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Abstract. Smoothness of symmetric stable semigroups and some 
related semigroups of measures on the Heisenberg group is studied 
using Malliavin calculus for jump processes. If the Livy measure of 
a symmetric stable semigroup is V, then the semigroup is w ~ " - ~ .  If 
the Lbvy measure of a truncated stable semigroup is Q', then the 
semigroup is Q w .  

0. Introduction. Smoothness of stable semigroups of measores on homo- 
geneous Lie groups was examined by analytical methods by Glotvacki ([3], [4] 
in the case of the Heisenberg group, [5]  generally) and recently by the 
second-named author [6] ,  using Malliavin calculus for jump processes. In [5] 
and [6]  it was proved that if the Ltvy measure of a symmetric stable semigroup 
is smooth, then the semigroup itself has smooth densities. 

In this paper* we examine smoothness of a-stable semigroups of measures 
&),,, on the Heisenberg group, with Gvy measure v of class Sm, m < m. In 
particular we show that if VE%", then ~ , E V ~ " - ~  (if a > 1, then p , ~  CZ"-3). 
This kind of implication may not be obtained by applying inequalities of 
Sobolev type. 

We prove also the smoothness of a symmetric semigroup of measures 
(&),,* with the Lkvy measure of class S1. We assume that the LBvy measure 
of @Jt,, has a density of class V1 with compact support, coinciding 
on a neighbourhood of 0 with the density of a stable Lkvy measure. 
We call such semigroups truncated stable. Truncated stable processes appear 
in some problems of stochastic analysis even in the case of Euclidean spaces 
(6. C81). . 

Our results are new and do not follow from the analpica1 methods of 
Glowacki. They are proved by using methods of Malliavin calculus. In 
particular, following Bismut [I] we avoid iteration of integration by parts 

* This research is supported by KBN Grant. 
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on the same interval as it was made in [6]. The Markov property of the 
corresponding stochastic process is highly exploited here. However, the 
noncommutativity requires a subtIe stochastic analysis using properties of the 
adjoint representation and martingale methods. 

For simplicity, we present our results in the case of the Heisenberg 
group H .  The proofs can be generaked immediately to the case of nilpotent 
homogeneous Lie groups of order 2. In the case of higher order the 
computations become complicated but they are still feasible. 

This work is an extension of [6]. We use the same notation and we repeat 
some fragments of the proofs of [6]. Theorem 3 of this paper generalizes 
the final Corollary 5.7 of [6]  but its proof is much simpler and direct and it 
provides more effective estimates of L,-norms of derivatives of considered 
measures. 

Section 1 has a preliminary character. In Section 2 we present some rather 
technical lemmas concerning stochastic integrals on H and convergence on the 
Skorohod space D,. Section 3 contains the result concerning truncated stable 
semigroups. In Section 4 we extend this result to stable semigroups and to 
some other semigroups with Levy measure of noncompact support. 

A c k no  w le d gem e n t s. This paper has been completed during the 
second-named author's stay at the University Pierre et Marie Curie in Paris. 
He would Iike to express his gratitude to Professors Paul Malliavin and 
Jacques Faraut for their hospitality and comments. 

1. Preliminaries. In this paper we consider the Heisenberg group H r R3 
with the group product 

(01, O21 63)0(21, T21 ~ 3 )  = (a1+T1? ff2+T2, 03+T3+a1T2) 

and the dilations 

t(bl, a,, a3) = (to1, ta,, t2a3), t > 0. 

We denote by 0 = (0, 0, 0) the identity of H .  
A homogeneous basis of the Lie algebra Ij of H is given by 

where a/&, a/dy, 8/82 are usual partial derivatives on H. 
The adjoint representation on tj acts as follows: 

(2) Ad,X=X-y(g)Z, Ad,Y=Y+x(a)Z, Ad,Z=Z,  

where for a = (a, , a,, cr,) 

(3) x(a) = ol,  y(a) = a2. 

Remark that the mappings x, y defined in (3) are homogeneous of order 1 and 
additive with respect to the group product. 
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If Q is a complete left-invariant metric generating the topology of H we write 

\(.I1 is a pseudonorm on H. 
A continuous semigroup (pJr,o of measures on H is said to be stable (with 

exponent a, 0 < a < 2) if for every BE W, and t > 0 

For the properties of stable semigroups on homogeneous Lie groups see [6], 
Section 2. 

