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COMPLETENESS IN LOCATION FAMILIES

BY

M. ISENBECK anp L. RUSCHENDORF (MUNSTER)

Abstract. Some statistical completeness results are proved for
location families. For the proofs in the first step some generalizations
of the Wiener closure theorem to LP-spaces with weight functions are
established. The idea then is to relate the statistical completeness
notions to the functional analytic notions of completeness in those
weighted L?-spaces.

1. INTRODUCTION

Let P = fA! be a probability measure on (R, #') with Lebesgue density
fand let &F:= {f,(x) = f(x—0): OeR'} denote the densities of the location
family 2 generated by P. The Wiener closure theorem says that 2 is boundedly
complete if and only if f(¢) # O for all te R, where f(f) = [e™**f(x)dx denotes
the Fourier transform of f. This theorem extends to general locally compact
abelian groups, but we will restrict in this paper to the case of the real line. The
Wiener closure theorem has been used in the context of estimation theory in
papers [10] and [6]. Stronger forms of the completeness of location families
have been established in the literature only in very exceptional cases as, e.g., for
normal translation families, using the well-known completeness result on
exponential families. Some related completeness results based on analyticity
properties of characteristic functions can be found in [5], [16], and [32].
Some further examples can be found in [23]. :

For I'<g< o let

0y =21 = {f: (R, ")~ (R", B"); [1f(0)"dx < oo}

and’

Q) L9F)={g: (R, B> (R, BY); [lg(x)f(x—0)dx < 0, VOeR'}.

If # < ¥P, where 1/p+1/q =1, then
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(3) # is called ¥%-complete if ge ¥£? and
g*f*(0) = {g(x)f(x—0)dx = 0, V0, implies that g =0 [4'],

where f*(x):=f(—x). In a statistical context there is a stronger notion of
completeness: :

@ F is LUF)-complete if ge LUF) and
[g(x) f(x—06)dx =0, V0, implies that g =0 [4'].

The = = Z“’(ﬁ)—complefeness is also called bounded completeness of &,
while the #!(&)-completeness is called completeness of & in the statistical
literature. Since ¥ < ¥4(#) for 1 < g < o0, the condition

%) Zi:={t: f©)=0} =9

is a necessary condition for #?(%)-completeness.

The idea of this paper is to establish extensions of the Wiener closure
theorem to weighted #%-spaces (so-called Beurling algebras) in order to
derive from these results necessary and/or sufficient conditions for the
L1(F)-completeness of #. Since the literature on the generalization of the
Wiener closure theorem is somewhat scattered and abstract and not easy
accessible to a non-specialist in harmonic analysis, we also include for the ease
of reference some results known in the literature.

To see the difference between the notions of £%- and £4(#)-completeness
take, e.g., the Cauchy density

Then for ge £, 0eR?,

1 1
H,(0):= f*xg(0) = Ejmg(x)dx

(x

is called the Poisson transformation of g. If f* g = 0, then f*§ = 0 implying
that § = 0, since Zf = @ and, therefore, g = 0. This result is equivalent to the
#1-completeness of # = {L,f; 0eR*}, L,f(x):= f(x—6). The more involved
L1(F)-completeness was established in [25] by proving a general inversion
formula for the Poisson transformation. It was used in statistical context in
[10] and [23]. Our methods allow us to establish the #?(%)-completeness for
g > 2 only (cf. Section 4). _ '

The functional analytic completeness results for £ are also of relevance in
estimation theory but allow to deal with a more restricted class of estimators.
For this reason it seems to be justified .to give also a fairly detailed
representation of these results. A more complete exposition of thése results is
given in [15].
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2. WIENER’S THEOREM FOR BEURLING ALGEBRAS .

A measurable function w: R* - R" is called a weight function if
(a) w(x) = 1, :

(b) w(x+y) < wlx)w(y),

(©) w(x/o) <w(x),Voe=1,x, yeR".

For a weight function w define

Lhi={f: R >R, | flpw:=lfwl, < o},
Lhy- 1= {f: R>RY || fllgw- = Ifw™ ], < oo},

where | f]|, is the g-norm in %?(A'). Then (&%) = £%- for 1< p < o,
1/p+1/g=1 and for H c %% the following holds (by a HahnﬂBanach
argument):

(6)

(7) H is &£ --complete if and only if linH is dense in £%,.

For the general theory of the Beurling algebras Z* we refer to the books of
Reiter [27], Benedetto [ 1], Hewitt and Ross [13], and Donoghue [9], and to
the articles [3], [&8], and [31].

2.1. The case p=1. Let us put
o= {f@): fe£y} with ||f||ﬂ301= 1S s
(8) A (E):={fesdy: Ec Zf} for EcR' closed and |
AL(E):= ALK, (E).

A, (E) is a closed ideal in the commutative Banach algebra Jziw, which is
isomorphic to .#%, and 7% (E) is a commutative Banach algebra with unit (in
the quotient topology). There exists an element ¢ € o/1 with compact support
such that ¢@(t) =1 for all teE. The pro_]ectlon p(p) of ¢ to AL(E) is
a unit of HL(E). If fesdL(E) with EnZ(f)=@, then a well-known
theorem on Banach algebras implies that 1/p(f)e /L (E), and s0 there exists
an element ge.o/L with

) §(® =1/f@®) for teE.

