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Abstract. In this paper we study stochastic processes in R6nyi 
conditional probability spaces. We prove a conditional analogue of the 
Kolmogorov fundamental theorem. 

0. htrodwction. The universally recognized axiomatic foundations of 
probability theory were given by A, N. Kolmogorov in 1933. The majority of 
stochastic problems can be considered within this general framework. In some 
cases, however, Kolmogorov's approach may fail. For instance, we encounter 
such a situation when we have to deal with unbounded measures. The use of 
unbounded measures cannot be justified in the theory of Kolmogorov. Hence 
one cannot speak about the uniform probability distribution on the whole real 
line or about the random choice of integers with equal non-zero probability. 

A new approach to probability theory which overcomes these dificulties 
was proposed in 1955 by Alfred RCnyi [4]. He linked the measure-theoretic 
concepts of Kolmogorov with the ideas of other mathematicians who regarded 
the notion of conditional probability as the basic one. 

RCnyi defines the conditional probability as a function P: E x  B-t[O, 11, 
where E is a G-algebra of subsets of a given set (space of random events) and 
&f is a non-empty subfamily of C (space of conditions). He assumes that P (. 13) 
is a probability measure such that P(BI3) = 1 for every BEB and, moreover, 
the family of probability measures defined in this way satisfies a natural 
compatibility condition. In RCnyi's theory, unbounded measures are used 
to construct an important class of conditional probability spaces (see 
Example 1.3). 

In a series of papers (see, e.g., [4]-[6]) and in a book [7] RCnyi presented 
a theory of conditional probability spaces and gave a lot of applications. He 
claimed the study of stochastic processes as one of the reasons to develop. a new 
theory. However, he defined only random variables and their distributions but 
not a stochastic process. The present paper in which we study stochastic 
processes in conditional probability spaces may be treated as a natural 



expansion of Rknyi's ideas. In the sequel, following other authors, we shall call 
conditional probability spaces Rknyi spaces. 

The main aim of the present paper is to prove a conditional probability 
analogue of the Kolmogorov fundamental theorem. We shall see that the 
situation is a bit more complicated in the case of the Rknyi spaces. We shall 
give two versions of this theorem. The idea of the proof is similar to the 
classical one but several alterations are necessary. 

The paper is organized as follows. In Section 1 we introduce the basic 
notions of the theory. In Section 2 we define random variables and stochastic 
processes in Renyi spaces. We show that this definition imposes some 
restrictions on the construction of stochastic processes. We devote Section 3 to 
the proof of our main result - the Kolmogorov fundamental theorem for 
Renyi spaces. An essential step of the proof is the theorem on the extension of 
a conditional probability from an algebra to the a-algebra generated by it. In 
Section 4 we prove a version of the Kolmogorov fundamental theorem for the 
Renyi spaces generated by measures. 

1. Preliminaries. We start with the definition of a RCnyi space. 

DEFINITION 1.1. By a RPnyi space we mean a system [0, E ,  B,  PI, where 
P is an arbitrary set (space of elementary events), E is a 0-algebra of subsets 
of 0 (space of random events), 92 is a non-empty subfamily of C (space of 
conditions), and P is a non-negative map defined on C x B (conditionaZ 
probability), which fulfills the following conditions: 

( I )  P(B1B) = 1 for every B E B ;  
(11) P (U:= A, I B)  = zy= P (A,  I B) for every disjoint family (A,]  ,,,, 

where A,  EC, for n E N ,  and for every B E B ;  
(111) P ( A n  BIC) = P ( A I B n  C).P(BlC) for every A, B E E  and C E B  such 

that B n C E 9 (see [4], p. 289). 

In the sequel we shall need the following equivalent definition of a Renyi 
space (see also [I] and [2]). 

PROPOSI~ON 1.2. Let (a, Z) be a measurable space, let 98 be a nun-empty 
subfamily of Z1, and let P be a non-negative map defined on E x 9. Then 
[0, C ,  B ,  PI is a Rtnyi space if and only if the following conditions are 
satisfied : 

( I )  P (BIB) = 1 for every B E 9; 
(11') PtIB) is a probability measure on (a, X) for every B EB; 

(111') P(A1C) = P(A1B) -P(BI C )  for every A E C ,  B ,  C E ~  such that 
A c B c C .  

The proof is easy and is left to the reader. 

The following example of a RCnyi space seems to be the most important 
from the point of view of applications. . .  

EXAMPLE 1.3. If m is a measure on a measurable space (a, C), then 
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for every non-empty family 3 c (BE Z: 0 < m(B) < 4- m) and for the map 
P defined on Z x49 by the formula 

m ( A n  B) 
P ( A [ B ) : =  for A E C  and B E @  

(B)  

the system B:= [a, C, a,  PI is a Rknyi space (see 141, p. 304). 

