1/2} \left(\frac{\tau_{\lceil n\epsilon \rceil}^n}{\tau_n} + 2p \frac{\tau_1^n}{\tau_n} \right),$$

so the required condition is satisfied if $(\tau_n)^2$ is a regularly varying sequence with index 1 (see [1], p. 52), and

(3.8)
$$\frac{\left(\tau_{[nt]}^n\right)^2}{\left(\tau_{[nt]}\right)^2} \xrightarrow{n} 1, \quad t \in (0, 1], \ n \to +\infty.$$

From (2.1) we infer that $\{\tau_n^{-2} T_n^2\}_n$ is uniformly integrable, so by (2.10) and (3.1) we obtain

$$\mathscr{L}(z_{[nt]}^{-1}Z_{[nt]}^n) \xrightarrow{\mathbf{w}} \mathscr{N}(0,1), \quad n \to +\infty.$$

On the other hand, by (2.2) we have

$$(\tau_n)^2 = \mathscr{E}\left(\sum_{j=1}^{[n/[ht]]} \sum_{i=1}^{[nt]} X_{[nt](j-1)+i}^n + \sum_{i=[n/[nt]][nt]+1}^n X_i^n\right)^2$$

$$\leq 2^{n/[nt]} (\tau_{[nt]}^n)^2 + 2 \max_{1 \leq k \leq [nt]} (\tau_k^n)^2$$

$$\leq (\tau_{[nt]}^n)^2 (2^{2/t} + 4(1-\rho_n)^{-1}) + 8p^2 (1-\rho_n)^{-1} (\tau_1^n)^2.$$

so there exists a constant $C = C(\varrho_p, t)$ such that

(3.10)
$$\liminf_{n\to\infty} \tau_n^{-1} \tau_{[nt]}^n \geqslant C > 0,$$

since $\lim_{n\to\infty} \tau_n^{-1} \tau_1^n = 0$ by (3.3). From (3.10) and (2.1) we infer that $\{(\tau_{[nt]}^n)^{-2}(T_{[nt]}^n)^2\}_n$ is uniformly integrable for $t \in (0, 1]$, so by (3.1) and (2.10) we get

(3.11)
$$\mathscr{L}((z_{[nt]}^n)^{-1}Z_{[nt]}^n) \xrightarrow{\mathsf{w}} \mathscr{N}(0, 1), \quad n \to +\infty.$$

From (3.11), (3.9) and the Theorem of Convergence of Types we get (3.8). Now observe that by assumption and (2.10) we have

$$\mathscr{L}(z_n^{-1}(S_n-\hat{S}_n)) \xrightarrow{\mathbf{w}} \mathscr{N}(0, 1), \quad n \to +\infty.$$

Thus, by Theorem 18.1.1 in [3] we have

(3.12)
$$\frac{(\tau_{kn})^2}{(\tau_n)^2} \xrightarrow{n} k, \quad k \in \mathbb{N}, \ n \to +\infty.$$

Since

$$\begin{aligned} \mathscr{P}(|X_1 - \hat{X}_1| > \varepsilon z_n) &\leq \mathscr{P}(|X_1^n - \hat{X}_1^n| > 2^{-1}\varepsilon z_n) + 2\mathscr{P}(|X_1| \geq b_n) \\ &\leq 4\varepsilon^{-2}(z_1^n)^2 z_n^{-2} + n\mathscr{P}(|X_1| \geq b_n), \end{aligned}$$

so by (3.3) and (3.1) we obtain

$$\mathscr{L}(z_n^{-1}(S_{n+1}-\hat{S}_{n+1})) \xrightarrow{\mathbf{w}} \mathscr{N}(0, 1), \quad n \to +\infty.$$

Thus $\lim_{n\to\infty} z_n z_{n+1}^{-1} = 1$, so

(3.13)
$$\tau_{n+1}\tau_n^{-1} \xrightarrow{n} 1, \quad n \to +\infty.$$

Let $q \in \mathbb{N}$; then

$$\frac{(\tau_{q[nq^{-1}]})^2}{(\tau_{[nq^{-1}]})^2} \xrightarrow{n} q, \quad n \to +\infty.$$