This means that the Wiener—Lévy theorem holds for PL (for a different
proof cf. [27], p. 16). Wiener’s theorem for £} now has the following form
(cf. [27], p. 16). We give a proof of this result since we shall usé.some of
the arguments of this proof in the following part By 11n./' we denote the linear
hull of & -

THEOREM 1. If fe Z), and F = {L,f; 6eR'}, then:
lin% is dense in #LZf=B<=F is LL--complete.
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Proof. (=) If flt,) = 0 and ge &}, with |§(to)l = 2> 0, then
lg—XeiLaf 1w = flo@O—Leif t =) w(e)dt
=g @)=Y c.f(t—y))eodt| =
=g(t)l =e>0

g(to)— (Zcie_iyito)f(to_)l

in contradiction to the assumption.

(«=) For the converse direction let ge #L. Then

1. 3g,€ L with supp(g,) compact such that |g—gol1w < &

This follows by a standard technique.

2. dhe L, with hxf=g,.

Since Zf N supp (o) = QJ; by (9) there is an element fieZ5 with
f, ® = 1/f@t) for tesupp(§,). With h:= g, *f; the following holds: he £} and

0=4o(t), tésupp(dy),

(k)" ©) = 4o 03 )](0) = {g,o ol s,

= go ®).
3. 3hye LY with supp(h,) compact and |h+f—ho*f]; ., <e.
(Proof as in step 1.)
4. 3y,eR, 4R, neN, with |hoxf—Y AL, f| 1w <e.

The translation operator L, is continuous w.r.t. the | ||;,,-norm. There-
fore, for |y| < 6 we have

||h2n M™',  M:=sup{w(x): xesupp (h)}.
oll1 '

3y,, --+> Ya€supp (ho) such that supp (he) = U3=1Us (¥5), so

supp (ho) = U A;,

i=1

“Lyf_.flll.w <

(A, being the disjoint union of the U,(y,). Therefore,
“ho *f_zj'i L.Vif“‘l'w )
< Y| 1ho LS (0)— Ly f (W)l dx| w(3)dy

= [ 1o (O Lo~ Ly f 1 pdx

i A;

SM Y [lhoC I f—Ly—xfl1wdx <&, where 4= | hy(x)

i=1A4; A

dx.

Steps 14 imply the result by the triangle inequality. =
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More generally, for subsets .# < %1 the following holds true:

(10) £ is a closed translation invariant subspace of %L iff £ = {f; fe 5}
is a closed ideal in /1.

The synthesis problem is the question whether

(11) g ={heLL h(t)=0,VteZ(F):= () Zf}.
fes

The inclusion “ < is trivially satisfied and is called the Tauberian condition; the
inclusion “>” is called the synthesis condition.

A subset P < R is called perfect if P = P and if P has no isolated points.
S < R is called scattered if S does not contain a perfect subset. Consider the
weight function w,(x):= (1+ |x])*. Then the following weakened synthesis
condition holds.

THEOREM 2. For ae [0, 1) and a closed ideal F < sf%, the following holds:

(@) £ c {hedt),: h(t)=0,VieZ(F)}; )

(b) £ o {hestl : h(t) =0, Vie Z(F), such that 8(Zh) ~ (Z (F)) is scat-
tered}. ,

Proof (cf. [27], pp. 28, 132, 133). The proof uses the following lemmas:

LemMA 1. If F < &L is a closed ideal, fe %L, wis a wezght function, and
x ¢ Z (%), then there exists a neighbourhood U, (x) and hed with h(y) = f (),
VyeU,(x).

LEMMA 2. If fe %L and f(x,) =0, then 3(h,) < gw“, g, > 0, such that
h,(y) =1, VyeU,, (xp), lim ”ﬁ"”%, —0. : A

This lemma needs the special weight function w,.

LemMA 3 (location lemma). If £ < L is a closed ideal, fe st} belonging
locally to F (ie, VxeR: e, >0:3h e with h (y)=f(y), VyeU, (%)
then fef.

Proof. Since J = &} is closed and Cy = Z% is dense, it is enough to
consider f with compact support. There exist x,, ..., X, esupp( f) such that

supp (f) = U U,,, (x).

] i=1
Furthermore, there exist k;€ £1 with
_f1 o for |x—yl<e./2,
‘ ki) = { elsewhere.
Defining v
i-1
=k, [:=KT[(1-k),

i=1
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" we obtain k,e./L and [e./ and it is easy to verify that

f= 2 riﬁx,-: i-e-’ f‘eﬁ. ::]

i=1
LEMMA 4. If % < 4L is a closed ideal, fe AL, Z (%) < Zf, and
P(f, 9):={xeR': Ve, > 0,Vh eF,3yecU, (x): h.(y) #f ()},
then P(f, #)n8(Zf)nd(Z.F) is a perfect set.
For the proof cf. [27], p. 28.

Now the proof of Theorem 2 follows from the following _steps:

1. Vxe(Zf)° o (ZF5)°, e, > 0: Vye ng(x), f(y) = 0; so f belongs local-
ly to 4 and, therefore, by Lemma 3, feﬁ.

2. Vxe(ZF) by Lemma 1 there exists &, > 0, f, €.#, such that

VyeU,, (x), h(y) =f(y).

