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- ON AN INVARIANCE PRINCIPLE
FOR UNIFORMLY STRONG MIXING
STATIONARY SEQUENCES WHEN é”Xz'_ = 0

ZBIGNIEW S. SZEWCZAK (TORUN)A

. Abstract. We prove that for umformly strong mixing strictly .

" stationary sequences a ‘weak invatiance principle holds ‘for random

- variables with the second moment divergent. This is'an extension of

the result of Peligrad [8] for random variables with finite: variance. .7 = 07

1. Introduction and notation. Let {X}rez e a strictly 'statibnary random
sequence on probability space (2, #, #) and let #' denote the o-field generated
by {X; m <i<k}. Define: ' ' '

= o ({X,}) = Sup{lg’(B/A) g’(B)], Aef—oo » Bess , 2(4) > 0}
¢ = ea({Xy}) = sup{|Corr(f, g)l; £ g—real, f ELZ(J’—m) gELZ(J' )}

The sequence {Xk}k is said to.be uniformly strong mixing or ¢-mixing if
lim,., . ¢, =0. It is well known that g, < 2¢l/2.
In this note, unless otherwise stated, we shall deal with strictly stationary
@-mixing sequences only. co
Let S,=),_, X, and define the random clement in @((0 1])

2,0 =07 Sy 1600, 11,

where 62 = Var S, and [ ] denotes the greatest integer function. %, satisfies the
weak invariance principle (WIP) if %, converges weakly (=) to the standard
Wiener measure #. . , }

Peligrad [8] proved that in the case §X? < co WIP is equivalent to the
Lindenberg condition. On the other hand, in the iid case the Central Limit
Theorem holds for random varlables w1th the second moment barely dlver-
gent [2].:

The purpose of this note is to formulate and prove a WIP when £X? = oo. )
We use the following notation: let b, —, + oo for every ne N and denote by
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{X\} an independent copy of {X,};
= X;I(X}| <b)—EX,1(X,| <by,);
Xt =XI(0X| < b)—6X,1(X| <b,);

) k k
Ur=Xi-Xi; W= 3 X5 Zi=YU5 T=T% Z=Zy
k .
¥ = XX > =YW R=RG

= Z;Xi; @ ="Var'T";k @ =Varzy 1=
=1 : .

Z,=2n WS O)=1"Thg W) =1, ' Spuy;
W (1) =1, (S[,,,] [n]€X,1(X,| <b,).

The Theorem we shall prove, in the case b, = +oo for all neN, is
Corollary 2.2.in [8]. As an application two corollarles will be proved, the
second one is a recent result of Peligrad [9].

2. Auxiliary results and definitions. In this section we group some facts
adapted for this note from more general theorems. Y '

21 {maxlsl-s,,r,, 2(X"?}, is uniformly integrable if and only if so is
{ max 1, 2(T")z}
o 1<ig<n

(see the proof of Proposmon 2.1 in [8])

(22) Let {X ,‘},¢ be a centered Lz-statlonary random sequence; then

(1-g,)"* max o6, < 6,+2ps, e
1<ign S

(see Lemma 4.2 in [7]).
(23)  For any {Xk},‘ such that
@, + max ?(IS SI >xo) n < 1

1<isn

for x > x, we have

' ?(max|S|>2x) <(1—n)" 19’(|S|>x) -

1<i<na
(see Lemma 1.1.6 in [4])
(24) - Let {X}¥}, denote aniid sequence wnth _?(X =2X 1), then for x > 0:
(a- (pl)g’( max |X*| >x) < 97‘( max |X,| > x) < (1 +(p1).¢‘( max IX*I > x)

ISzSn . 1<i<na . ISIQn

(see Proposmon 31 in [9])



Uniformly strong mixing stationary sequences 89

(2.5) ZL(X,) is said to be in the domain of attraction of the normal law
(Z(X,)e24(2)) if there exist sequences {4,}, and {b,}, such that

Lt Y X¥-4)->H,/0,1), n-—+oo.
k=1

This is equivalent [2] to the slow variation of é‘”X 21X ;I < x), and then
- b= inf{x; x 28X(X,| < x) < 1/n}. '
(26) If&X}I(X,| < x) is slowly varying, then for {b, },, from (2 5) we obtam

——£|x1|1(|x |>b) 250, n— +o

(this follows easily from Theorem 2, VIII §9 in [2])

2n If ng’(lX | > x) is a slowly varying function, then so is £X3I(| X, | < x)
{see the same Theorem as in (2.6)); however, accordmg to Exerc1se 32, VII, §10
in [2], the converse is not true. :

28) If x22(X Jd>x)is a slowly varying function, then
n?(X,>a)->1, a,=inf{x; 2(X,|>x)< 1/n}

(see Lemma 1.8 in [10]). -

(29) If x*2(X,| > x) is a slowly varying function, then’
CEIX (X, > )~ 2xP(X,| > %), x> +o0

(see Theorem 8.1.4 in [1]). - A | o

(2.10)  Assume n?(|X,| > b)—»O and 7, - +00, n— + 0, and {7, 2T},
is uniformly integrable. Then ‘

| (W'(I))——%.A/(O l) - n->too
(see Theorem 3 in [6]) |

3. Results and proofs.
THEOREM. Assume that

(3.1) lim n?(|X1| > b ) =

6y limet, = 400,

(3.3)  lim oy 24 max (X7)") = 0.
Then R \\"

G4 WA, no+o.