But $q[nq^{-1}] = n, n-1, ..., n-q-1$ and, by (3.13),

$$\frac{(\tau_n)^2}{(\tau_{\lfloor nq^{-1}\rfloor})^2} \xrightarrow{n} q, \quad n \to +\infty,$$

so by (3.12) we have

(3.15)
$$\frac{(\tau_{[\omega n]})^2}{(\tau_n)^2} \xrightarrow{n} \omega, \quad n \to +\infty,$$

for every ω rational. Let r be irrational and $r \in (0, 1]$, $c = r - \omega > 0$. We show, following Peligrad [7], that

(3.16)
$$\frac{(\tau_{[rn]})^2}{(\tau_{\cdot})^2} \xrightarrow{n} r, \quad n \to +\infty.$$

From (2.2) we have

$$|\tau_{[\omega n]}^n - \tau_{[rn]}^n| \leqslant \tau_{[rn]-[\omega n]}^n \leqslant (1 - \varrho_p)^{-1/2} (\tau_{[n(r-\omega)]+2}^n + 2\tau_1^n),$$

so taking lim sup over both sides we have, by (3.3),

$$\limsup_{n\to\infty} \tau_n^{-1} |\tau_{[mn]}^n - \tau_{[rn]}^n| \leqslant (1-\varrho_p)^{-1/2} \limsup_{n\to\infty} \tau_n^{-1} \tau_{[n(r-\omega)]}^n.$$

Now, it remains to show that the right-hand side disappears when $\omega \nearrow r$. We have

$$\frac{\tau_{[nc]}^n}{\tau_n} = \frac{\tau_{[n/2]}^n}{\tau_n} \times \frac{\tau_{[n/2]}^n}{\tau_{[n/2]}^n} \times \frac{\tau_{[n/2^3]}^n}{\tau_{[n/2^2]}^n} \times \frac{\tau_{[n/2^3]}^n}{\tau_{[n/2^3]}^n} \times \dots \times \frac{\tau_{[nc]}^n}{\tau_{[n/2^{1-\log c/\log 2]}}^n}.$$

Note that \limsup of the last multiplier is bounded by $(1-\varrho_p)^{-1/2}$, so

$$\limsup_{n \to \infty} \frac{\tau_{[n(r-\omega)]}^n}{\tau_n} \leq (1 - \varrho_p)^{-1/2} 2^{-(1/2)([-\log c/\log 2] - 1)} \leq K(r - \omega),$$

where K is a constant depending on ϱ_p only, i.e., (3.16) holds. By (3.8) and (3.16), for every $r \in (0, 1]$ we have

$$\frac{(\tau_{[rn]})^2}{(\tau_n)^2} \xrightarrow{n} r, \quad n \to +\infty,$$

so by Theorem 1.3 in [10] the above holds for every r > 0, i.e., $\{(\tau_n)^2\}_n$ forms a regularly varying sequence with index 1.

The converse half. We have

$$\begin{split} \varphi_1 + \max_{1 \leq j \leq n} \mathscr{P}(|Z_n - Z_j^n| > z_n x_0) &\leq \varphi_1 + \max_{1 \leq j \leq n} \mathscr{P}(|Z_n - Z_j| > 2^{-1} z_n x_0) \\ &+ \max_{1 \leq j \leq N_A} \mathscr{P}(|Z_j - Z_j^n| > 2^{-1} z_n x_0) + \max_{N_O < j \leq n} \mathscr{P}(|Z_j - Z_j^n| > 2^{-1} z_n x_0), \end{split}$$

where N_{δ} is such that $\mathscr{P}(\tau_n^{-1}|R_n| > 2^{-1}x_0) \leqslant n\mathscr{P}(|X_1| > b_n) \leqslant \delta$ for $n > N_{\delta}$. The right-hand side of the above inequality can be estimated by