3. By 1 and 2 and Lemma 4, P(f, #) is a perfect subset of 0(Zf) N (Z.9).
Since, by our assumption, é(Zf)n é(Z#) is scattered, we conclude that
P(f, #) = @ and, therefore, by the localization lemma, fe.#. m

The special weight function w, is only used in Lemma 2. Therefore,
as a consequence of the proof of Theorem 2, for any weight function w we
obtain -

THEOREM 3. If F =Y is a closed ideal, then > {hestl: (Zh)° o
>5ZS}. m

A corollary to this theorem is the generalized Wiener theorem:
Tueorem 4. (a) If £ < £ is closed and translation invariant, then

| Zi=0=S =%
®) If (fjes= &y and F ={L,f;: jeJ, yeR*}, then:

CNZ[,=0<F is L2--complete<>linF is dense in L,. =

jedJ ’

2.2. The spectrum and the synthesis condition. Let S = S(R) denote the
Schwartz space and let, for a distribution TeS§’, {T, ¢>:= (T, ¢, p€S,
denote the Fourier transform. Then a basic notion of harmonic analysis, the
spectrum of T, is defined by §,(T):= supp (T*) (cf. [9], p. 27), where
{T*, ¢>:= T, ¢*). There are several other definitions of the spectrum of
Z4-functions, which turn out to be equivalent to this one. Since S for
pell, o] can be considered as a subspace of ¥%_ = ﬂ,‘;ﬁ; 1 Z%,, it follows
that

[0}
[ J— q
gw;_,_ U gw;,
N=1
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is a subspace of §'. Therefore, for fe%?_ the spectrum is defined.

THEOREM 5. Let for fe %L and 1 < g < oo the uniqueness condition (U))
be satisfied: :
(Uy): (VQEE%,N with Sp(g) € Zf =g = 0)_

Then & = {L,f: yeR'} is £%,_-complete.

Proof. For the proof we need the following representation.
LemMma 5. If ge Z3,_, then

Sp(g) = {teR*: V open U =U(t), Ife £5,
with supp(f) = U(t) and {4, f> # 0}
= {K = R! closed: fxg*(0)=<g,f> =0 for all fe £},
with supp (f) K“}

Proof, The inclusion “c” follows from a well-known construction
method and the fact that fe%L iff f is N-fold differentiable.

() Suppose that for x there exists fe £, and an open neighbourhood
U = U (x) with supp (f) = U; w.Lg. supp(f), supp (f) are compact and fe £ .
Therefore, fe #2 and, by Fourier’s inversion theorem,

16 = 5[ J0) .

Since supp (f) = U (x) is compact, there exists a relatively compact neighbour-
hood U (x) and ¢ > 0 with supp(f) = U(x) and U(x)+ U,(0) = U(x), U,(0)
denoting the e-neighbourhood of zero. For a sequence &>¢,l0 define
a sequence (f,, )men bY

Eﬂn:=f= ﬁmn::'(Ms,,/Zmz ¢1)A *ﬁ(m—l)")
where M, f(x) = rf(rx) is the multiplication operator and

: 2
V() = (smnx) .

T

Then #,, has m-th derivatives and

supp (m,) = SUPP (hin—1,,) + Uiz (0)-
For ne N we define f,:= lim,, .. ./i,,. Then A, is infinitely often differen-
tiable and ' : :

supp (A) < supp(F)+ @ Ty 2 (0) = 5upp (/) + Uznyams O)

m=1 .

= supp(f)+ U,,(0) = U(x),
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where the summation in the subscript is over m =1, 2, ... Furthermore,
limh, =f and 3CeR with |A,(t)] < C, Vt, n. This implies, by dominated
convergence,

lim h,(x) = —21— lim | h,(t)e* dt = 511;] lim £, (t)e™ dt = f(x).

s Ten = 0 supp (7)+U,(0)

Also |h,| < C(supp( N+U, (0)) < co and supp(h,) < supp(f), ne N. Suppose
that, VneN, <h,, §> = <h,, g> = 0; then we obtain

[f+g* O = |{f() g (x)dx| < Tim f|f(x)—h (X)Ig(x)dxﬂlm g (X)g(x)dtl
“0

< T | f= Iyl 19l g = 19 0gos ([ 1700 — b, () wy (x) dx)

supp(f)

<lglows [ lHm{f(x)—h, (x) wy (x)dx = 0,

supp(f)
a contradiction. Therefore, there exists an infinitely often differentiable element
h, with supp(h,) = U(x) and g**h,(0) # 0, implying that xeSp(g). = -

The proof of Theorem 5 now follows from the following result which
extends Proposition 1.4.1 of Benedetto [1].

THEOREM 6. For ge,??.,Er we have
Sp(g) = {teR': f(t) =0, Vfe L, with g*«f=0}.

Proof. (=) If t,¢Sp(g), then 3U = U (t,) = R open such that: g*xf =0,
V f €&, with supp(f) = U. Furthermore, 3ne N: Uy(to) = U. For f,(x)
= e"ule/n |l/N(x)

Y ()= (Myn9)*) 0) " (M ¥y &))"
holds, fye ZL, and f, =1 # 0 imply
tod{t: (=0, VfeLl, with g*«f=0}.

(c) Sy ,):={festl,: frg* =0} is a closed ideal in oL, with
Z(Fy( )= [ Zf={t:ft)=0,Vfe L., with f+g* =0}.
Ted(y)

We prove that for all he), with supp(h) c (Z(Fy(# g)))c it follows
that he £y (A ,).

