PROBABILITY
AND
MATHEMATICAL STATISTICS

Vol. 13, Fasc, 2 (1992), pp. 345-361

STOCHASTIC PROCESSES
IN RENYI CONDITIONAL PROBABILITY SPACES

BY

KATARZYNA KORWIN-SEOMCZYNSKA (KRAKOW)

Abstract. In this paper we study stochastic processes in Rényi
conditional probability spaces. We prove a conditional analogue of the
Kolmogorov fundamental theorem.

0. Introduction. The universally recognized axiomatic foundations of
probability theory were given by A. N. Kolmogorov in 1933. The majority of
stochastic problems can be considered within this general framework. In some
cases, however, Kolmogorov’s approach may fail. For instance, we encounter
such a situation when we have to deal with unbounded measures. The use of
unbounded measures cannot be justified in the theory of Kolmogorov. Hence
one cannot speak about the uniform probability distribution on the whole real
line or about the random choice of integers with equal non-zero probability.

A new approach to probability theory which overcomes these difficulties
was proposed in 1955 by Alfred Rényi [4]. He linked the measure-theoretic
concepts of Kolmogorov with the ideas of other mathematicians who regarded
the notion of conditional probability as the basic one.

Rényi defines the conditional probability as a function P: X x % —[0, 1],
where X is a g-algebra of subsets of a given set (space of random events) and
4 is a non-empty subfamily of X (space of conditions). He assumes that P (:|B)
is a probability measure such that P(B|B) = 1 for every Be # and, moreover,
the family of probability measures defined in this way satisfies a natural
compatibility condition. In Rényi’s theory, unbounded measures are used
to construct an important class of conditional probability spaces (see
Example 1.3). :

In a series of papers (see, e.g., [4]-[6]) and in a book [7] Rényi presented
a theory of conditional probability spaces and gave a lot of applications. He
claimed the study of stochastic processes as one of the reasons to develop.a new
theory. However, he defined only random variables and their distributions but

not a stochastic process. The present paper in which we study stochastic-

processes in conditional probability spaces may be treated as a natural
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expansion of Rényi’s ideas. In the sequel, following other authors, we shall call
conditional probability spaces Rényi spaces.

The main aim of the present paper is to prove a conditional probability
analogue of the Kolmogorov fundamental theorem. We shall see that the
situation is a bit more complicated in the case of the Rényi spaces. We shall
give two versions of this theorem. The idea of the proof is similar to the
classical one but several alterations are necessary.

The paper is organized as follows. In Section 1 we introduce the basic
notions of the theory. In Section 2 we define random variables and stochastic
processes in Rényi spaces. We show that this definition imposes some
restrictions on the construction of stochastic processes. We devote Section 3 to
the proof of our main result — the Kolmogorov fundamental theorem for
Rényi spaces. An essential step of the proof is the theorem on the extension of
a conditional probability from an algebra to the g-algebra generated by it. In
Section 4 we prove a version of the Kolmogorov fundamental theorem for the
Rényi spaces generated by measures.

1. Preliminaries. We start with the definition of a Rényi space.

DEFINITION 1.1. By a Rényi space we mean a system [Q, X, 8, P], where
Q is an arbitrary set (space of elementary events), X is a g-algebra of subsets
of Q (space of random events), # is a non-empty subfamily of ¥ (space of
conditions), and P is a non-negative map defined on X x# (conditional
probability), which fulfills the following conditions:

)] P(B|B) =1 for every Be 4%,

() P(J._,A,B)=Y"_, P(4,|B) for every dlS]OlIlt family {A bnens
where A4,e2, for neN, and for every Be 4,

(IIT) P(An B|C) = P(A|Bn C)- P(B|C) for every A, Be 2 and Ce 4 such
that BN Ce% (see [4], p. 289). '

In the sequel we shall need the following equivalent definition of a Rényi
space (see also [1] and [2]).

ProOPOSITION 1.2. Let (2, X) be a measurable space, let # be a non-empty
subfamily of X, and let P be a non-negative map defined on X x2B. Then
[2, 2, %, P] is a Rényi space if and only if the followmg conditions are
satisfied:

() P(B|B)=1 for every Be %,

(IT"y P(|B) is a probability measure on (Q, X) for every Be%;

(IIT") P(A|C) = P(A|B)' P(B|C) for every AeX, B,Ce% such that
AcBcC

The proof is easy and is left to the reader.

The following example of a Reényi space seems to be the most 1mportant
from the point of view of applications.