$$\varphi_1 + \frac{8}{x_0^2} \left(1 + \max_{1 \le i \le n} \frac{(\tau_i)^2}{(\tau_n)^2} \right) + o(1) + \delta,$$

i.e., there exists $N_0 = N(\delta, \varphi_1)$ such that for $n \ge N_0$ and sufficiently large x_0

$$\varphi_1 + \max_{1 \leq i \leq n} \mathcal{P}(|Z_n - Z_j^n| > z_n x_0) \leq \eta < 1,$$

since $\max_{1 \le j \le n} \tau_j \tau_n^{-1}$ is bounded, by (3.4). Using (2.3), for $n \ge N_0$, $x \ge x_0$ we obtain

$$(3.17) \qquad \mathscr{P}(\max_{1 \leq i \leq n} |Z_i^n| > 2xz_n) \leqslant (1-\eta)^{-1} \mathscr{P}(|Z_n| > xz_n),$$

and since

$$\mathscr{P}(\max_{1 \leq i \leq n} |U_i^n| > x) \leq 2\mathscr{P}(\max_{1 \leq i \leq n} |Z_i^n| > 2^{-1}x),$$

so, by (3.17), $\{\max_{1 \le i \le n} z_n^{-2} (U_i^n)^2\}_n$ is uniformly integrable. By the proof of Theorem 1 in [5] we have

(3.18)
$$\max_{1 \le i \le n} \tau_n^{-1} |X_i^n| \xrightarrow{\mathscr{P}} 0, \quad n \to +\infty,$$

so for $\mu_n = \text{med}(\max_{1 \le i \le n} \tau_n^{-1} |X_i^n|)$ we obtain

$$\mu_n \xrightarrow{n} 0, \quad n \to +\infty.$$

Thus

$$\mathscr{P}(\max_{1\leqslant i\leqslant n}z_n^{-1}|X_i^n|\geqslant x)\leqslant \mathscr{P}(|\max_{1\leqslant i\leqslant n}z_n^{-1}|X_i^n|-\mu_n|\geqslant x-\mu_n)$$

$$\leq 2\mathscr{P}(|\max_{1\leq i\leq n} z_n^{-1}|X_i^n| - \max_{1\leq i\leq n} z_n^{-1}|\hat{X}_i^n|| \geqslant x - \mu_n) \leq 4\mathscr{P}(\max_{1\leq i\leq n} z_n^{-1}|U_i^n| \geqslant x - \mu_n).$$

From this, (3.19), (3.18) and the uniform integrability of $\{\max_{1 \le i \le n} z_n^{-2} (U_i^n)^2\}_n$ the equality (3.3) holds true.

Proof of Corollary 1. By (2.6), (3.5), (2.4) it suffices to prove that

$$\{b_n^{-2} \max_{1 \le i \le n} (X_i^* I(|X_i^*| < b_n))^2\}_n$$

is uniformly integrable, but this follows easily from the iid case.

Proof of Corollary 2. Under the assumptions of the corollary Peligrad [7] proved that for every $k \in \mathbb{N}$:

$$\frac{k^2 a_n^2}{\sigma^2(ka_n)} \xrightarrow{n} 0, \quad n \to +\infty,$$

where

$$\sigma^{2}(ka_{n}) = \operatorname{Var}\left(\sum_{i=1}^{n} X_{i}I(|X_{i}| < ka_{n}) - \mathscr{E}X_{i}I(|X_{i}| < ka_{n})\right),$$

and $\{a_n\}_n$ is defined in (2.8). So there exists $\{r_n\}_n$, $\lim_n r_n = +\infty$, such that, for

every $\{x_n\}_n$, $\lim_n x_n = +\infty$ and $x_n = o(r_n)$,

(3.20)
$$\frac{x_n^2 a_n^2}{\sigma^2(x_n a_n)} \xrightarrow{n} 0, \quad n \to +\infty.$$