We will say that (p,),,, is a truncated stable semigroup of measures on H if 
it does not have the Gaussian component and if there exist a stable semigroup 
b:) on H with Lkvy measure v' and a nonnegative function h E V , ~  equal 
to 1 on a neighbourhood of 0 and bounded by 1 such that the L6vy measure v 
of (pi) is given by 

t 2. Properties of some stochastic integrals. Throughout this section {z , ] , ,  , 
1 is a symmetric stochastic process on H with homogeneous independent 
I increments and sample paths in the Skorohod space D,(R+).  We suppose that 

the generator of the corresponding semigroup of measures does not have the 
Gaussian part and that the Levy measure v of { z , ) , , ~  has a compact support. 

Identically as in [6] we denote by N (T, r ) (z)  the number of jumps of z ED, 
such that lldzll > E ,  up to moment T, and by S?), . . ., S${T,e) the consecutive 
moments of these jumps. We define 

to be the process with the Lkvy measure 1,. We write S@) for the 
stochastic integral with respect to the process (zj")), 

In the first two lemmas we define stochastic integrals of the form Sss T X  

and S,< T y  with x, y as in (3) and examine their properties. The definition of 
these integrals, using convergence in L2, is more general than the definition of 
stochastic integrals appearing in [6]. This is caused by a more subtle kind of 
analysis used in this paper. 

Two next lemmas concern the continuity and convergence on the 
Skorohod space D, LO, T'l of some functionals of the process {z,] ,  appearing in 
the sequel. 

The results of this section are true on any nilpotent Lie group (in place of 
x, y one may take any global coordinate function). 

LEMMA 1. (a) The sequence converges when E+O in L2. We 
dejne 

S, T~ = lim St& T ~ .  
E + O  
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Then for each sequence &,LO we have S t $ T x 4 S , Q  ~x almost everywhere. 
(b) S , Q , ~ ~ L P  for all p >, 1. 
(c) lime + §pi x = S, =X in LP for all p 2 1. 
(d) lirn, , , (SYS T ~ ) m  = Srg T~ in LP for all p 2 1 and rn E N .  
In  place of x one may put the function y. 

Proof.  We have 

By Theorem 1.4 of 161 the first expected value in the above formula equals 

and tends to 0 if c2 -+ 0. By independence and symmetry of jumps of {zl) the 
second expected value equals 

Ex (Az, ,)  Ex (Az,,) = 0. 

For each sequence E,JO the sequence S ~ ~ T X  may be represented as a series of 
independent random variables Sf~++)x -S%~x.  Convergence in L2 of this 
sequence implies convergence almost everywhere. This proves (a). Arguing 
similarly as in the proof of Lemma 4.3 in [6] we get, for every m E N and &,LO, 

Thus, by Theorem 1.4 (c) in [6], the sequence Sf? T X  converges in L2" and (b) 
and (c) follow. To prove (d), one uses the Holder inequality and (c). We omit the 
details. a 

In the following lemmas we fix an r, > 0 and consider a continuous 
function Y on H such that supp Y c {!I. I( > &,I. We denote by ay) the product 
of successive jumps of the trajectory, greater than E ,  following dz,?), up to 
moment T. 

(&) LEMMA 2. (a) The sums x (@) = S s p , ) ,  < a x converge in LZ when E + 0. 
We de$ne 

T SS(&0) x = lim x  (G?)). 
E + O  

For each sequence &,LO the convergence holds aEmost everywhere. 
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(b) Let us put 

Then G((zj")) +G((z,)) in LZ and for every E,JO almost everywhere. 

Proof.  (a) We have 

so by Lemma 1 (a) it is enough to prove the convergence of Sf&,p), ,x. We 
proceed as in the proof of Lemma 1 (a). In order to prove that 

I we show that the sum under the expected value is a martingale if we replace 
S y )  A T by f $ T, so by the optional sampling theorem it is also a martingale 

I 

indexed by j. 
I 

(b) The convergence almost everywhere for E,JO is obvious by using (a). 
Now, by the Schwarz inequality and (5), 

The first integral in this estimation tends to 0 if E , ,  &,-to in virtue of 
Lemma 1 (a). By the Doob-Kolmogoroff inequality and symmetry and 
independence of jumps we have 

The following convergence lemma will be very useful in estimations after 
the integration by parts in Section 3. 