ExaMpLE 1.3. If m is a measure on a measurable space (L2, Z) then
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for every non-empty family # < {BeZX: 0 <m(B) < + oo} and for the map
P defined on X x4 by the formula -

m(A A B)
m(B)

the system Z:=[Q, X2, 4, Pj is a Rényi space (see [4], p. 304).

P(A|B):= for AeX and Be#

This example motivates the following definition:

DEerFINITION 1.4. The Rényi space # constructed above is called the Rényi
space generated by the measure m. We shall say that & is strictly generated by
the measure m if the equality # = {BeZ: 0 < m(B) < 4+ oo} holds.

Remark 1.5. A necessary and sufficient condition that the measure
m generates some Rényi space is that {BeX: 0 <m(B) < +oo} #@. It is
satisfied if, for example, m is a non-zero and o-finite measure. It follows from
Proposition 1.2 that each usual (Kolmogorov) probability space may be treated
as a Rényi space taking m equal to probability measure.

We mention now a special case of Definition 1.4.

" DEFINITION 1.6. The unifdrm Rényi' space on R" is a Rényi space generated
by the Lebesgue measure m, on (R", B(R"), where B(R") is the Borel
o-algebra on R".

DEeFINITION 1.7. We shall say that the Rényi space [, 2, #*, P*] is an
extension of the Rényi space [Q, X, &, P} if # < #* and P*(A|B) = P(A|B)
for all AeX and Be4.

2. Random variables and stochastic processes. In [4] and [7] Rényi defined

random variables on conditional probability spaces and their distributions.
Our definition is slightly different.

ProPOSITION 2.1. Let [Q, X, 2, P] be a Rényi space, X a topological space,
B(X) the Borel g-algebra on X, &: Q—X a measurable map such that
(1) By:= {CeB(X): EL(C)eB) # 0
and &,: B(X)x #:—R a map defined by the formula
®.(B|C):= P(£~1(B)IE7H(C))
for BfB(X) and Ce%B;. Then [X, B(X), B, ®,] is a Rényi space (see [4],
p. 295).

DeriNiTION 2.2, The map ¢ defined above will be called a Rényi
random variable, the map &, the distribution of the random variable £, and
[X, B(X), B;, §;] the Rényi space generated by the random variable &; if
X =R", then &, wil be called a wuniform distribution whenever
[R", B(R"), #;, ®.] is uniform (see Definition 1.6).
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DEerINITION 2.3. Let [, 2, 4, P] be a Rényi space, let X be a topological
space, and let T be an arbitrary set (usually T is an interval in N or R). A map
x: T x Q@— X will be called a Rényi stochastic process if, for each t e T, the map
x,:=x(t,'): 2—X is a Rényi random variable.

PRrROPOSITION 2.4. Let x: TxQ— X be a Rényi stochastic process. Then
(Xtg5 ones X,): @—> X" is a Rényi random variable.

Proof. Let neN and t,,...,t,eT. It is obvious that (x,,,..., x,) is
measurable, so it remains to prove that B (xey..ne,) = D. We know that &,
is non-empty as x,, is a Rényi random variable. Hence there exists CEB(X)
such that x;;'(C)e#. Moreover,

(Xegs oves X,) " HCx X x...xX)=x;1(C) and CxXx...xXeB(X".

xz,) is non-empty. m

.....

This leads to the following definition:

DerFINITION 2.5. The distribution of the Rényi random variable x,,
= (%4, ..., X,,) Will be called the n-dimensional joint distribution of the Rényi
stochastic process x. We shall denote it by &, .., . The respective space of
conditions will be denoted by #

xtl...x;"

The next proposition shows that the notion of a Rényi stochastic process
is simply a generalization of the usual notion of a stochastic process.

ProrosiTioN 2.6. Let [Q, 2, P] be a probability space, X a topological
space, T an arbitrary set, and x: Tx 82— X a stochastic process. Then x is
a Rényi stochastic process with respect to the Rényi space [Q, X, B, P] strictly
generated by the measure P on (2, X).

Proof. Let teT. It is enough to prove that the random variable X,
fulfills condition (1) of Proposition 2.1. We have x, !(X) = Qe%. Hence
B+£D =

The following proposition shows that Definition 2.3 imposes some
restrictions on the construction of a stochastic process.