This example motivates the following definition: 

DEPINIT~N 1.4. The Rknyi space B constructed above is called the Rinyi 
space generated by the measure m. We shall say that 9 is strictly generated h y  
the measure m if the equality 9 = (3 F E: 0 < m (3) < + co) holds. 

Remark  1.5. A necessary and sufficient condition that the measure 
m generates some Renyi space is that { B E  Z: 0 < m (B) < + m) # 0. It is 
satisfied if, for example, m is a non-zero and cr-finite measure. It follows from 
Proposition 1.2 that each usual (Kolrnogorov) probability space may be treated 
as a Rtnyi space taking m equal to probability measure. 

We mention now a special case of Definition 1.4. 

DEFINITION 1.6. The uniform Rdnyi space on R" is a RCnyi space generated 
by the Lebesgue measure rn, on (Rn,  B (R")), where B (Rn) is the Borel 
g-algebra on R". 

DEFINITION 1.7. We shall say that the Rknyi space [O, C, B * ,  P*] is an 
extension of the RCnyi space [ S Z ,  C ,  a, PI if c &I* and P"(A(B)  = P ( A ( 3 )  
for all A E Z  and B E B .  

2. Random variables and stochastic processes. In [4] and [7] RCnyi defined 
random variables on conditional probability spaces and their distributions. 
Our definition is slightly different. 

PROPOSITION 2.1. Let [Q, X, 9, PI be a Rbnyi space, X a topological space, 
B ( X )  the Borel a-algebra on X ,  <: 52 + X a nzeasurable map such that 

(1) BE:= { C € B ( X ) :  5 - I  ( C ) E ~ )  # 0 

and @<: 3 ( X )  x + R a map defined by the formula 

for B E B ( X )  and C E & I ~ .  Then [ X ,  B ( X ) ,  &Ir, @,I is a Rknyi space (see [4], 
p. 295). 

DEFINITION 2.2. The map 5 defined above will be called a Rdnyi 
random variable, the map cP5 the distribution of the random variable <, and 
[ X ,  B ( X ) ,  g5, the Rdnyi space generated by the random variable 5 ;  if 
X = Rn, then cDt will be called a uniform distribution whenever 
[Rn,  B(Rn), &Ir ,  is uniform (see Definition 1.6). 



DEFINITION 2.3. Let [a, 2,  49, PI be a Rknyi space, let X be a topological 
space, and let T be an arbitrary set (usually T is an interval in N or R). A map 
x: T x G! -t X will be called a Rtnyi stochastic process if, for each t E T, the map 
x, : = x ( t ,  .): O-t X is a Renyi random variable. 

PRQPOSI~ON 2.4. Let x :  T x -r X be a Rdnyi stochastic process. Then 
(xt,, . . ., xtn): Q+Xn is a Rinyi random variable. 

Proof. Let  EN and t ,,..., ~ , E T  It is obvious that (xt ,,..., xtn) is 
measurable, so it remains to prove that a( ,,,,,.,,n, # 0. We know that B,, 
is non-empty as x,, is a R6nyi random variable. Hence there exists CE B ( X )  
such that X, (C) E $.$. Moreover, 

..., x ~ , ) - ' ( c x x x  ... X ~ = X ; ' ( C )  and C x X x  ... xX€B(Xn). 

l-'hus a ( X t  xtn, is non-empty. 

This leads to the following definition: 

DEFINITION 2.5. The distribution of the R6nyi random variable x,,,.,,, 
: = (x, , ,  . . ., x,,) wiIl be called the n-dimensional joint distribution of the RLnyi 
stochastic process x. We shall denote it by @xt,...x,n. The respective space of 
conditions will be denoted by x,l,,,x,n. 

The next proposition shows that the notion of a RCnyi stochastic process 
is simply a generalization of the usual notion of a stochastic process. 

PROPOSI~ON 2.6. Let [Q,  Z, PI be a probability space, X a topological 
space, T an arbitrary set, and x: T x  O+X a stochastic process. Then x is 
a Rtnyi stochastic process with respect to the Rdnyi space [Q, E, B, P]  strictly 
generated by the measure P on (Q, E). 

P r o  of. Let t E T. It is enough to prove that the random variable x, 
fulfills condition (1) of Proposition 2.1. We have x;' (X) = i2 E 9. Hence 
W # B . .  

The following proposition shows that Definition 2.3 imposes some 
restrictions on the construction of a stochastic process. 