LEMMA 3. Suppose that 
(i) 8 is a bounded continuous function on D ,  [0, TI such that @({z?))) 

= 8 ((2,)) for E < E ~ ;  

(ii) F is a m p p i n g  defined on the trajectories of ( z , ) , ~  and ( z ? ) ) , ~  ,, E > 0, 
such that E;({zj"))) + F ({z,)), E -t 0, in L1 and almost everywhere for all sequences 
&,Lo; 
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(iii) for all E > 0, F ({zp)))  = F6 ({zt)), where F ,  is  a finetion on D, LO, T ]  
continuous almost everywhere with respect to the distribution of (z , } ,~~ ;  

(iv) f fE q c  

Then for E +O 

Proof.  It sufices to consider a fixed sequence EJO. We will write E in 
place of E,. Let cp, be a nonnegative continuous function on R such that 
q m ( x )  = 1 for 1x1 < rn, rp,(x) = 0 for 1x1 > m+ 1 and q~ d 1. Then we put Flm) 
= Fq,(F) and F!") = F,q,(F,). First we reduce the proof to the case of 
F bounded. We have 

Denote the terms of the right-hand side of (8) by J,,  J , ,  J , .  Then' 

By (ii) the variables F ((zj")}) are uniformly integrable with respect to E .  Thus 
J ,  -+O if m+ co, uniformly in E. Next 

53 l l @ l l  m Ilf I1 mEIF(m)((zt))-F((zi))l +O 

when m + co since IF(")] 6 IF( and F({z,)) is integrable by (ii). Thus it suffices to 
show that for rn fixed J ,  -+ 0 if E+ 0. We approximate F'") by continuous 
functiohals Fj,"): 

Denote the terms on the right-hand side of (9) by K,, K, ,  K 3 .  We have 
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Remark that 

F~ ({zp))) = {i:::;; for E 2 6, 
for E < 6. 

Thus K ,  = 0 if E 3 6. For E < S 

Let u] > 0. There exists S o  > 0 such that for all 6 d 6 ,  one has 

By (101, for S < 6, and all E we get the estimates K ,  < 2g and K ,  < g. 
For S < 6 ,  fixed, Theorem 1.1 in [6], the a.e. continuity and boundedness 

of @, Fim) and z I+ f (z (T))  imply K ,  + 0 when E + 0, Thus for E sufficiently small 
we have J ,  < 4q. This completes the proof. 

Now we will  prove that condition (iii) of ~ernrna 3 is satisfied for some 
mappings appearing in the integration by parts in Section 3. 

LEMMA 4. Suppose that the LPvy measure oj' the process (z,) is absolutely 
continuous with respect to the Haar measure on H. 

(a) Let rp be continuous on R. For all 6 > 0 the mapping 

is cor~tinuous almost everywhere with respect to the distribution of ( z , ) , ~ ~  on 
D~ CO: TI. 

(b) I n  the notation of Lemma 2 (b), the mapping 

N(T,Eo)(z) 

G,  (2) = C ( A  zsyo>) x (fly) (2)) 
j =  1 

with 6 < E,, is continuous almost everywhere with respect to the distribution 
of (z,] on o, 10 7 TI. 

Proof .  First note that for any 6 > 0, by the absolute continuity of the 
Levy measure of {z,), we have P{l[Az,(( = S for some s < T) = 0. Hence almost 
all trajectories of {z,),,<, do not have jumps of norm equal to 6. 

Define the Skorohod distance 

d(z, w) = inf (e > 0 I there exists A E A such that 

where A = ( f : LO, T ]  H [0, T'l continuous and strictly increasing) (cf. [2]). If 
z E D, [0, T ]  does not have any jumps 11 Az,ll = 6, then jlAzll < G - u or 
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((Az{/ > 6 + cl for an R, 0 < cr < 6. Then if d (2 ,  w) < a/2, we have 

(1 1) IlAz(t)ll > s-lldwn(t)ll > 8, 

where 1 E A is such that sup,. .JJz- (t) wA (t)l( < ~ / 2 .  Observe that 
yg(wA) = qg(w). The jumps of z greater than 6 are fixed and the function cp is 
continuous. Therefore, for any E > 0, if w is sufficiently near to z, then 
Icp, (z) - rp, (w)j < E. This proves (a). 