Indeed, %, (A4 ,) is closed w.r.t. | i.og5 80 W.l.g. we suppose that supp( (h)is
compact. For all t,esupp(h), 3k, e} (#,), &, >0 such that

k() £ 0, Ve U, (t) < (Z(Fx(4,) -
There exists k;, e %L, with K (f) = (K, ()" for all teU, (z,) (to). If h
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:= kyo# ki h, then ke .9y (# ) implies k,,*g* = 0 and also h,, *g* = 0. This
implies that A(t) = ﬁ o (1), Vte U, (to) for any t,esupp (k). For t, ¢ supp (k) we
have A(t) = 0e Fy () in a small neighbourhood of t,. Therefore, h belongs
locally to .7, (A ). By the location lemma, therefore, ke % v (A ). With the
closed set K,:= Z( (A )) from Lemma 5 it follows that .

Sp(g) = {K: K closed, fxg* =0, Vfe £}, with supp(f) = K%}
CK0=Z(J’N 9). B

For w =1, 1 < g < 2, the Fourier transform of g*, ge £ = %%, is well
defined,

g@) = 11m j e~ " g(x)dx,

—) o0 _R
and the definition of the spectrum is equivalent to the usual definition.

THEOREM 7. For ge ¥, 1< q<2, we have Sp(g) = supp(d*).

Proof. (<) For ty¢supp(§*), AU,(t,) such that §*(t,) =0, Vie U, (o).
Defining h(x): = e*°* M, i, (x), we obtain (t,) # 0, supp (h) = U, (t,), implying
‘*ﬁ 0, and so g**h =0. .

(o) If t,¢Sp(g), then, for some &>0, §*h=(g*+h)" =0, Vhe £}
with supp (%) < U,(t,). For h(x) = "M !/ll (x) we have A(ty) # 0, supp(h)
< U,(t,). Therefore, g*h=0 implies §*(t,) =0, VieU,(t,), and so
to¢supp(§*). = -

For g > 2 or wy = (1+|x))", ge &%, the limit lim j'iRe‘i"‘g(x)dx does
not exist generally. But with kernel functions A, satisfying h,(x) » 1, 6 —» 0, one
can define the Fourier transform of the product g*h, (x). We use h, (x) = =™,
o > 0. Define for ge Z,,-

12) Ug (o,¢t, 0):= (g*e—al-l)/\ (t) — j'e"”‘g(x)e_"""dx.

Then the following theorem extends results of Herz [12], Beurling [3]
and Pollard [25] to the case of weight functions. We omit the somewhat
lengthy proof.

THEOREM 8. For ge %4, fe &, the following holds:
1. If Sp(g <k, K closed then hm,,_.oU (0,t,0)=0, Vt¢K.
2 IfKc (Sp(g)) is compact, then U,(o, t, 0) 7—-+0 uniformly on K.

3. Sp(g) = {t: lim, o U, (g, £, 0) # O}.

For the converse of Theorem 5 the following results hold:

THEOREM 9. (a) For Te(Cy (R)), the set of bounded Radon measures on R,
@eCy(R), the following synthesis condition holds:

supp (T) = Sp(T%) = Zgp = (T, 9} = 0.
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(b) If fe L and if F = {L,f yeRl} is #%-complete, 1 < q < 2, then the
condition (U,) holds:

(Vge &L with Sp(g)ch:g_: 0).

Proof. (a) The proof can be given as for Theorem 1.3.2 of Benedetto [1],
pp. 50-51.

(b) If ge %9, Sp(g) = Zf, then g*e #*. So (b) follows from (a).

A different argument is the following: Sp(g) = supp(§*) < Zf=g*f=0
=g*xf=0, which by %%completeness of & implies that g* =0,
ie. g=0. =

For g > 2 the synthesis condition does not hold generally, but there are
some results of Kinukawa [17]-[19], Herz [11] and Pollard [24].

THEOREM 10 (2) (cf. [19]). If fe £*, 1 < p < 2, and | f(x)IP < v(|x|) for some
ve £ ([0, ), v, then for ge L1n ¥* with Sp(g) < Zf it follows that
g*=f =0 (synthesis condition).

(b) (Herz [11]). If fe#', feZLip(), ge L% q =2, Sp(g) < Zf, then
) If fe#, feLiple) for some ¢>0 and F = {L,f: yeR'} s
Z9-complete, q =2, then the condition (U, holds: (Vgeg ©®NL? with
Sp(g) = Zf=g=0).

(d) (Pollard [24] for e = 1). If fe £, &> 0, [| /()| [x|"dx < o0 and if F
P1-complete, then for ge &7 with Sp(g) = Zf it follows that g = 0.

Remark. (d) follows from (c) by using the inequality:
F @) = [ (e™—e ™) f(x)dx]

‘—ltx —it'x

< [t~t1Ff Te— Ixl* | f ()l dx < M e =t f1f(x)| |xIPdx

if 0<e<1, ie, fe Lip(e).

2.3. Z%-closedness [.#%,_-completeness. The first result extends a theorem
of Beurling [4], who considered the case w = 1.

Tueorem 11. If fe%) and F ={L,f:yeR'} is Z%--complete,
1<qg< o, then F is ¥%--complete for q¢ <gq.
<

Proof If ¢ < q and ge £%-, g # 0 satisfies g*+f= 0, then define

h(x):= § g*(y)dy.

[xl < |y < [x+1]

By Holder’s inequality it is not hard to show that he %% -, considering the
cases g < o0 and g = oo separately.
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If g = oo, then

ess supp [h(x) w™ ! (x)| = ess supp| [ g*(x+y)wt(x)dy|

Iyl <1

<sup( | 1g*(x+ 19 w7 (x)dy)"*

* bl<1

<(sup wO)sup( [ lg* (eI w Cow() * dy)"

* <1

< |§|u<p1 W(y)sup( j lg* (x+y)|¢ (W(x+y))_q' dy)llq’

X yl<1

< (Isluplv\f(y)) g% gw- < 0. B
¥l < .