PROPOSITION 2.7. If [a, Z, B, PI is a Rinyi space, T is an arbitrary set, 
and x: T x L? + X is a Rtnyi stochastic process, then 

( 1 )  any n-dimensional joint distribution of the process x is not unform 
for n 2 2; 

(2) if for some n E N and t,, . . . , t ,  E T the Rtnyi space generated by 
the random variable x,, ...,,, is an extension of the ungorm RCnyi space 
on Rn, then 

Bxtl...Xtk n { A E  B (R~):  0 < mk (A) c + KJ) = 0 . 

for each  EN, k < n,  where m, is the Lebesgue measure on Rk. 
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Proof.  (1) Let  EN, n 2 2, and t , ,  ..., t , ~  T. Choose any set A E G ? ~ , ~ .  
Then x;' ( A )  E &?. Hence and from the equality x; ' ( A )  = x;,!. t n  ( A  x Rn") we 
deduce that A x Rn-I  E @ xt,..,. . On the other hand, mn ( A  x RnL1) = 0 or 
rn, ( A  x Rn-') = + oo, and so t h e " ~ b n ~ i  space generated by the random variable 
xtl, .  . tn cannot be uniform. 

(2) We start with the following lemma (see [2], Remark 2.1). 

LEMMA. Let [a, E l  9#, PI be a RCnyi space, let (B,),,, be an increasing 
sequence of sets *om 3 such that P (B,] B, + ,) > 0 fir each n E N,  and Iet 

_ ._ . 3 = U,,,,B,E~?. Then 

Now let n E  N, and t,, . . . , tn E T. We shall argue by contradiction. Let us 
assume that [Rn, B (R3,  &? i.tn ] is an extension of the uniform space on 
Wn and there exist k E N, k < n, and A E ,,, such that 0 < m, (A) < + a. Then, 
as in the proof of (I), we can show that B : = A x R n - k ~ B x , l . , . t n .  Put 
B,: = A x (- m, for m EN. Since rn, ( B ~ )  = (2my-k.rn, ( A )  we get 
0 < m,(B,) < + m, and so B,EW ,tl..,,n for  EN. Then 

I , Hence 

I On the other hand, the sequence {Bm}m,N fulfills the hypothesis of the 
I Lemma, which is a contradiction. s 
j 

4 The above proposition implies immediately the following corollary. 
COROLLARY 2.8. There is no RCnyi stochastic process such that for each 

n E N the RCnyi space of its n-dimensional joint distribution is an extension of the 
un$om Rtnyi space on R". 

.. 

3. Kolmogorov fundamental theorem for RCnyi spaces. The main objective 
of this section is to prove two versions of the Kolmogorov fundamental 
theorem for RCnyi spaces. We shall need the following theorem, which is 
a generalization of the theorem on the extension of a probability measure from 
an algebra to the a-algebra. 

THEOREM 3.1 (on the extension of conditional probability). Assume that 
i2 is an arbitrary set, 9 is an algebra of subsets of Dl is a non-empty subfamily 
of 9, and P is a non-negative map deJined on 9 x 93 which fuEJiEls the foilowing 
conditions: . - . . . - 

( 1 )  P (01 B) = 1 for every B ~9#; 



Proof.  Let a:=  ( w :  m: T + X } .  For all  EN, t =(t , ,  ..., t n ) ~ T ( " ' ,  
A €B(Xn) we define the set 

C ( t ,  A )  = C ( t l ,  ..., t,, A):= ( W E &  (m(t l ) ,  ..., o ( ~ , , ) ) E A )  

which will be called the cylindrical set in C2 with the basin A over the coordinates 
t , ,  . .., t,. The class of all cylindrical sets will be denoted by 8. 

The following lemmas are easy to prove: 

LEMMA 1. Let C(p l .  ..., P k ,  A), C ( B ~ ,  qvy B ) g g ,  and let 

Then there exist 4 E Sk,  $ E S,, and CE B(Xr)  such that p$~i) = pj, = q*(i) for 
i = 1 ,  . , ., r and $(A)  = C x xkL', $(B) = C x XU-'. Moreouer, the form of the 
permutations 4 and $ does not depend on the particular choice of the sets A and 
B, but only on the sequences -{ply .. ., p,), (q,,  ..., q") and {p j l ,  ..., pi,). 

LEMMA 2. Let nigh', C(t2, ..., t:,, A i ) € S  for i =  1 ,..., k,  let  EN, 
(pr , . . ., pn) E T'"), and 

Then there exist sets B,  , . . . , B, E B (Xn) such that 

 ti ,..., t f i , A i ) = C ( p l  ,..., pn,Bi) for i = 1 ,  ..., k .  

Moreover, for each i = 1 ,  . . ., k, 3, is of the form B, = 5, (Ai  x Xn-"'), where 
n, E S, and px;,(ml = t i  for m = I, . . ., ni. 