To prove (b) we fix Z E D ,  such that ((Az,(( # 6 and /(dz,(( # E, for s < T. 
There exists 0 < a! < 6 such that 

~ j A z , ~ J ~ ~ O , 6 - a ) u ( 6 + a , ~ ~ - a ) u ( ~ ~ + c r , ~ )  f o r s d T .  

By (1 11, if d(z ,  w) < ~42 ,  then 

IlAz(t)JI>S*IldwA(t)/l>6 and IlAz(t)I/ > ~ , - / l A w l ( t ) l l > ~ ~ .  

Observing that G,(w) = G,(wA) and denoting by t,, .. ., t, the moments of 
jumps of z greater than E~ we have 

The first term on the right-hand side of (12) tends to zero when w + z  by 
continuity of Y. The continuity in z of the mappings 

following from part (a) of the lemma implies the vanishing of the second 
term in (12) when w z. Thus G,  (w) -r G, (2) if w -r z in the Skorohod 
topology. rs 

I 

3. Smoothness of a truncated stable semigroup. In this section we prove 
smoothness of truncated stable semigroups with Lkvy measure of class V1. 
In [6] this result was obtained under the assumption grn on the LCvy 
measure. Still under this assumption it was generalized for stabIe semigroups 
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(Proposition 3.3 in [6]) .  We present some generalizations of our result in 
Section 4. 

Throughout this section (z , ) ,  , , is a truncated symmetric stable process 
with Lkvy measure v of class V1, i.e. 

and the function h in (4) is V1 on H. 
The notation in this section is identical to those of [6] .  All constants are 

denoted by C. 

T H ~ R E M  1. For all I , ,  I ,  E N there exists C > 0 such that 

for every function f E%: (B). In place of X one may insert Y or Z. 

Proof.  The idea of the proof is similar to that of Theorem 4.9 in [6]. 
I We consider functions Q and u as in Section 4 (a) of [ 6 ] .  In particular, 

suppu c ( 1 1 .  /I > E,} for an so fned. First we integrate by parts on the jumps of 
I 
I the process {zj'"'). For E < E~ we have 
I 

m -- 
E [Q, (S, , , u) xil (2:)) y12 (z!)) X f (z!)]] = P { N  (T, EO) = n} 

n =  1 

where K j  = xi+ u (Azs!c,)), and 

and the last term is zero if I, = 0. 
Using the formulas (I), (2) for the adjoint representation we get the 

following form of the above expression: 
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where Y Y )  = u Nit, Y(2W) = W (ug)/g for any WE I). 
In order to estimate (13) we apply repeatedly the Schwarz inequality. 

In the estimation of Esupj = ,, , , , , N I T ,  IS&o), , y14 we use the fact that 

(SF&,:,, , , y) is a martingale, the Doob-Kolmogoroff inequality and the 

property E (St,!, . yI4 < CE (SEA y2I2, obtained in a similar way to that of (6). 
Finally, we use Lemma 4.3 of [6] and for every E > 0 we get the estimation 

(14) IE re, (S.7 < *u)xl '  (z$') y"'zl') xf(z$311 

2 114 6 ~ l l f  11, {(ES;$ rZ ES,Zt ~r ) {(E [@4§,2$ YIX)])1/2 

+ (ES,2, r2) ' I 4  ( E S f 2  r2 E S,42 r2)'j8 ((E [@: S:& 1 Y(~Z)(])'/* 

where r denotes a homogeneous norm on H (see [ 6 ] )  and the constant 
C depends only on I, and 1,. 

Next we let E -+ 0 applying Lemmas 3, 1 (d) and 4 (a) to the left-hand side 
of (14). To complete the proof we repeat steps (c) and (d) of the proof of 
Theorem 4.9 in [6] .  

THEOREM 2. Let {zt)i a be a truncated stable process on H with L&vy 
measure of class V1, and V be a left-invariant second order dgerential operator 
on H.  Then for every T >  0 there exists C > 0 such that 

Proof.  It sufices to prove the theorem for V = YX. The method is 
identical for a11 the superpositions of the operators X, I: 2. 