ProrosiTiON 2.7. If [Q, X, 4, P] is a Rényi space, T is an arbitrary set,
and x: TxQ—X is a Rényi stochastic process, then

(1) any n-dimensional joint distribution of the process x is not uniform
for nz=2;

(2) if for some neN and t,,...,t,eT the Rényi space generated by
the random variable x, ., is an extension of the uniform Rényi space
on R, then

tn

Be,....x, "{AEBRY): 0 <my(A) < +0} =0

xtk

for each keN, k < n, where m; is the Lebesgue measure on R*




Rényi conditional probability spaces 349

Proof. (1) Let neN, n>2, and ¢, ... eT Choose any set A€, .
Then x,,'(4)e #. Hence and from the equahty X, Y(A) = x; 2, (AX R 1) we
deduce that AxR""'e4,, . . On the other hand, m,(4xR"" =0 or
m,(Ax R" ') = + o0, and so  the Reny1 space generated by the random variable
Xy,...t, cannot be uniform.

(2) We start with the following lemma (see [2], Remark 2.1).

LEMMA. Let [Q, X, &, P] be a Rényi space, let {B,},cn be an increasing
sequence of sets from 9 such that P(B,|B,+) >0 for each neN, and let
B=\JuenB,€B. Then

H P(B,|Bi+1) > 0.
k=1

Now let neN, and ¢, ..., t,e T. We shall argue by contradiction. Let us
assume that [R", B(R"), 8, . ., Px. ] is an extension of the uniform space on
R"and thereexist ke N,k < n, andAe@xt ., Such that0 < m; (4) < + 0. Then,
as in the proof of (1), we can show that B:= AXR"™ "e%’xt . Put
B,:= Ax(—m,m)"* for meN. Since m,(B,)=(2m)" *-m,(4) we get
0<m,(B,) <+, and so B,e%#,, , for meN. Then

m (B ) m n—k
By, ., Byl Bui 1) = o = '
t1...:"( m| m+1) mn(B'"+1) {m+1}

Hence

© B 1 J m n—k - 1 1 n—k 0
Xty...t, B m = lim = lm -— = U.
ml;[l v ( I +1) J"+°°m]:II{ +1} j_'+°°{.]+1}

On the other hand, the sequence {B,}ncn fulfills the hypothesis of the
Lemma, which is a contradiction. =

The above proposition implies immediately the following corollary.

COROLLARY 2.8. There is no Rényi stochastic process such that for each
neN the Rényi space of its n-dimensional joint distribution is an extension of the
uniform Rényi space on R

3. Kolmogorov fundamental theorem for Rényi spaces. The main objective
of this section is to prove two versions of the Kolmogorov fundamental
theorem for Rényi spaces. We shall need the following theorem, which is
a generalization of the theorem on the extension of a probability measure from
an algebra to the o-algebra.

THeOREM 3.1 (on the extension of conditional probability). Assume that
Q is an arbitrary set, % is an algebra of subsets of Q, # is a non-empty subfamily
of %, and P is a non-negative map defined on G x B which fulfills the followmg
conditions:

(1) P(Q|B)=1 for every Be%,;
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Proof Let Q:={w: w: T->X}. For all neN, t={(t,...,t)eT™,
AeB(X") we define the set

Clt, A)=C(ty,.... t,, A):={weQ: (0(ty), ..., w(t,))e4}

which will be called the cylindrical set in Q with the basin A over the coordinates
tyy ..., t,. The class of all cylindrical sets will be denoted by %.
The following lemmas are easy to prove:

Lemma 1. Let C(py, ..., p, 4), Clqy, ..., 4,, BYe¥, and let

Cys - s P A)=Cqy> ..., 4s B), {Pjis-- D3} = P15} N {815 -5 90} -
Then there exist ¢€S,, WeS,, and Ce B(X") such that 'P¢(i) =Dj, =y Jor
i=1,...,rand §(A) = Cx X* ", (B) = Cx X°~". Moreover, the form of the
permutations ¢ and  does not depend on the particular choice of the sets A and
B, but only on the sequences {p,, ..., p}> {41>--.» 4.} and {p;,,.... p;}

LemMMA 2. Let meN, C(t, ..., t, A}e% for i=1,....k let neN,
(Pys - PE T®, and :

k
U {t, .. ) = {p1y .- Pu}-

i=1

Then there exist sets B,, ..., B,e B(X") such that
C@ty,....,th, 4)=C(p,...,p,, B) fori=1,.., k.

Moreover, for each i—l .k, B; is of the form B, = W, (A, x X"™™), where
m,€S, and p i,y = for m=1,

Lemma 3. Let C(sy, ..., S B)€Y and let {C,},cn be an arbitrary de-
creasing sequence of the cylindrical sets. Then there exist an injective (but not
necessarily infinite) sequence {p,}ncn of elements from T, an increasing map
k: No>{m,m+1, ...}, and, for each neN, sets B,, D,e B(X*) such that

{P1s - s P} = {S1s+--» S} and
C,=C(ys .- Prs D), C(545...s 8, B =C(py,..., Pr,» B) for neN.