LEMMA 3. Let C(q,  ..., sm, B)E$ and let {CnInEN be an arbitrary de- 
creasing sequence of the cylindrical sets. Then there exist an injective (but not 
necessarily infinite) sequence (p,} , , ,  of elements from T, an increasing map 
k :  N ,  m 1 . . } and, for each n E  N ,  sets B,, D,EB(x~.)  such that 
( P I ,  . . . y  pm) = (31, ..., sm) and 

Moreover, we have D, c Dn x Xku-kn,  Bv = B,, x xk"-'" = 3 x xkvPrn 
for n,  V E N ,  n <  v. 

Applying Lemma 2 it is easy to show that the class 9 of all cylindrical sets 
forms an algebra of subsets of D. 

Now we define a subfamily of 9, which will be the space of conditions of 
the Rknyi space to be defined. Put 

. . 

B : =  ( C ( t ,  B):  EN, ~ E T ( ' ) ' ) ,  BE&$). 
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Let now C, E 9 and C, €9. Then there exist n, m E N, t E T["), s E T("), 
A E  B(Xn) ,   BE^, such that C, = Ct t ,  A) and C, = C ( s ,  B). Let  EN, p~ T(k) 
and 

i t l ,  .-., t n ) ~ { s l ,  - - ' r s m }  {PI, ..., ~ k ) .  

Then, according to Lemma 2, there exist A, B € B ( X k )  such that C, = C ( p ,  4 
and C, = C (p, B). Let us define P ( C ,  I C,) by the formula 

I 

We shall prove that P is well defined. For this purpose it is sufficient to 
show that 

(i) E E ~ ~ ;  
(ii) the definition does not depend on the choice of a sequence p;  
(iii) the definition does not depend on the form of C, and C, .  

(i) We know that BE$.@, and B i s  of the form B = E(B x Xk-"), where 
x E S, is the permutation described in Lemma 2. Hence, and by assumption (2) 
of Theorem 3.2, we have 

According to assumption (I) of Theorem 3.2 we have B = il (B  x Xk  -m) E gP.  

(ii) Let P E  T ( k )  and q E T('), where k ,  V E N ,  and let 

Moreover, let A,, B, E B (xk), A2, B, E B (XU), C (t ,  A) = C ( p ,  A,) = C ( q  , A2) 
and C(s, B) = C ( p ,  B,) = C (q,  B,). Then, according to (i), B1 E Bp and 
B, E gq. Hence, by Lemma 1, there exist r E N, r 2 m, 4 E Shy I) E SU such that 
ps(i) = qrtcir for i = 1, .. ., r and p+(i) = si for i = 1, . . ., m and there exist 
A*, B* E B ( X ~  such that $(Al)  = A* x Xk-',  $(B,)  = B* x Xk-', $(A,) 
= A* x Xu-' and fi(B,) = B* x Xu-'. 

Let us note that the following equalities hold: 

Hence B* x Xk-" = B x Xk-", and so B* = B x Xr-". Since B E  a,, we 
have 

B* ~ g s ( ~ )  ... s ( r n ) p ( + ( n + ~ ) )  ... p(+(r ) )  = 9 4 ~ .  

Then we obtain 

a p ( A 1  IB1) = (A* x Xk-r  ) I $ - '  (B* x Xk-')) 

= @$(,,(A* x xk-' 1 B* x xk-7 = @p(4(l))...p(@(r))(A* IB*) 

12 - PAMS 13.2 



as required. 

(iii) Let now n, k, m, v E N,  t E T("), w E Fk), s E Tfml, u E T(*, A E B(Xn), 
D  E B(Xk) ,  3 €3, and E ~a,. Let us assume that C (t, A) = C (w, D) and 
C(s7 3) = C(u, E). 

According to Lemma 2 there exist r E N ,  p E T(') and A, ,  B, , D l ,  El E B  ( X r )  
such that C ( t ,  A) = C ( p ,  A,), C ( s ,  3) = C ( p ,  B,), C(w, D) = C b ,  Dl) and 
C ( u , E ) =  C ( p ,  E,). Hence A, =Dl and B, = E , .  Then @,(A,IB,)= 
= @,(Dl lE1). This, according to (ii), completes the proof of the consistency of 
the definition. 

We now prove that the map P defined above fulfills assumptions (lk(5) of 
Theorem 3.1. 