As usual we start with the process {zf")) for an E > 0. We consider 

E re,, (SS ,1-,2u) YXf (z!))l 
and we perform one integration by parts in this integral. We get 
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I where Qi and !Fj are the same as before. 
1 Now we let &-+0 by using Lemmas 3, 2 (b) and 4 (b). We apply the 

! 1 
conditional expected value E [-ISTi2] (cf. [I]) to the right-hand side of the 
obtained formula. Writing 

I s;p, x = SF(;) X + s:/2 x 

and using the basic properties of conditional expectations and the Markov 
property of (z,) we get 

~ ( z )  EZTj2 (m) - E [ @ , ( S S G T / ~ U ) ~ S < T / ~  1 [SS s ~ 1 2  Xf (zT~Z)I] 

N(T/2,&0) 

s ~ [ ~  ) EzT12(m) [xf ( z T I ~ ) ~ ]  -E [m,  (ss , ,,, u) { C yy) (Azsp1) s:ol x 
j =  1 

-E [@I 1% < T/Zu)Ss < TI2 
Y ( Z Z ) E Z T / ~  (0) css < ,2x X f  (zT,z>I] - 

I Next we estimate (15) using Theorem 1 and the equalities 
I 

Cxf (zT/2)l = [x (f 0 1,) (z~/2)l 

[Ss < ~ / 2 x  X f  ( z ~ i 2 ) 1  = E [Ss < T/2 X X(f 0 1,) (%/2)l 

for all GEH. The fact that {Ss,splA ,, x), is an L2-martingale, the Doob 

-Kolmogoroff inequality and an argument similar to that of the proof of (6) 
imply 

Esup ~ss<sp~A,.n2~12 < 4supES:<syo)AT12x 4 4ESs< T ~ ~ x ~ ~  
j j 
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By the Schwarz inequality we obtain finally the estimation 

The rest of the. proof is identical to the proof of Theorems 4.7 and 
4.9 in [dl. 

THEOREM 3. If {z,) is a truncated stable process on H with Lkoy measure of' 
class V1, and V is a left-inuariant dzfferential operator of order n on H ,  then for 
every T >  0 there exists C > 0 such that 

for all f G V," (H). 

P r o  of. It is enough to consider the case V = Xn. Then Vf = X (X" - l f ). 
Formula (15) shows that in order to have (16) we must have an analogous 
estimate of ]E [xn- l f ( ~ ~ / ~ ) ] l  and IE ISs y Xn- f (zTI2)]1- By (13)  we 
see that 

Now we let E +O and by Lemmas 1 4  we get (17) not depending on E. Applying 
EL 12FT14] we see that in order to get an estimation for 

it is sufficient to have estimations for 

Repeating this procedure n-1 times we reduce the proof of (16) to 
estimations of 

These estimations are given by Theorem 1. H 
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LEMMA 3.2 in [6] and Theorem 3 imply 

COROLLARY 1. If (p,)  is a truncated stable semigroup of symmetric 
measures an H with L tvy  measure of class W1, then p, have smooth den- 
sities on R. 

COROLLARY 2. Denote by C, the constant in (16) corresponding to z,  and 
V $xed. Then 

sup C, < oo for any 0 < B < M .  
d < t < M  

Proof.  We put 

and 

Then the procedure of estimation of IE[Vf(z,)]1 throughout the proofs of 
Theorems 1-3 shows that 

where I, is a linear combination of products of integrals of the form 
(ES;< t,2kr2)Q. Formula (18), the Schwarz inequality and the fact that S[~,UE LP 
and S,, , IYjl E LP for all p 2 1 imply the statement of the corollary. m 

Remark. Formula (18) provides a different estimation of the constants in 
(16) from that in Theorem 5.6 of [ 6 ] .  Here the constants in estimation of higher 
order are obtained from constants in estimation of order 1 by multiplication. 
In [6]  the constants of higher order were expressed by expected values of 
complicated random variables. 

4. Smoothness of semigroups with Lbvy measure of noncompact support. In 
this section we present results concerning stable and more general semigroups 
of measures, without the assumption that the support of Levy measure is 
compact. 