If g < oo, then for g*e £%- we have
flg* e (w() ™™ Z a,:= oo w) 4
x= [x] < Iyl < |x+1]

Since a, —— 0, there exists a constant K such that for any xeR,, x> K,

j lg* (y)I« (W(J’))_q’ dy < apg+ a4 17

[x| < |y <lx+y]

This implies

j:lh(x)lq(w(x))_qu;: [ 1 [ s0d we) dx
|x| > K |x] > K jx| <|y| <|x+1]
= [ | g* (x+y)dy|* (w(x)) “dx
Ix|>K |yl <1

< T Ity dyf™ (wix) Tdx

|x] > K jyl <1 )
we+y) \ Y i
< AR RIS * 74 d
< L Gwy) ) oo e
q/q

< Sup w () (I lj ii Cwe+y) 7 g e+ )Y dy) dx
x| >K|y|<1

< sop (W) [ f (weeky) " lg* ey dyd

Ix] > Kyl <1

= sup (wO))" | (w(x+) " lg* (x+ 17 dxdy

Iyl <1|x|>K

< sup W) lgllg.w- < .
vl <1

A similar inequality holds for the integral on {|x| < K}.
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Furthermore,
f*h(0) = [ f(x)h(@—x)dx = j(l lj g* (y+0—x)dy)dx
| lj [g* (y+0—x)f(x)dx = | Ij' frg*(y+0)dy=0.m
yvi<1 yl <1

The following generalized version of Theorem 11 holds:

THEOREM 12. Iffjegsfé,,]eJ and if F = {L, fj yeR', jel} is £4--com-
plete, 1 < q< o, then F is XY--complete for ¢ <q. m

Theorems 11 and 12 allow to introduce the closure-exponent y = 0
defined by
(13) y:=inf{p: F is ¥ closed for all p >y}

=inf{z: F is ¥%- complete for all g <(z—1)/z}.

For w=1 cf. Beurling [4]. -

The following theorem is a modification of Wiener’s original L?-theorem;
for a related version cf. [30].

THEOREM 13. (2) If q <2, fe %" and A(Zf) = 0, then F is L-complete.

b)If g=2, feZ'n#?, p:=gflg—1), F is L%complete, then
A(zZf) =

Proof. (a) If ge %%, g*=f =0, then §*f = (g* +f)* = 0 and, therefore,

=0 [4]. Since § e,?q {g* —0} is closed, ie., §* =0, and so g=0.

(b) Since & is #%-complete, it is also #P-closed. For h,, e £ with #,, = 1

on U, (0) and compact support there exist Ym 1 +--» Ymmm> Gm1> +++> mmn €C
with :

"hm—zam i Ly, Jf”P ey 0
= ”ﬁm Z amjexp ("ym J')f“q "E Zam Jexp (!ym.})f“,dp _,
= A(an Ua0) < [ lhu(olrdr
Zz

< [ Vonl0) = S mexpitym )| F0)dt
Zf
+ [ [Yam,;exp (itym ) f@)'dt >0  for n—co
zf

= 1(2f) =

Remark. Using Theorem 12 one can reduce Theorem 13 to the
well-known case g = 2, i.e.

(a) F is P%complete, g > 2=F is E’z-complete-bl(Zf )=
(b) If g <2, A(Zf) =0=>F is L*-complete = F is ,?q-complete
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The following result is well known.
THEOREM 14. If fe %!, then F is L'-complete<(Zf)° = .

Proof. (=) If (Zf)° # @, then U, (x,) < Zf for some & > 0 and x,. We can
construct he #! with A #£0, supp(h) = U,(x,) (e.g. h = exp[ixo(*)] Me2¥y)-
This implies that (f*h(£))" = f(£)h(t) =0, a contradiction.

(<) If (Zf)° = @, then (Zf)° is dense in R'. If he £*, fxh =0, then
fh =0. Therefore, h(t) = 0, Vte(Zf). Since heg/! is continuous, we have
k=0 and, therefore, h=0. =

For ge(2, o) the following result is due to Herz [11] for a = 0. For the
proof it is shown that the uniqueness condition (U,) holds.

THEOREM 15 (Herz [11], Theorem 4). If q =2, fe %L, and if, for each
E c Zf compact, .
A(E+ UG(O)) = O(c! ~2a*2%),
then F is ¥% _-complete.

" Proof. For the proof it is enough to establish the uniqueness condition
for elements g with compact spectrum.

LEMMA 6. Let fe L ; if for all ge %% with Sp(g) compact, Sp(g) < Zf
implies g = 0, then (U,) holds.