(1) Let m E N, s E Fm), B EB,. Since 61 = C(s,  Xm), we obtain 

(2) Let n, v, W E N ,  t~  T("), r f  T("), S E  T("'), AEB(X") ,  DEB(X'],  B f B ,  
and C (t, A) n C(p, D) = 0. According to Lemma 2  there exist k E N, p E T(kj 
such that 

- - - >  tn) ~ { r l ,  - - - >  r V ) u { ~ l ,  -.*s ~ r n }  { P I ,  * m a l  pk) 

and A, 6 E B (Xk), BE $3, such that 

c t t , A ) = C ( p , 4 ,  C ( r , D ) = C ( p , D ) ,  C ( s , B ) = C ( p , B ) .  

As C ( p , & n C ( p , Q = O ,  we have A n D = 0 .  Thus 

P(C( t ,  A ) u  C ( r ,  D)lC(s,  B)) = P(C(p,  KwD) IC(p ,  B)) 
= @,(A u DIE) = (A1 B) + @, (DIB) 

= P(C( t ,  All C(s ,  3 ) ) + ~ ( C ( r ,  D)I C(s ,  B)), 

as required. 

(4) Let rn E N ,  s E T(m) and B E  g,. Then 

P(C(s ,  B)IC(s,  B)) = @,(BIB) = 1.  

(5) Let t  E T"), s E T("), Y E  TIv', A E B (X*), .E3 E a,, D E 93, and C ( t ,  A) c 
c C (s, B) c C(Y,  D). By  Lemma 2 there exist k E N ,  p E Fk) such that 

and there exist A E B (Xk )  and I?, B E  gp such that 
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As C ( P ,  A) c CClp, B) c C(p, @, we have A c  B c  D. Thus 

P ( C ( t ,  A)I C ( P ,  D))  = @p(AID) = C D ~ ( A I B ) - @ ~ ( B I D )  

= P ( C ( f ,  A)IC(s, B ) ) - P ( C ( s ,  B ) IC(r ,  D)) ,  
as required. 

Thus, it remains to show that P fulfills assumption (3) of Theorem 3.1. 
Let na E M, s E T("), B G a, and let (C,} , , ,  be an arbitrary decreasing 

sequence of cylindrical sets. It is enough to show that 

lim P(C,IC(s, B)) = 0. 
n-c  +ro 

Let us note that the sequence P (Cn I C (s, B)) is decreasing and bounded 
from below. Hence it has the limit. We shall argue by contradiction. Let us 
assume that this limit is greater than 0. Then there exists E > 0 such that 
P(C,IC(s,  B)) > E for every  EN. 

Let us take an injective sequence {p,}, , ,  of elements from T, an increasing 
map k: N -, {m, m + 1, . . .) and, for each n E N, sets B,, D, E 3 (Xk") fulfilling 
the conclusion of Lemma 3. Then 

P (Cn I C ( 8 ,  B)) = 1,. , p(kn) (Dn I BA) for every n E N. 

Since dip(,) . . . p(kn) 13,) is a probability measure on (Xkn, B (xkn)), for every n E N  
there exists a non-empty compact set K ,  c D, such that 

@p(l)...p(k,)(Dn\KnIBn) < ~ . 2 - ( ~ +  

(see [3, Theorems 19.16 and 19.181). 
Let us set 

K,*:= ( K l  ~ X ~ ~ - ~ l ) n . . . n ( K , - ,  x X k n - k n - l  ) n K ,  for  EN. 

It is easy to see that the sets K,* are compact and 

KX+ = (K; x Xkn + l - k n )  n Kt+, .  
Let us put A, : = C (pl , . . ., pkn, Kz) for n E N. Then {A,),,, is a decreasing 

sequence of cylindrical sets. Moreover, 



Hence P (AnJ C (s, 3)) > ~ / 2 ,  and so KX # 0 for n E N 
Let us define 

where projj(x):= x j  for x € X k i ,  j =  k i - l + l ,  ..., ki,  EN. 
From what has already been proved it follows that (T,],,, is a decreasing 

sequence of non-empty subsets of XN. By the Tikhonov product theorem, all Tn 
are compact. Hence form a centred system of closed subsets of the 
compact set r,. This implies that 

0 P n(r,: m E ~ ~  c rnc  C ( P ~ ,  ..., Pkn, K,) 

c C(P1, ..., p k n , D n ) =  Cn for each  EN. 

Thus n {C,:  EN) # 0, which is a contradiction. 

According to Theorem 3.1 there exists a map P: s ( 9 )  x 93 10, 11 such 
that [a, ~(31, 8 ,  F] is a Renyi space and for every C, €59 and C,EB the 
equality PICl ( C,) = P (C,  I C,) holds. 

Let us define a map x: Tx SZ-X by the formula 

x(t, o) = w(t) for ~ E T ,  OEL?. 