Moreover, we have D, D,x X% % B =B x X%k = Bx Xk™m
for n,veN,n<v.

Applying Lemma 2 it is easy to show that the class & of all cylindrical sets
forms an algebra of subsets of Q.

Now we define a subfamily £ of ¢, which will be the space of conditions of
the Rényi space to be defined. Put

B:={C(t,B): neN,teT™, Be4,}.
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Let now C,€% and C,e%. Then there exist n, meN, te T®, se T™,
AeB(X"), Be &, such that C, = C(t, 4) and C, = C(s, B). Let keN, pe T®
and

{7V A SURE P I =1 N 4

Then, according to Lemma 2, there exist 4, Be B(X*) such that C, = C(p, A)
and C, = C(p, B). Let us define P(C,|C,) by the formula

P(C,|C,):= ®,(A|B).

We shall prove that P is well defined. For this purpose it is sufficient to
show that

(i) Be%,;

(ii) the definition does not depend on the choice of a sequence p;

(iii) the definition does not depend on the form of C, and C,.

(i) We know that Be#, and B is of the form B = (B x X*™™), where
ne S, is the permutation described in Lemma 2. Hence, and by assumption (2)
of Theorem 3.2, we have ;

k—m —
BxX Erﬂs(l)...s(m)p(n"(m+1))---17(71_1("1)) - g"—l(l’)'

According to assumption (1) of Theorem 3.2 we have B = 7(Bx X* ™ e4,,.
(i) Let pe T® and qe T, where k, veN, and let

{tis oo b O {81 ooes St ©{P1s oo PR}V {d15 o5 D0}

Moreover, let A,, B, eB(X*), 4,, B,e B(X"), C(t, A)=C(p, A;) =C(q, A,)
and C(s, By= C(p, B,) =C(q, B,). Then, according to (i) B;e€%, and
B,c%,. Hence, by Lemma 1, there exist reN, r 2 m, ¢€S8,, YyeS, such that
Poiy =4y for i=1,...,r and pyy=s; for i=1,...,m and there exist
A*, B*eB(X") such that ¢(4,)=A*xX*"", ¢(B)=B*xX*"", (4,
= A*x X""" and §/(B,) = B*xX"".

Let us note that the following equalities hold:

C(S15 --os Smo Dot 1> -+-» Do BXX*™™) = C(s, B) = C(p, B)
= C(a(p),{b-(Bl)) = C(Sl, vees Spys p¢(m+l)5 vy p¢(k)’ B* XXk_r).

Hence B*xX* "=BxX*™ and so B*=BxX' ™™ Since Be4,, we
have ' . _
B*e€ B, . smplpm+1)...060) = B

Then we obtain
®,(A;|By) =B (¢~ (A*x X*7")|d™1 (B* x X*7") o
= Pgp) (4% x XTI B*x X+ = d),;(4,(1))...1.;(4;(7))(A*|B*)

12 — PAMS 13.2

L e
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= @ yn)...que) (A% B¥) = Py g (A* X X* 77| B* x X*7")
=@, (1 (A*x X" )Y (B*x X)) = B,(4,|B,),
as required.

(iii) Let now n, k, m, veN, teT®, weT®, se T™, ue T, 4 B(X"),
DeB(X"), Be®#, and Ec4,. Let us assume that C(¢, A) = C(w, D) and
C(s, B)=C(u, E).

According to Lemma 2 there exist re N, pe T® and A4,, B,, D, E, e B(X")
such that C(t, 4) = C(p, A,), C(s, B)= C(p, B;), C(w, D)= C(p, D,) and
C(u,E)y=C(p,E,). Hence A, =D, and B, =E,. Then &,(4,|B)) =
= @, (D,|E,). This, according to (ii), completes the proof of the consistency of
the definition.

We now prove that the map P defined above fulfills assumptions (1)-(5) of
Theorem 3.1.

(1) Let meN, se T™, Bed,. Since Q = C(s, X™), we obtain
P(Q|C(s, B) = P(C(s, X™)|C (s, B)) = &,(X"|B) = 1.

(2) Let n, v, meN, teT™, re T®, seT™, AcB(X"), DeB(X"), Be A,
and C(t, A)n C(r, D) = @. According to Lemma 2 there exist ke N, pe T®
such that ' '

{ty o b O{rs o P U {815 s S} S P15 - s Di}
and 4, DeB(X*), Be4, such that
Ct, A=C(p, 4, C D)=C(p,D), C(s,B)=C(p,B).
As C(p, AA\nC(p, D) = O, we have AnD =@. Thus '
P(C(t, A)uC(r, D)|C(s, B) = P(C(p, AU D)|C(p, B)

= ®,(Au D|B) = &, (4| B)+ &, (D|B)
= P(C(t, A)|C(s, B)+P(C(r, D)|C(s, B),

as required.