On the other hand, by Theorem 1.1 in [10], there exists $\{r'_n\}_n$, $\lim_n r'_n = +\infty$, such that, for every $\{x_n\}_n$, $\lim_n x_n = +\infty$ and $x_n = o(r'_n)$,

$$(3.21) nx_n^2 \mathscr{P}(|X_1| > x_n a_n) \xrightarrow{n} 1, \quad n \to +\infty.$$

Now let $b_n = x_n a_n$, where $\lim_n x_n = +\infty$, $x_n = o(r_n \wedge r'_n)$, and $\tau_n = \sigma(x_n a_n)$; then (3.1)–(3.3) are fulfilled, so (3.4) holds. Observe that by (2.9) we have

$$\begin{split} \frac{[nt]}{\tau_n} \left| \mathscr{E} X_1 I(|X_1| > b_n) \right| &\leq \frac{[nt]}{\tau_n} \, \mathscr{E} |X_1| I(|X_1| > b_n) \\ &\sim 2 \, \frac{[nt]}{\sigma(x,a)} \, x_n a_n \mathscr{P}(|X_1| > x_n a_n), \quad n \to +\infty, \end{split}$$

so this and (3.20), (3.21) give (3.6). Since $\tau_n \sim \sqrt{\pi/2} \,\mathscr{E} |T_n|$ and

$$\left|\frac{\mathscr{E}|S_n|-\mathscr{E}|T_n|}{\mathscr{E}|T_n|}\right| \leq \frac{n\mathscr{E}|X_1|I(|X_1|>b_n)}{\mathscr{E}|T_n|} \sim \frac{2nb_n\mathscr{P}(|X_1|>b_n)}{\sqrt{2/\pi}\tau_n}, \quad n \to +\infty,$$

so, as above, (3.7) holds.

land and the grant from all well alter active

Remark. There are strictly stationary random sequences with infinite variance, φ -mixing, satisfying CLT and not satisfying WIP (i.e. (3.6)). As an example one can use a 1-dependent sequence in Example 2 of [6]. For this sequence, (3.5) does not hold.

Acknowledgments. I would like to thank Professor M. Peligrad for preprint and Professor A. Jakubowski for suggesting the method which helped to simplify the earlier version.

REFERENCES

- [1] N. E. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge Univ. Press, Cambridge 1987.
- [2] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, 2nd ed., Wiley
- [3] I. A. Ibragimov and Yu. Linnik, Independent and Stationary Sequences of Random Variables, Walters-Nordhoff, Gröningen, The Netherlands, 1971.
- [4] M. Iosifescu and R. Theodorescu, Random Processes and Learning, Springer, New York 1969.

- [5] A. Jakubowski, A note on the invariance principle for stationary φ-mixing sequences: Tightness via stopping times, Rev. Roumane Math. 33 (1988), pp. 407-412.
- [6] and Z. S. Szewczak, A Normal Convergence Criterion for strongly mixing stationary sequences, in: Limit Theorems in Probability and Statistics, Pécs (1989), Coll. Math. Soc. J. Bolyai 57 (1990), pp. 281-292.
- [7] M. Peligrad, Invariance principle for mixing sequences of random variables, Ann. Probab. 10 (1982), pp. 968-981.
- [8] An invariance principle for φ -mixing sequences, ibidem 13 (1985), pp. 1304–1313.
- [9] On Ibragimov-Iosifescu conjecture for φ-mixing sequences, Stochastic Process. Appl. 35 (1990), pp. 293-308.
- [10] E. Seneta, Regularly Varying Functions, Springer, Berlin-Heidelberg-New York 1976.

Nicholas Copernicus University Computing Centre, ul. Chopina 12/18 87-100 Toruń, Poland

> Received on 28.9.1989; revised version on 13.2.1991

ing mercer of a second as well as the second of the second

The second of th

IN THE SECOND SE

and Karata provide strength of the selection of the provided strength of the selection of t

en de la companya de la co