Theorem 4 presents a relationship between the classes of smoothness of 
the Gvy  measure v and of the measures in a symmetric stable semigroup { p z }  
that is rather surprising from the analytical point of view: pt are more smooth 
than v if v is sufficiently smooth. Theorem 5 asserts smoothness of a semigroup 
(p , }  with Lkvy measure v of class V1 under some asymptotic conditions on v in 
infinity. 

THEOREM 4. Let ( p t }  be an a-stable symmetric semigroup of measures on 
H with LCvy measure v. If v is of class Frn for an rn 2 2, then p, have densities of 
class %2m-4 and in the case a > 1 of class % 2 m - 3 .  

8 - PAMS 13.2 
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Proof.  As in Section 3 of [dl we take a symmetric function ~EWF (H) 
such that 0 < h < 1 and h = 1 on a neighbourhood of 0. We denote by {p,) the 
semigroup of measures with Levy measure f = hv and we put k = v-f .  We 
write ,ii, = By Corollary 1 the measures ii, and ,it have smooth 
densities. 

By a perturbation formula (see [9]), for any f ~ % p  ( H )  

In the first part of the proof we estimate I{pt, Vf )( for homogeneous V of order 
n < my proceeding in exactly the same way as in the proof of Proposition 3.3 in 
[6 ] ,  i,e. differentiating la times the function k under the integral in (19). 
Corollary 2 and the final estimation in the proof of Proposition 3.3 in [6] show 
that there exist constants C, such that 

(20) I f I G I f  I Y t > 0, 

for all f E V," (H) and 

sup Ct < a2 
B < t < M  

for any O < S < M .  
NOW consider V of order m + 1. Suppose that V is of the form V = X Vo. 

By (19) we have 

t 

+ I J (xtb t~~s*k*li i t -~)~f  )dsJ.  
ti 2 

Formula (2) for the adjoint representation implies that 

where W are homogeneous of order rn, their number is finite and the functions 
a ,  are of the form aw(z) = x(z)" y(z)l2 with 1 ,  - t i 2  < m. Distributions awpt-, 
are finite measures [7]. Applying to (23) the formula 

with ,us in place of p (by (20), Xps and Zp, are finite measures), W k  for q~ and 
a,&-, for y we estimate the second integral in (22) by 

i11.f II,X{ SUP l l X ~ l 1 1  l lwkll~ SUP [lawldfisf llZ~sl1l w t / 2 < s < t  O < s < t / 2  t j 2 S s 6 t  

x ( 1 1  yWklj, sup jlawl d j S +  [( WkH, sup 1 I~awldFiS)]. 
0 < s < t / 2  O d s Q t i 2  
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Using (21), the integrability of y Wk and Corollary 2 we obtain properties (20) 
and (21) for the operator V, 

Iterating (24) and arguing in the same way as for n = m+ 1 we see that (20) 
and (21) hold for V of order n < 2m due to integrability of xly"-' Wk, where 
W is homogeneous of order m and I < m. If a > 1, the function x l ~ " - '  Wk, 
E < m + 1, is still integrable, so (20) is true for V of order 2m + 1. Since H z R 3 ,  it 
follows that the densities of p, are of class V2m-4 and, in the case a > 1, of class 
(g2m - 3 (see [10]). 

In the following theorem we consider a more general symmetric semi- 
group of measures (y,) related to stable semigroups on H. We suppose that its 
LCvy measure v is given by (4) with h E V1 Id%) of support not necessarily 
compact. We decompose v = f+k as in the proof of Theorem 4. 

THEOREM 5. Suppose that the Ldvy measure qf the semigroup (p,) is of class 
(el and that the functions x ' ' y l ' ~ k  are integrable for D = X, I: Z and l , ,  1, s N .  
Then the semigroup ( p t )  has smooth densities. 

Proof,  The idea of the proof is the same as in Theorem 4. By assumption 
one may differentiate k only once. One shows (20) and (21) by induction with 
respect to the order of I/. In particular, in order to get (20) and (21) for V of 
order le ane uses the integrability of x L L y 1 2 ~ k  for I I  + l2  < K We omit the details 
of the proof. s 

Remark. The integrability condition in Theorem 5 is not satisfied for 
stable semigroups of measures. It holds for example for semigroups with LCvy 
measure decreasing rapidly in infinity. Nevertheless Theorem 4 supports the 
hypothesis that stable semigroups on H with LCvy measure of class W1 have 
smooth densities. 
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