Let n E N, t = (tl, . . ., t , ) ~  7'@). It is easy to show that x,, SZ -, Xn is 
a measurable map. Moreover, if B E a , ,  then x;.'. . ,n (B) = C (t, B) E a. Therefore 
Bt c &?Ixt tn. Hence 91,,l,..tn # 0, and so x: Tx O-X is a Rtnyi stochastic 
process. 

It remains to prove that the Rknyi space generated by the random 
variable x,, . , .,,, is an extension of the Rknyi space [Xn, B (Xn), B,, Qi,]. Since we 
have proved above that 93, c BXtl..,tn, it suffices to show that for A E  B (Xn) and 
B E  @, the equality @xt,,,,t, (AIB) = @, (A1 B) holds. For this purpose let us 
notice that 

The question naturally arises of when there exists a Renyi stochastic 
process whose n-dimensional joint distributions are equal to given conditional 
probabilities on the space (Xn, B(Xn)). The following theorem answers this 
question: 

THEOREM 3.3 (Kolmogorov fundamental theorem for RCnyi spaces - var- 
iant 11). If T is an arbitrary non-empty set, X is a Polish space and 
([Xn, B (Xn), a t ,  @,I: n E N ,  t E T(")) is afamily of Rinyi spaces, then the 
following two conditions are equivalent: 
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( I )  The family ([Xn, B (Xn) ,  B,, @,I : n E N ,  t E T[") )  fulfills compatibility 
conditions (I), (3), and (4) from the hypothesis of Theorem 3.2 and the condition 

(2')  BE&?^ ,... *, $ and only if 3 x X r n P " ~ a  ,,.,., for all n ,   EN, n G  rn, 
(tl , . . . , t,,,) E T(m). 

(11) There exist a Rdnyi space [a, E, a, P]  and a RQnyi stochastic process 
x :  T x  SZ+X such that for all n~ N and t = ( t i ,  . . ., t , ) ~  T(") the RQnyi 
space generated by the random variable x,, , . ,,n is equal to the Rtnyi space 
CX", B (X"), a,, @,I. 

P r o  of. (I) - (11). We shall construct the RBnyi space [a, Z, 93, P ]  and the 
Rknyi stochastic process x: T x  Ll+ X as in the proof of Theorem 3.2. It is now 
sufficient to prove that Bxc 

r, c for all n E N, t = ( t 17  . . ., t,,) E TIn). 
Let B E ,n. Hence C (t , B) = x; 1 .,, ( B )  E a. This means that there exist 

rn E N, s E T(m), and A E B, such that C (t , 3) = C (s, A). By Lemma 1 there exist 
r E N, C E B  (Xr) ,  and permutations 4 = S, and $ E S, such that t+(,, = s ~ , ~ ,  for 
i =  1, ..., r and $ ( B ) =  C x X n - '  and $ ( A ) =  C x X m - ' .  As CxXm- '  = 
= $(A) E w*(,), applying condition (2') we get CE A#s(S(I)J- .r($(rl). Hence 

= C x X"-'~at($(l)~...t(+(n),* 

Thus BE$#, as required. 
(11) 3 (I). It is obvious that the family of the R6nyi spaces generated by the 

Rknyi stochastic process x: Tx 51 -, X fulfills the compatibility conditions (I), 
(2'1, (3) (4). 

4. Kolmogorov fundamental theorem for Rknyi spaces generated by 
measure. At the beginning of this section we quote a theorem, which gives us 
the necessary and sufficient conditions for a Rknyi space to be generated by 
a measure. 

THEOREM 4.1 (see [I, thCorkme (8.911). If [a, C, 3, PI is a Rtnyi space, 
then the following two conditions are equivalent: 

( I )  [D, C ,  93, PI is a RCnyi space generated by some measure on (51, Z). 
01) There exists a RCnyi space [ a ,  Z ,  a*, P*] , which is an extension of 

I the Rtnyi space [a, Z ,  93, PI and such that for all B , ,  B , E ~ *  there exists 
 BE^@* with the properties B, u B, c B, P * ( B , [ B )  > 0, and P*(B,IB) > 0. 

The next two theorems answer the question, as to whether the measure 
which generates a Rknyi space is uniquely determined up to the multiplicative 
factor. 

PROWSITION 4.2. Assume that [IR, C, a, PI is a Rtnyi space generated by 
both a measure rn and a measure A4 on (51, C), and 5@ fulJills the following 
condition: 

(a) for all B , ,  B ,  E 5@ there exists B E  &? such that B, u B,  c 3. 
Then there exists ;1 > 0 such that M (B)  = L - m(B) for euery B E  B. 



P r o of. Let C E B. Set A : = M (C)/m (C), It is obvious that A > 0. We shall 
show that for such R the conclusion of the theorem is true. 