Conversely, if ¢, <1 and (3.4) holds, then (3.3) is satisfied.
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: COROLLARY L Let (X I)E@M(Z) X, =0 and
(3.5) ’ _ liminf, bl > 0

where b" is deﬁned in‘(2.5). Then )
ce "/Vé"llf | n—>+oo -
- COROLLARY 2. Assume x*P(|X ;| > x) is slowly varying, §X; =0, ¢, < 1.
Then (3.6) holds, and o
(3.7) ._ “\/n_/2c§”|Sn|~‘c,,,> v>}nl—.+‘+0Q,
for some {b,,}n o - B o

‘Proof of the Theorcm We shall cons1der only the case <§X2 00, 1.,
b, — + oo, since the other case can be proved analogously. From (3.1) we see
that : :

- . _
max 1, '|Rf-—0, n- +o0.
1<k<n

Thus in the proof we can restrict ourselves to #, random elements.

The direct half. An examination of the .proof of Theorems 1 and 2 in
[5] shows that it is enough to prove that
n)2 - . .

max
1<i<[ndn] (t, )2

for any {9,}, such that lim_ 6, = 0. By (2 2), for any 3 > 0 and neN such that
9, < & we have

T} _ ,
max - <(l1—g,) 1/2(["€]+2 )
1<i<né ] Tn Ty ‘ Tn

so the required condition is satlsﬁed if (z,, )2 isa regularly ‘varying sequence w1th
index 1 (see [1], p. 52), and :

' (‘t?nt])2 n_ o4 R :
(3.8) _ o) —1, ~te(0, 1], n—> +oo.
i [n] : ’

From (2.1) we infer that {z, > TZ} is umformly integrable, so by (2.10) and (3 1).
we obtain , ‘

(39) LA Zh) > H(0,1), n- +oo.
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On the other hand, by (2.2) we have

i ] n ‘
@)’ =&( ), Z Xina-1)+i+ DI ¢

j=1 i= i=[n/[nelllnt]+ 1

< 2'M(zf)? 42 max ()
1<k<[n)

< (tfu)* (2% +4(1 —0,) ™) +8p* (1 —¢,) ' ()2,
so there exists a constant C = C(g,, t) such that
(3.10) liminfz, '}, > C > 0,

n— oo

since lim,., 7,170 =0 by (3.3). From (3.10) and (21) we infer that
{(the) " 2(T2)?} is uniformly 1ntegrab1e for te(0, 1] so by (3.1) and (2.10) we
get .

(3.11) o ,5”((2[',,,])"1'2{',,,]) >, /V(O, 1), n—o+o.

From (3.11), (3.9) and"the Theorem of Convergence of Types we get (3.8).
Now observe that by assumption and (2. 10) we have

"('-l(s —5) 40, 1), 1> +oo.
Thus, by Theorem 18 1.1 in [3] we have .

(Tkn)
(@)’

(3.12) sk, keN, n> +oo.

Since o | ‘ |
20X, X, > ) S PXT-RU| > 2 M) 422X, 3 b)
<4e72(@) 2z 2 +nP (X | > b,),
so by (3.3) and (3.1) we obtaln
Lz (Sns1=8n11)) — A0, 1), 'n—> +.
Thus lim-.c 2,254, = 1, 50 o e ST
@13 STy ..n,;_)%go.“

Let geN; then

| ———(Tq['"’—l]) ——-+ q., n— +oo ‘
_ (T[ml“])
But [nq 1] =nn-1,...,n—q—1 and by (3 13),
. 2 .
(3.14) (%) g

G e . n—> 4w
‘ (":[mr‘])2 ’ e ;
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so by (3.12) we have

’ (T[mn])z

()
for every w rational. Let r be irrational and re(O 1], ¢ =r—w > 0. We show,
following Pellgrad [7], that

(3.15) 5w, n— +o0,

2
Tirn n
((‘[[)]Z -—F, .n—>_‘+oo.,_i

(3.16)

From (2.2) we have
Itfwm— 17[m]| T[rn] fon] S <(I—g,)” Z(T[n(r m)]+2+21'1)
so taklng limsup over both sides we have, by (3.3), .