(4) Let meN, seT™ and Be4,. Then
| " P(C(s. B)|C(s, B)) = @,(B|B) = 1.

(5) Let te T®™, se T™, e T, AcB(X"), Be#,, De®, and C(t, A) c
< C(s, By<= C(r, D). By Lemma 2 there exist ke N, pe T® such that

{ty, oty o spbu{ry o) < {pys .o Pi}
and there exist AeB(X*) and B, De4#, such that o
Cit,A)=C(p, A, C(,B=C(p,B), C(,D)=C(p,D).
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As C(p, A)< C(p, By < C(p, D), we have 4 = B <= D. Thus
P(C(t, A)|C(r, D)) = &,(4| D) = &,(A|B) ®,(B|D)
= P(C(t, 4)|C(s, B)-P(C(s, B)| C(r, D)),

as required.
Thus, it remains to show that P fulfills assumption (3) of Theorem 3.1.
‘Let meN, seT™, Bed, and let {C,},.n be an arbitrary decreasing
sequence of cylindrical sets. It is enough to show that
lim P(C,|C(s, B)) = 0.
n— +oo ' '

Let us note that the sequence P(C,,l C(s, B)) is decreasing and bounded
from below. Hence it has the limit. We shall argue by contradiction. Let us
assume that this limit is greater than 0. Then there exists & > 0 such that
P(C,|C(s, B)) > & for every neN.

Let us take an injective sequence {p,},en Of elements from T, an increasing
map k: N—>{m,m+1, ...} and, for each neN, sets B,, D, e B(X*") fulfilling
the conclusion of Lemma 3. Then

P(C,|C(s, B)) = @y1).. pary(D,IB,) for every neN.

Since @,1). .. pk, (‘| B,) is a probability measure on (X kn, B(X*)), for every ne N
there exists a non-empty compact set K, = D, such that

¢P(1)---p(k,.) (Dn\Knan) <é&- 2_(n+1)

(see [3, Theorems 19.16 and '19.18]).
Let us set

Kfi= Ky x X" %) A (Kyoy x Xk K, for neN.

It is easy to see that the sets K} are compact and
| Kk = (K x X' 178 A Ky g

Let us put A,:=C(py, -5 Pr,» K¥)for ne N. Then {4,},.n is a decreasing
sequence of cylindrical sets. Moreover,

P(C\4,|C(s, B) = P(C(ps> -. > Pi» DNKD) | C (P45 - -5 Pr,» By)
= D)0 (DA\KFIB,)
< Py, . ooy (P \K x Xt k)| B )+ ...
+Ppny.... otk (D \ K| By)
< Bpity...pte (DK ) X X¥n 75| By x XonTRO)
+Pp1).... ptkn (Do \ K,y | By) -
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= ¢p(1)--.p(k1)(D1\K1'B1)+---
+ P10 (DKl By) < e/4+... 482700 < g/2,

Hence P(A,|C(s, B)) > ¢/2, and so K¥ # @ for neN.
Let us define

Iy=Kyx X (proje.,+1Ky x ... x proj,Ky),
i=n+1
where proj;(x):= x; for xeX*, j=k;_;+1,..., k;, ieN.

From what has already been proved it follows that {I',},.n is a decreasing
sequence of non-empty subsets of X~. By the Tikhonov product theorem, all I',
are compact. Hence {I',},.x form a centred system of closed subsets of the
compact set I';. This implies that

B+ N\ {T meN} eI, cC(Pygs. e Pr» Kp)
cC(Pys .. Px,» D) =C, for each neN.

Thus () {C,: neN} " O, which is a contradiction.

According to Theorem 3.1 there exists a map P: (%) x 2 —[0, 1] such
that [Q, 6(%), 4, P] is a Rényi space and for every C,€% and C,e % the
equality P(C,|C,) = P(C,|C,) holds.

Let us define a map x: TxQ—X by the formula

x(t,w)=w() for teT, we.

Let neN, t = (ty, ..., t,)e T®™. It is easy to show that x,, ,: Q—X"is
a measurable map. Moreover, if Be %,, then x,;* , (B) = C(t, B)e #. Therefore
B < B,,..., Hence B, #, and so x: TxQ2—>X is a Rényi stochastic
process.