Take an arbitrary BE 58. Then there exists D E B such that B u C c D. We 
have 

M (B)/M (D)  = M ( 3  n D)/M (D) = P (31 D) 

= m (3 n D)/m (D)  = m (B)/m (D).  

Analogously we obtain M (Q/M (D) = m (C)/m (D). Hence 

M (B)/n? (B)  = M (D)/m (D)  = M (C)/m (C) = A. 

Remark  4.3. It is clear that if i?d is an additive class, then it fulfills 
condition (a) from the above proposition. 

THEOREM 4.4. If LL2, E ,  g, P ]  is a RBnyi space strictly generated by 
a a-finite measure m on (a, Z) and M is an arbitrary measure on (a, C) which 
generates the space [B, Z, W ,  PI, then there exists A > 0 such that 
M(A) = / l .m(A) for each AEC. 

Proof ,  First note that 

Hence a is an additive cIass and, according to Remark 4.3, the hypotheses of 
Proposition 4.2 are satisfied. Thus, there exists I > 0 such that M (B) = I m (B) 
for B E  LB. Now it is enough to show that the above equality holds for A EZ\L@. 
We shall consider the two cases m(A) = 0 and m(A) = +a. 

Let m (A) = 0. Take some B EL@. Then 0 < m(B\A) = m (3) = m(A uB) 
< +a. Hence it follows that B\A, A u  BE^. Let us note that M ( A u  B) 
=,I+m(AuB)=A-m(B\A) = M(B\A)andO<M(AuB)=  M(B\A) < +a. 
Consequently, M (A) = M (A u B) - A4 (B\A) = 0. Thus M (A) = A .  m (A) for 
every A E Z such that m ( A )  < + co. 

Now let m (A) = + a. As m is D-finite, there exists a disjoint family (BnInEN 
such that B,EC, m(B,) < +a, and O = U {B,:  EN). Then 

which concIudes the proof. s 

THEOREM 4.5 (Kolmogorov fundamental theorem for RCnyi spaces gene- 
rated by a measure). Assume that T is an arbitrary non-empty set, X is a Polish 
space and {[Xn7 B (Xn)), B,, @,I: n E N ,  t E T(")) is a family of Rgnyi spaces 
which satisfies the following conditions: 

( 1 )  for all n E N ,  t E T(") there exists a a-finite measure m, on (X", B (x*)) 
such that the Rknyi space ([Xn7 B (X") ,  &?,, @,I: n E N ,  t E T(")} is strictly 
generated by this measure; 
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(2) m, (A) = me(,) (ii (A)) fop. all n E N, t E T("1, K E S,, A E B (Xn); 
(3) ~,(I,,.,,(,)(A) = rn,[~)...,(,,(A x Xm-") for all m, n e N ,  n d m, (tl, . . . 

. . . , t,J E T(m), A E B (Xn). 
Then there exist a Rdnyi space [Q, C, B*, P*] strictly generated b y  some 

c-Jinire measure M on (0, 2J and a Rdnyi stochastic process x :  T x O -+ X such 
that for all  EN, t~ T(") the RGnyi space generated b y  the random variable 
x,, ,..,,, is equai to the R h y i  space [X", B(X7, Bt, @,I. Moreover, there exists 
A > 0 such that M(x,,'. ,,n (A)) = A m, (A)  for n E N ,  t = (tl, . . . , t,) E T("), and 
A E B (X"). 

Proof .  It is easy to show that the family { [Xf l ,  B(X"), g,, @,I:  EN, 
t E TIn)} fulfills conditions (I), (2'), (3) and (4) in Theorems 3.2 and 3.3. Let us 
define the RCnyi space [a, Z, 9, PI and the R6nyi stochastic process 
x: Tx Q -, X in such a way as in the proof of Theorem 3.2. Then for all n E N ,  
t E ( t ,  , . . . , tn) E T(") we have 

ax ,,,,,,, = at = (BEB (Xn): 0 < mc(B) < + CQ} 

and 

@r,, . ,.,, ( A  I B) = @, ( A  I B) = m, (A f-7 B)/m, CB) 

for A E B (Xn) and B €gC. Moreover, x;!.,~ (3) = C (t, B) E 3 if and only if 
 BE^^. 

We shall show now that the Rknyi space [a ,  C, g ,  PI is generated by 
some measure M on (51, Z). For this purpose it is enough to check whether 
condition (11) from Theorem 4.1 is fulfilled. 