Proof Define, for ge #%. with Sp(g) = Zf, g,:= M o2 +11% g; then

gne —g-’o?v; and SP (gn) = Supp ((Mn ¢[¢/2+1])A g") c Supp (g) iS compaCts i'e'a
Sp(g,) = Sp(g) = Zf. Therefore, g, =0, Vn. Since g, —g, also g=0. =

Now for ge #4_ with Sp(g) = Zf compact the following holds:
Uy (o, t, OPdt = O (¥~ 1728,
where I (o, t, y):=fe” " e~ g (x)dx.
Indeed,
fUgy. (o, £, 0)2dt = [|f e 2671 Myyp ¥, (x) g (x) dx|?dt
=2n {2671 M2 ¥, (x) g (x)|?dt
< C2n gl gwe(l26 7 M o2 ¥ellwa2aa~ )’
= C21 )l g (f o (09) W (2x/0) 2 2/0) dx)' ~
< C2n|gllgm. (2/e)' " C (2f0)"
X ([ () w, (2@~ D dx)' 72 = 0 (g2~ 172,
By the Cauchy-Schwarz inequality we obtain
Mo (o, t, 0)dt < ([ (o, £, 0)2de)""* A(Sp(gMopz ()

< 0(0% 129 A(Sp(g+ U, ()" = o(1)
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by our assumption. For the first inequality we use the relation

Sp(gh) = Sp(g)—Sp(h),

valid for g, he Z3.. Now we obtain

lg (x)f = ,}ﬂmn [(2/0) M o2, (x) g (x)} = ‘}111% (1/2m)| (2/0) (M 2% ,9)" (x)|
= lim (1/2m) | € Iy, (0, , 0)dt| < lim (1/21) IL,y. (@, £, O}l dt = 0. =

As a corollary we obtain

COROLLARY 1. If fe%PL and Zf is countable discrete, then F is
L -complete for all g < 1/a.

Proof. Each compact set E < Zf is finite. Therefore,
ME+U,0)=0h) =o' "?1*2)=0(1) for g<1/a. =
In particular, if ¢ = 0, fe £*, and if Zf is countable discrete, then Z is
Fi-complete for all g < oo. '
The following result is due to Newman [21].

THEOREM 16. Let pe(1,2], a:=2(p—1)p =:2/q, fe & . If Zf has the
strong a-measure O, then F is ¥-complete.
Remind that § = R' closed has strong a-measure zero if

lim n'*~ 1y, =0 for all m,

where r, is the Lebesgue measure of the complement in [ —m, m] of the union
of the n largest intervals in SN[ —m, m].
The proof of Theorem 16 can be given in the following way:

1. For all he#'n %P there exists ke #?, ke #ip(l), such that
Ik;*h—h|,—0 and k,(z) =0 for all t with h(t) =0, i > i,.

The construction uses the condition on the strong o-measure of Zf.

2. Step 1 allows us to apply Theorem 10 (b) of Herz

Beurling proved the following result in terms of the Hausdorff dimension

of Zf. Our proof is based on the idea of Beurling but makes some arguments
a bit more explicit.

Tueorem 17 (Beurling [4]). (@) If ¢ = 2 and dim(Zf) < 2/q, then & is
Li-complete.
(b) If Zf is countable, then dim(Zf) = 0.

Proof. (a) If ge £%, g # 0 satisfies f*g* =0, then Sp(g) c Zf, and
«:=dim(Zf) < 2/g=p > 2/2—0)=3: p > 2/2~P) > 2/(2—a).
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By an approximation argument used before w.lg. Sp(g) is compact and
ge ¥,
If g =2, then

(9P P dx < | lglalxf~tdx+ | IgGoiPdx < co.

x| <1 |} =1

If ¢ > 2, then
flgClP P tax < | (lgl) I tdx+ | 1P g(alPdx

Ixf <1 x| =1
<K( ] lgGaezaxf"'( | pefer-orahax)e O
xI=1 Ixj=1

<SK+gl2( | rd)* <o, ri=
|x| =1 qg—2

Therefore, with ¢; —(x):= |x|’~* the spectral measure Sy, ,(Sp(g)) is positive,
and Sy, _,(Sp(9)) = K¢, (Sp(g)) > 0 (cf. [3], théoréme 1), where the capacity K,
is defined for A = R by _

Ky (4) = (inf {f | ¢ (x—y) du(x) dpe (y):
i a probability measure with p(4) = 1})_1

So there exists a probability measure peM 1(Sp(g)) with

[flx—y"8du(x)dp(y) > 0.

This implies the existence of E = Sp(g) such that dim (E) > o. For the proof
choose E < Sp(g) and KeN with p(E) >0 and

flx—yI™#du(y) < K < oo for all xeE.
E

Let u; be the restriction on E, K':= K™ ' ug(E) and JU,(x; a covering of
E with balls of radius o; < 0. Then

lo'il—ﬂNE (Um- (xi)) = Iail_ﬁlu'E(Ua’i (x)n E) < j Ix,-—yl'”dﬂ )

EnUg (x)
< £|xi—yl””d#(y) <K,
implying that
0 <K' =K' p(B) < K™ T ptg (U (5)) < Tl .

Therefore, dim(E) > f and a contradiction follows from the inequalities
(14) ~ dim(Zf) > dim(Sp{(g)) > dim(E) > f > a. -
(b) is well known. &
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Remarks. (a) As a consequence of the results of this section we have the
following classes of #!-functions:

1. Zf =B« F is ¥%complete for all ge[l, «o];

Zf is countable = # is #%-complete for all g < co (but not g = );
AMZf) =0=>F is ¥>-complete;

(ZfY = @=F is #'-complete;

(Zf) # @=F is not ¥I-complete for any g;

there are some further specific criteria for #?-completeness in terms of
the “dimension” of Zf.