lim SUp T, M |tfom — Thml < (1 g ) 12 limsup t, ! the - -
n— o e ad )
Now, it remains to show that the rlght—hand side. dlsappears when @ 7 r. We_
have :

I, I, Thw22]  Tiw23]  Tlw/24 k1
Ine) _ Tim21 [:/; 1y 5:-/,:1)< 24, fnc)
Tn T T2 T2 T[n/z31 } Tiny21- losc"owl

Note that limsup of the last multlpher is bounded by (1—g, ) 12 50

lim sup M < __Q )—1/22—(1/2)([—|ogc/1og21—1) <K(r—o),
T

where K is a constant depending on g, only, i.e., (3.16) holds. By (3 8) and (3. 16),

for every re(0, 1] we have
(T[m])
)P

so by Theorem 1.3 in [10] the above holds for every r > 0, i.e., {(1,,)2} forms
a regularly varying sequence with index 1.

——-»r, no +00

The converse half We have

<@+ max P(Z,—Z}) > z,%,) < @, + max P(Z,—Z,| > 27 z,%,)

1<js<n 1<j<n :
+ max P(Z,-Z} >27'z wXo)+ max P(Z,—Zj| >2" 1z.%0)s
1<j<N, . Ns<j<m

where N, is such that #(1;!|R,| > 2~ 'x,) < n?(X,| > b,) < 6 for n> N,.
The nght-hand side of the above inequality can be estimated by

8 ()
@ xo( 1<;<..(n)’)+ o(1)+3,
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ie., there exists N, = N(J, ¢,) such that for n > N, and sufficiently large x,

¢+ max ,@(IZ —Z5 > z,xp) < 11 <1,
1<j<n

since max, < ;< jnT; T, 1lis bounded, by (3.4). Using (2.3), for n>=Ngy, x 2 x, we
obtain ' L s B
(3.17) P(max |21 > 2xz,) < (1—n) " P(Z,| > xz,),

1<i<n L -
and since

- P( max |U"| > x) 29( max IZ"I > 2 x)

1<i<n 1<i<n
~ 50, by (3.17), {max, ¢;<,z, 2(UD?}, is uniformly integrable. By the proof of
Theorem 1 in [5] we have

(3.18) . max 1, 1IX"I -——»O n— + 0o,

1<i€n

so for p, = med(max, <;<, 1, }|X?) we obtain

(3.19) 0, no oo
Thus - : : ,
P(max z;'[X]| > x) < 2(| max z, |X"|—un| x= u..)
1<i<n 1<ign B

22(| max z, | X7 — max z; }| X7 > x— u,,)<4.?(maxz 1|U"| x— ).

1gisn 1$|\n ISISH

From this, (3. 19) 3. 18) and the uniform 1ntegrab111ty of {maxl <,<,,z,, Z(U")z},,
the equality (3.3) holds true.

. Proof of Corollary 1. By (26), (3.5), (24) it sufﬁces to. prove that
{b;? max (X}I(X} < B} "

1<i<n

is uniformly integrable, but this follows easily from the iid case.

Proof of Corollary 2. Under the assumptions of the corollary Peligrad
(7] proved that for every keN:

k2

. 2-(ka,,) —0, n-+ 0,

where.

a*(ka) = Var( 3. X,J(X, < ka)—EX, 10X, < ka), *

. and {a,,},,Ai‘s defined in (2.8). So there exists {r,},, lim,,r,, = + o0, such tl;et; for
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every {x,},, lim,x, = +o0 and x, =o(r,),

2,2 :
x2a -
20, n- +o.

(%)

On the other hand, by Theorem 1.1 in [10] there exists {r,},, lim,r, = + o,
such that, for every {Xn}ns hm X, = +o and x, = o(ry),

(3.20)

(321) nx,?g’(lX1|>x )—»1 n— +oo.

Now let b, = x,a,, where lim, x, = + 00, X, = o(r, A 1), and 1, = 0(x,a,); theh

nn?

(3.1)3.3) are fulfilled, so (3 4) holds Observe that by 2. 9) we have
["t] [nt]

£1X111(|X1|>b)

[nt]
a(x,a,)

so this and (3.20), (3.21) give (3.6). Since 'T'" " \/ﬂ:—/z 1T and *

xndn?(lxll > xﬁan)’ n—> + ©," -

8ISI=EITI| _néX, 10X, >b) b, (X >b)
81T 81T 2/,

so, as above, (3.7) hdlds.

‘Remark. There are strictly stationary random sequences with infinite
- variance, @-mixing, satisfying CLT and not satisfying WIP (i.e. (3.6)). As an
example one can use a 1-dependent sequence in Example 2 of [6]. For thls
sequence, (3.5) does not hold. :
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