Let B, , B,  €23. Then there exist n, rn E N ,  t E T["), s E T(m), C1 E a,, and 
C2 E B, such that B, = C (t, C,) and B, = C (s, C,). According to Lem- 
ma 2 there exist  EN, ~ E T ( ~ ) ,  Dl, D2€B(Xk) such that B1 = C ( p ,  Dl) and 
B, = C (p, D,). Then Dl, D,  E &Ip, which implies 0 < me (D,) < + cs for 
i = 1, 2. Hence 0 < m, (Dl u D,) < + co, and so Dl u D, E L3,. Putting 
B :=B,uB,  we get 

B = C(p, Dl U D , ) E ~ .  

Moreover, 

P(BiIB) = P(C(P, DJ[ C(p, Dl uD2)) = @,(DilD1 u D2) 

=mp(Di)/m,(DluD,)>O for i = 1 , 2 ,  
t as required. 
! 
i Hence, by Theorem 4.1, there exists a measure M on ( a ,  Z), which 
i generates the RCnyi space [Q, Z, 9, PI. 
i 

Next we prove the last statement of the theorem. 
Let n E N, t E TLn). Let us note that the Rinyi space [Xn, B (Xn), g,, O,], 

which is strictly generated by the a-finite measure m,, is also generated 



by the measure M ,  defined by the formula M, (A)  : = M (C (t , A)) for A E 3 (Xn). 
It is so, because 

and we have 

for all A E B (Xn), B E a,. 
Then, according to Theorem 4.4, for all  EN, t E Fn) there exists > 0 

such that M (C ( t ,  A)) = M ,  (A) = I ;  rn,(A) for each A E B (Xn). It is now 
suficient to prove that I ,  = A, for all n ,   EN, t E TIn), and s E T(m). 

Let B1 €at, Bz fa,. Then, by Lemma 2, there exist  EN, p~ T(k', 
C ,  , C, E 3 (Xk) such that C ( t ,  B,) = C (p, C,)  and C (s, 3,) = C ( p ,  C,). Accord- 
ing to Lemma 1 and by hypotheses (2), (3) we obtain m,(C,) = m,(B,) .  
Then 

As 0 < mf(Bl )  < + m, we have 1, = 1,. Analogously we show that A, = A,. 
Hence 1, = A,, which completes the proof of the last part of the theorem. 

Next we show that the measure M is 0-finite. Let t E T. Then m, is a a-finite 
measure on (X, B(X) ) .  Hence there exists a family of sets {A,), , ,  such that 
A , E B ( X ) ,  mt(Ak) < +a for  EN, and X =  U { A , :   EN). Set B,:= C ( t ,  A,) 
for k E N. Then 

and M ( B ~ = M f C ( t , A , ) ) = R - m , ( A , ) <  +m, 

as required. 
Let now [a, E ,  B*, P*] be the RCnyi space strictly generated by the 

measure M. It remains to prove that the RCnyi space generated by the random 
variable x,,  ..,,,,, with respect to the Rknyi space [Q, Z, B*, P*],  is equal to the 
Rknyi space [Xn, B(X"),  a , ,  Qi,] for all  EN, t~ T'"). 

By Theorem 3.3 the Rinyi space [ X n ,  B(X"),  B,, ds,] is equal to the Rknyi 
space generated by the random variable x,, . . . , with respect to the RCnyi space 
[a, Z, 9, PI. Since the RCnyi space [a, 6, B*, P*] is an extension of the 
Rbnyi space [a, C, B,  PI, it is sufficient to prove that 

{ B  E B ( X n ) :  xt,.'. .,, (B) EL@*) c Bt. 

Let C ( t ,  B) = X,.'..,,,(B)EB*. Then we obtain 0 < M ( C ( t ,  B)) < +a. Hence 
0 < W(C ( t ,  B)) < + CO. Thus B EB*, which completes the proof. 

Remark  4.6. It follows from the proof above that the words "a-finite" and 
"strictly" can be cancelled in condition (1) and in the assertion of Theorem 4.5. 
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Remark 4.7. Condition (1) in Theorem 4.5 can be replaced by the 
following condition: 

(1') For all  EN, t E T(") there exists a g-jinite measure m, on (Xn, B(Xn)} 
such that the Rinyi space [Xn,  B(Xn), Bg, Ft] is generated b y  this measure. 

Then the assertion of Theorem 4.5 remains true, only the words "is equal to" 
should be replaced by "is an extension of". 

Proof. Let [X", B(Xn) ,  at, St] be the RBnyi space strictly generated by 
rn, for n E N, t E T("). Then the family of the Renyi spaces { [ X n ,  B(Xn), B,, 6J: 
n E N ,  t E T(n)) fulfills the hypotheses of Theorem 4.5. For all n EN, t~ T(") 
we have a, c at = B NOW the result follows from Theorem 4.5. 
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