By a result of Pollard [25] and Sasvari [29] for any 4 < R! closed there
exists fe #! with Zf = A. If 0¢ A, then f can be chosen as a probability
density. If 4 is symmetric, 0¢ A, then f can be chosen in %3,

(b) Segal [30] explicitly constructs fe.#'u £P for any pe(l, 2) with
A(Zf) = 0 but F not ¥*complete, 1/p+1/q = 1, ie., F is £>-complete but
not #%complete. Zf is chosen as a Cantor set (cf. also [28] and [21] for an
explicit construction).

(c) With Ae %! closed, 4'(4) > 0, but A nowhere dense, we find fe ¥
with Zf = A such that & is #'-complete but & is not ¥*-complete. m

N AW

3. %%(#)-COMPLETENESS

We now consider the question of #4(%)-completeness of &, ie.
(15) Vg with “g(x)l“Lyf(x)dx < o0, Vy and fxg* =0 implies g = 0.

In contrast to (15) the completeness condition investigated so far was
concerned instead %7 or £%- with weight functions w. Since
P = PP(F)c LUF) for all ge[1, o], the condition Zf = & is necessary
for £%(F)-completeness. The question now is to find additional conditions on
f to ensure that Zf = @ is sufficient for %9 (F)- completeness Define, for any
h: R'— R' measurable as in (6),

(16) 2:= {g: R >R"; ||gh|, < o}."

LEMMA 7. For h,l: R*—R!, ¢ > 0, the following holds:
(@) 1h(x) < clix), Vx= Z{ < ¥}, Vqe[l, o]
(i) A~ te2?, 1/p+1/q= 1=>$‘1 c i

Proof. (i) is trivial.
(i) If ge £, then by Hoélder’s inequality we obtain

lgllan = flgC) )™t () h(x)ldx < gl 1A, < 0. m
LemMa 8. If w is a weight function, q, q'€[1, oc]. Then:
L P P LYF).

sue
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Proof. (<) follows from £ (F) < £4,,.
(=) If ge #9,-, then w(x)w(y) = w(x+y) implies

flgGe+ It (wx)) Tdx < flgGe+ )2 (wx+y) “w(y)dx
= (flg )T w(x)"Tdx) w(y)? < o0 = L,ge L4- = [lg () f(x—y)dx
=[lgx+yI¥ fx)dx < 0 =>ge L7 (F). m

We obtain the following necessary conditions for #?(%)-completeness.

THEOREM 18. For any weight function w the following holds:

Q) If |fIY< Cw™! and if F is ¥V(F)-complete, then F is L4,--com-
plete.

(i) If (fw) e ZLP, then L (F)-completeness of F implies &L%,--com-
pleteness.

Proof. (i) By Lemma 7, &£%- < g"fl,q; so, by Lemma 8, ¥%,- < £4(%).
Therefore, #?(F)-completeness of &# implies £%--completeness.

(i) By Lemma 7, &4 < &%, and so, by Lemma 8, #4- < Z*(¥). So

%4 _-completeness is a consequence of 31(.9"' )-completeness. m

THEOREM 19. (i) If & is %%--complete and c|f|'" = w™?, then &F is
L1(F)-complete.

(i) If & is LL--complete and (f119w)~ '€ &P, then F is LU (F )-complete.

Proof. (i) By Lemma 1 with h:=w™! and l:=f we have £%(¥)c
< L%ya « L%,-, which implies (i). o

(ii) For h:=w™! and I =f' from Lemmas 7 and 8 it follows that
h/l=(f”“w)‘ e Z?, and so LUF) < L% < &L,,-. Therefore, &,,--com-
pleteness of & implies ¥?(%)-completeness. =

CoOROLLARY 1. If fwe %! and

@ CifIYezw™! or

(b) f~Yaw e P? 1/p+1/g=1,
then: F is L4 (F)-complete<>Zf = @.

Proof. We have

Zf = Q<= F is £L--complete
=% is ¥%--complete, Vqe[l, o] (by Theorem 11)
=% is ¥4(F)-complete (by Theorem 19)

=>F is ¥ -complete=>Zf=0. =

- COROLLARY 2. If # = {L,f;: yeR', jeJ} and fwe$1 foralljeJ, and if -

for some j,eJ

11 — PAMS 13.2
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@) |fiolwl*= C >0 or
(b) fiPaw Pept,’
then: & is LUF)-complete < ﬂjE,ij =0.
Proof. By the results of Section 2, # is 3‘,1”--complete forall g=>1if
(ies Zf;, = @. If ,7‘};éqc Z4., then
LUF) = () L L.
jedJ 4y

The same relation holds for .£4,, < #L_. This implies Corollary 2. m
. . Jo

4. EXAMPLES

4.1. Uniform distribution. For r > 0 let

_f12r, X<,
e = {0, x| > r.
Then

f(6) = (siner)er,

ie, Zf is countable. This implies that % is not ,?m—cbmplete, F i
Z?-complete for 1 < g < 0. Therefore, & is not Z?(F)-complete for any

" gell, o]

4.2. Laplace distribution. For ¢ > 0 let
f(x) = @2o)"te e,
Then -
f=Q0+0?tH)7", ie, Zf=0.

Therefore, & is #%-complete, 1 < g < 0. For 1 < g < oo define w, (x) = ei*l4°;
then there exists C = C, with | f|'“w, > C and w,fe #*. By Theorem 19, & is
ZL1(F)-complete. For the case g = 1 the #?(%)-completeness has been shown
by a different method by Oosterhoff and Schriever [23].