It remains to prove that the Rényi space generated by the random
variable x,, ., is an extension of the Rényi space [ X", B(X"), %,, ®,]. Since we
have proved above that %, = 4,, , , it suffices to show that for 4€ B(X") and
Be %, the equality &,, , (4|B)= @ (A|B) holds. For this purpose let us
notice that

(AIB) = P(x;} ..(A)]x;1 ... (B) = P(C(t, AIC(t, B) = &,(4|B).

The question naturally arises of when there exists a Rényi stochastic
process whose n-dimensional joint distributions are equal to given conditional
probabilities on the space (X", B(X"). The following theorem answers this
question:

xtl ity

THEOREM 3.3 (Kolmogorov fundamental theorem for Rényi spaces — var-
iant II). If T is an arbitrary non-empty set, X is a Polish space and
{[X", B(X"), B,, ®,]: neN,teT™} is afamily of Rényi spaces, then the
following two conditions are equivalent:
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(1) The family {[X", B(X"), #,, ®,]: neN, te T™} fulfills compatibility
conditions (1), (3), and (4) from the hypothesis of Theorem 3.2 and the condition

(2) Be®,,.. ., if and only if Bx X" "€B,,. 4, foralln,meN, n<m,
(tys ores t)ET™.

(IT) There exist a Rényi space [Q, Z, &, P] and a Rényi stochastic process
x: TxQ—X such that for all neN and t=(t,,...,t)eT™ the Rényi
space generated by the random variable x,, ., is equal to the Rényi space
[X", B(X"), %,, ®,].

Proof. (I) = (II). We shall construct the Rényi space [€2, X, 4, P] and the
Rényi stochastic process x: Tx Q— X as in the proof of Theorem 3.2. It is now
sufficient to prove that %, ., = %, for all neN, t=(t;,..., t)eT®.

Let Be 4,, , .Hence c (t "B) = x;. 1, (B)e #. This means that there exist
meN, se T™, and’ AeZ_ such that C(¢, B) = C(s, A). By Lemma 1 there exist

reN, Ce B(X"), and permutations ¢ = S, and ¥ €8S, such that £, = sy for
i=1,...,r and ¢(B)=CxX""" and Yy(A)=CxX"". As CxX" "=
= (A)e By (s, applying condition (2) we get Ce€ B, ). ) Hence

¢ (B) = Cx X"_re'%t(qb(l))...t(dz(n))'

Thus Be4%,, as required. _
(I1) = (I). It is obvious that the family of the Rényi spaces generated by the

Rényi- stochastic process x: Tx Q— X fulfills the compatlblhty conditions (1),
2), (3) and (4). ®

4. Kolmogorov fundamental theorem for Rényi spaces generated by
measure. At the beginning of this section we quote a theorem, which gives us
the necessary and sufficient conditions for a Rényi space to be generated by
a measure.

THEOREM 4.1 (see [1, théoréme (8 9)]) If [Q, %, 8, P] is a Rényi space
then the following two conditions are equivalent:

I [Q, Z, #, P] is a Rényi space generated by some measure on (2, ).

(II) There exists a Rényi space [Q, X, #*, P¥] , which is an extension of
the Rényi space [Q, Z, #, P] and such that for all B,, B,e B* there exists
Be #* with the properties B, UB, c B, P*(B,|B) > 0, and P*(B,|B)> 0.

tn

In

The next two theorems answer the question, as to whether the measure
which generates a Rényi space is uniquely determined up to the multiplicative
factor.

PROPOSITION 4.2. Assume that [Q, X, &, P] is a Rényi space generated by
both a measure m and a meastre M on (Q, 2), and # fulfills the following
condition:

(@) for all By, B,€ % there exists Be % such that B, U B, c B.

Then there exists A >0 such that M(B) = 1-m(B) for every Be®.
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Proof. Let Ce&. Set 1:= M (C)/m(C). It is obvious that 1 > 0. We shall
show that for such A the conclusion of the theorem is true.

Take an arbitrary Be #. Then there exists D € # such that BuU C < D. We
have '

M (B)/M (D) = M (B n D)/M (D) = P (B|D)
= m(B n D)/m (D) = m(B)/m (D).

Analogously we obtain M (C)/M (D) = m(C)/m (D). Hence
M (B)/m(B) = M (D)/m (D) = M (C)/m(C) =

Remark 43. It is clear that if # is an additive class, then 1t fulfills
condition (a) from the above proposition.

THEOREM 4.4. If [Q, X, &, P] is a Rényi space strictly generated by
a o-finite measure m on (Q, X) and M is an arbitrary measure on (2, X) which
generates the space [Q,ZX, %, P], then there exists 1 >0 such that
M(A)= A-m(A) for each AeZ.

Proof. First note that
B={BeZXZ: 0<m(B)< +o} c{BeX: 0 < M(B)< +0}.

Hence £ is an additive class and, according to Remark 4.3, the hypotheses of
Proposition 4.2 are satisfied. Thus, there exists A > 0 such that M (B) = 4-m(B)
for Be . Now it is enough to show that the above equality holds for Ae 2\ 4.
We shall consider the two cases m(4)=0 and m(4) =

Let m(4) =0. Take some Be#. Then 0 < m(B\A) m(B) =m(4 UB)
< +oo. Hence it follows that B\A4, A u Be 4. Let us note that M (4 U B)
=A-m(AuVUB)=Am(B\A) = M(B\A)and 0 < M (AU B) = M(B\A) < + 0.
Consequently, M (A) = M(Au B)—M (B\A) =0. Thus M (A4) = A-m(A4) for
every AeX such that m(4) < + 0.

Now let m(A4) = + co. As m is o-finite, there exists a disjoint family {B,},cn
such that B,eZ, m(B,) < +, and Q = | J{B,: neN}. Then

M) = Z M(ANB)= A Z m(AnB,) = A -m(d) =

n=1 n=1
which concludes the proof. = -

THEOREM 4.5 (Kolmogorov fundamental theorem for Rényi spaces gene-
rated by a measure). Assume that T is an arbitrary non-empty set, X is a Polish
space and {[X", B(X"), #,, ®,]: neN,teT™} is a family of Rényi spaces
which satisfies the followmg conditions:

(1) for'all neN, te T™ there exists a o-finite measure m, on (X", B(X")
such that the Rényi space {[X", B(X"), %,, <15] neN, te T™} .is strictly
generated by this measure;
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(2) m,(A) = mz,(Z(A4)) for all neN, teT®™, neS,, AeB(X");
() myy...1 (A = Myty. . (AX X" for all m,neN, n<m, (t,...
L t)eT™, AeB(X").

Then there exist a Rényi space [Q, X, #*, P*] strzctly generated by some
o-finite measure M on (2, Z) and a Rényi stochastlc process x: Tx Q— X such
that for all neN, te T™ the Rényi space generated by the random variable
Xq, ...t is equal to the Rényi space [X", B(X"), #,, ®,]. Moreover, there exists
A >0 such that M(x;;} . (4) =i -m/(A4) for nEN t=0y,...,t)eT™, and
AeB(X".

Proof. It is easy to show that the family {[X", B(X"), %,, @,}: neN,
te T™} fulfills conditions (1), (2), (3) and (4) in Theorems 3.2 and 3.3. Let us

- define the Rényi space [Q,Z, %, P] and the Rényi stochastic process

x: Tx Q- X in such a way as in the proof of Theorem 3.2. Then for all neN,
te(t,,...,t)e T™ we have

B

e, = B, = {BeB(X"): 0 <my(B) < +00}
and .
(A|B) = &,(A|B) = m,(4 ~ B)/m,(B)

xtl Wty

_ for Ae B(X™ and Be,. Moreover, x;! . (B)=C(t, B)e# if and only if

Be%,.

We shall show now that the Rényi space [, X, #, P] is generated by
some measure M on (2, Z). For this purpose it is enough to check whether
condition (IT) from Theorem 4.1 is fulfilled.

Let B,, B,e%. Then there exist n, meN, te T™, se T™, C,e4,, and
C,e#, such that B, =C(¢t, C,) and B, =C(s, C,). According to Lem-
ma 2 there exist ke N, peT®, D,, D, e B(X" such that B, = C(p, D,) and
B,=C(p,D,). Then D,,D,e#,, which implies 0 <m,(D)< +oo for
i=1,2. Hence 0<m,(D;uD,)< +co, and so D;uD,e%, Putting
B:= B, v B, we get

B=C(p, D, uD,)e.
Moreover,
P(B;|B)=P(C(p, D)|C(p, Dy U D,)) = &,(D;|D, v D)
=m,(D)/m,(DywD,)>0 " fori=1,2,

as required.
Hence, by Theorem 4.1, there exists a measure M on (R, X), which
generates the Rényi space [Q, X2, 4, P].

Next we prove the last statement of the theorem.
Let neN, te T™. Let us note that the Rényi space [ X", B(X"), %,, D,}; -
which is strictly generated by the o-finite measure m,, is also generated
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by the measure M, defined by the formula M,(4):= M(C(t, A)) for Ae B(X").
It is so, because

= {BeB(X"): C(t, Ble®} = {BeB(X"): 0 < M(C(t, B)) < + w0}
and we have
,(4|B) = P(C(t, )| C(t, B) = M(C(t, A~ B)/M(C(t, B))

for all AeB(X"), Be,.