4.3. Normal distribution. Let
S0 = e,
a\/ﬁ '
Then
fOy=e*? e, Zf=0.

Therefore, # is #9-complete for all ge[1, co]. By our method with ‘weight
functions we cannot decide the #?(F)-completeness, since f is rapidly
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decreasing. The £4(%)-completeness for ge[1, co] here follows from the
uniqueness of Laplace transforms. Related completeness results can also be
proved for other densities based on analyticity properties as in the generalized
Miintz-Szasz theorem (cf. [5], [16]).

44. Cauchy distribution. Let
f(x) = 1/ (1+x3).
Then
fy=eM, e, Zf=0

and, therefore, # is ¥%complete for ge[1, o0]. For w,(x) = (1+x])* we
have |f]Y4w, > C, >0, fw,e ' for qe(2, o]. This implies that & is
&(F)-complete for all g > 2.

4.5. Gammma distribution. For 4, 8 > 0, let

0* 0
__ -1 ,—8x 2 0.
Then
ft) = A +it/6)~ 2.

Since the complex zeros of f are Z.f = {—0/i}, Zf = @ and & is #4-complete

for ge[1, co]. By our method we cannot decide the £?(#)-completeness.
4.6. Logarithmic decrease (Fourier transforms from [23]). Let

1

2
2nln(1 +1/x2).

Jx) =

Then

\ tTi(l+e7), t#£0,
t —
fa) {1, Lo
So Zf = @; ie., F is ¥%complete for ge[1, oo]. For g > 2, o, = 2(q—1)/g,
and w,(x) = (1+]x])>"* we have
| .
f)w,(x) = Eln(l +1/x%) (1+1x]) £ and f1(x)lw,(x)| = C.

2
—_—
A+ Il

T
£C

Therefore, for 2 < g < 00, & is L(F)-complete.
4.7. Exponential decrease. Let

f(x) = _1_ |x|—1/2 e ¥l

2/x
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Then
(t)—\/_(1+t2) Y1+ /1422, Zf =g,

which implies #%-completeness for ge[1, 0]. For ge(1, o) define

1+
W, (x): = exp [T 4 |x|];

1 _
x|~ exp[3(g—1)Ix[]e £,
Y

then
fx)w,(x) =

LfG) ™7 w, ()] 77 = (2 /TPl x|1%4 (exp [3(1/g—1)|x|]) e £*
and, consequently, # is %1(%)-complete.

4.8. Several densities.
(a) Let

4 1 ‘ 1
fl(x)=m: fz( ) (1+(1 x)2+ (1+x)2>a

then ‘
fi@y=2sin@/d+1d)e™™,  f,0) = cos e,

which implies Zf, N Zf, = @. For q > 2 and o, = 2/q and w,, (x) = (1+ |x])*
we have

C, 1

CZ 1
T’

lfl (X) Wa, (X)l = Weg

and  |f, ()w,, (x)] <

and for j, =2 we obtain
1+ |x? 1+ x| )

1
q —
|fz (x)l Iwaq (x)l (1 + (1 x)z 1+ (1 +X)2
for some constants C,, C,, C > 0. By Corollary 2, # = {L,f:yeR',i=1,2}
is LU (F)-complete for q > 2. ,
(b) Let

_ 2)? -
f1 (x) = |x|1/2e lxl’ fz (x) = £|x|1/2 e 2le;
\/’

T
then

filn = T 2)3/4 cos (%arc tanltl), fo@) = (\/5)3 cos Garc-tan”

(2+12)3 2

z);




Completeness in location families 341

Therefore Zf, N Zf, = @. For w(x):= e?3* we have

w(x)f1 (x) = |x|1/2 e 131 631, w(x)f2 (x) = [xi”z e 43 leg\/ﬁegl_
) T

For g > 3/2 we get p/2qg < 1, 1/4—2/3 <0, and for j, =2 we obtain
w VP (x) f P (x) = |x| TP *exp [(1/g—2/3) pIx[1e £*.
By Corollary 2, # = {L,f;: yeR',i=1, 2} is #%(¥)-complete for g > 3/2.

5. SOME FINAL REMARKS ON ESTIMATION THEORY

Some basic characterization results for UMV-estimators in location
families are proved in Bondesson [6], which are based on the Tauberian
conditions g* +f = 0=>Sp (g) = Zf (cf. Theorem 6 and [6], Lemma 2.1) as well
as on some synthesis conditions. Bondesson considers also estimators satisfying
some weight conditions. A basic synthesis result used by Bondesson is the
following extension of a result due to Hormander [14] for N =0:

If fe Ll .. ge 2, a>0,andifSp(g) = (¥=0Z(f¥), then fxg* =0.

Furthermore, Bondesson proves that for distributions with an entire
analytic characteristic function a nonperiodic UM V-estimator in £ can exist
only for normal distributions or Dirac distributions.

Bounded completeness in connection with the Wiener closure theorem was
used by Ghosh and Singh [10]. The following result refines their Theorem 2.1.

THEOREM 20. If the density fe %L for some NeN, Zf = O and
Dsn-={ge ¥y Eg=0,0eR'},

then

id—E,X} if N>0.
Proof. If geD; x-, then for y, feR!
Jlgx+y)—g(x)—y)f(x—0)dx = Eg.yg—Eogg—y = 0.

Sinte F = {L,f: 0eR'} is L3 -complete, we obtain Leg =g+0, 0cR' as.
Therefore, g (x) = x+k for all x and some ke R'. But ge £3_ <N > 0; so we
obtain one inclusion. The other inclusion is obvious. &

%] if N=20,
DJN_={ f
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