Then, according to Theorem 4.4, for all neN, te T‘"’ there exists 4, > 0
such that M(C(t, A)) = M,(4) = 4,-m;(A4) for each AeB(X"). It is now
sufficient to prove that 4, = A, for all n, meN, teT™, and se T™,

Let' B,€%,, B,c%, Then, by Lemma 2, there exist keN, peT®,
C,, C,€B(X") such that C(t, B,) = C(p, C,)and C(s, B,) = C(p, C,). Accord-
ing to Lemma 1 and by hypotheses (2), (3) we obtain m (Cl)-m,(Bl) |
Then ;

A my(B;) = M(C(t, B,)) = M(C(p, Cy)) = 4, m,(C,) = A, m,(B).

As 0 <m,(B,) < + o0, we have 4, = 4,. Analogously we show that i, = 4,.
Hence A, = A;, which completes the proof of the last part of the theorem.

Next we show that the measure M is o-finite. Let te T. Then m, is a o-finite
measure on (X, B(X)). Hence there exists a family of sets {4,};n such that
A€ B(X), m,(4,) < + o0 for keN, and X = U{A keN}. Set Bk = C(t, A)
for keN. Then

\{B.: keN} =C(t, X) =

and  M(B) = M(C(t, A)) = A-m,(4) < + o0,

as required.

Let now [Q, X, #*, P*] be the Rényi space strictly generated by the
measure M. It remains to prove that the Rényi space generated by the random
variable x,, ., with respect to the Rényi space [2, X, #*, P¥], is equal to the
Rényi space [X", B(X"), #,, ®,] for all neN, te T™,

By Theorem 3.3 the Rényi space [X", B(X"), 4,, ®,] is equal to the Rényi
space generated by the random variable x,, , , with respect to the Rényi space
[2, 2, #, P]. Since the Rényi space [Q, £, #*, P*] is an extension of the
Rényi space [Q, 2, 4, P], it is sufficient to prove that

{BeB(X"): x;,} ,.(B)e#*} = &,. :
Let C(t, B) = x;,' ., (B)e #*. Then we obtain 0 < M(C(t, B)) < + 0. Hence
0 <m(C(t, B) < +oo. Thus Be4,, which completes the proof. m

Remark 4.6. It follows from the proof above that the words “o-finite” and
“strictly” can be cancelled in condition (1) and in the assertion of Theorem 4.5.
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Remark 4.7. Condition (1) in Theorem 4.5 can be replaced by the
following condition:

(1) For all neN, te T™ there exists a o-finite measure m, on (X", B(X"™)
such that the Rényi space [X", B(X"), #,, ®,] is generated by this measure.

Then the assertion of Theorem 4.5 remains true, only the words “is equal to”
should be replaced by “is an extension of ™.

Proof. Let [X", B(X™), %,, ®,] be the Rényi space strictly generated by
m, for ne N, te T™. Then the family of the Rényi spaces {[X", B(X"), &,, ?,]:
neN, te T™)} fulfills the hypotheses of Theorem 4.5. For all neN, te T®
we have #, < B, = A#,, ,. Now the result follows from Theorem 4.5. =

Acknowledgments. The author would like to express her thanks to an
anonymous referee whose detailed comments improved the presentation and
readability of this paper.

REFERENCES

[11 A. Csaszar, Sur la structure des espaces de probabilité conditionnelle, Acta Math. Acad. Sci.
Hungar. 6 (1955), pp. 337-367.

[2] A. Kaminski, On extensions of Rényi conditional probability spaces, Colloq. Math. 49 (1985),
pp. 267-294. :

[3] K. R. Parthasarathy, Introduction to Probability and Measure, New Delhi 1980.

[4] A. Rényi, On a new axiomatic theory of probability, Acta Math. Acad. Sci. Hungar. 6 (1955),
pp. 285-335.

[51 — Axiomatischer Aufbau der Wahrscheinlichkeitsrechnung und mathematische Statistik, in:
Bericht iiber die Tagung “Wahrscheinlichkeitsrechnung und mathematische Statistik, VEB
Deutscher Verlag der Wissenschaften, Berlin 1956, pp. 7-15.

[6] — Sur les espaces simples des probabilités conditionnelles, Ann. Inst. H. Poincaré B, 1 (1964),
pp. 3-19. :

[7] — Probability Theory, Akadémiai Kiado, Budapest 1970.

Institute of Mathematics
Pedagogical University
Podchorazych 2

30-084 Krakow, Poland

Received on 16.7.1990;
revised version on 2.6.1992







