
PROBABlLlTY 
AND 

MATHEMATICAL STATISTICS 

INTRODUCTION TO DISCRIMINANT ANALYSTS 
IN THE MONOTONE EXPERTS MODEL 

VIERA G A F w IB ov A AND TERESA K O W A L C Z Y K (WARSZAWA) 

Abstract. A special case of object identification is considered in 
which it is desirable to classify objects according to values of an 
unobservable latent variable U. Independent expert opinions concer- 
ning U, say Z and Z*,  are supposed to be available. In the paper wc 
give a theoretical basis for solving some identification problems under 
the assumption that the distribhion of ( Z ,  Z*) is known while the 
distribution of (U, Z) is not known. 

1. Introduction. In practice we are often confronted with two-class 
discriminant problems concerning some latent trait U, such that the first class 
consists of objects with values of U smaller than its x-th quantile, say u,. 
Suppose that two experts independently give their opinions on U, say Z and 
Z*, while our information is reduced to the knowledge of the true distribution 
of (2 ,  Z*) and of the family of distributions of (U Z,  Z*) which contains the 
true one. This refers to situations in which the learning sample consists of 
objects classified by two experts and their opinions are known but the values of 
U remain unknown. Thus, one may estimate the distribution of ( 2 ,  Z*) but not 
that of (U,  Z). Such models arise in wide variety of applications, for example in 
educational testing and psychometrics (see [3]). 

Our idea is to replace an identification rule based on Z and concerning 
U by a respective identificaiion rule based also on Z but concerning Z*. In 
other words, we try to replace an identification problem for (U, Z )  by an 
analogous one for (Z*, Z). The paper gives some theoretical basis for such an 
approach. In Section 2 we introduce a general model of (U, Z ,  Z*) and in this 
connection consider some monotone orderings of bivariate distributions. We 
show that the strength of dependence between an expert and a latent trait 
influences the strength of dependence between experts. In Section 3 a tool for 
comparing bivariate distributions (Called the divergence curve) is introduced, 
and its role in a large family of identification problems is explained. Finally, 
this tool is used in Section 4 to compare the distributions of (U, Z) and (Z*, 2). 
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2. Monotone experts models. A family of distributions of (U, Z, Z*) will be 
called the experts model if Z and Z* are conditionally independent given 
U (symbolically, Z I Z* 1 U), i.e., if the distribution function of (2, Z*) is defined 
(in obvious notation) by 

for any F ,  and any families of conditional distribution functions of (Z I U = u) 
and of (Z* ] U = u). 

A special attention will be given to experts with the same "mechanism" of 
delivering opinions so that the distributions of (U, Z) and (U, Z*) are identical. 
In this case a triplet (U, 2, Z*)  belongs to the experts model iff there exist i.i.d. 
random variables a and E* independent of U and a Borel measurable function 
g such that Z = g ( U ,  E )  and Z* = g(U,  E*) (see [7]), while for different 
distributions of ( U ,  Z) and ( U ,  Z*)  the conditional independence Z I  Z* I U is 
obviously implied by the relations 

Z = g(U, E )  and 2" = g*(U,  E * )  

for some independent random variabIes E ,  E*,  U and some Borel measurable 
functions g and g*. 

It is natural to assume some sort of positive dependence between Z and 
U and between Z* and U. We shall consider the family of positively quadrant 
dependent (QD +) or positively regression dependent (RD') pairs of random 
variables (see [ 6 ] ) :  

( X ,  Y ) E Q D +  iff P ( X < x ,  Y $ y ) a  P ( X < x ) P ( Y d  y) for all x, y; 
(X, Y)E RD+ iff P(X d x I Y = y) is a nonincreasing function in y for all x. 
It is known 161 that RDf c QD'.  
We will use the term monotone experts model for the experts model 

(U, 2, Z*) in which (U, Z), (Z , U), (U , Z*) and (Z* , U) belong to RD+ . From 
the considerations of Alam and Wallenius [I] it follows immediately that in the 
monotone experts models ( Z ,  Z*) and (Z",  2) belong to RD'. Some other 
types of dependence between U and Z and between U and Z*, as well as their 
influence on dependence between Z and Z* ,  were considered in [3]. 

We will show that in some experts models with positive dependence the 
strength of dependence between the expert and the latent variable influences 
the strength of dependence between the experts. 

Let us remind that in QD' the strength of dependence may be naturally 
compared by an ordering defined as follows (see [5]):  

( X ,  Y) < (X', Y') fie. the pair (X ' ,  Y') is stronger dependent than the pair 
QD 

(X, Y)) if there exist increasing functions $,, 4, such that 4, (X') is distributed 
as X and #,(Y') is distributed as Y and 

P ( X < x ,  Y < y ) $ P ( q , ( X f ) d x , q , ( Y ' ) < y )  for all ( x , y ) € R 2 .  
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THEOREM I .  Let ( U ,  2, Z*) and (U, T, T*) be such that 

where g ,  g*, g , ,  gr are increasing functions of u, and E ,  E*, E ,  , ET, U are 
independent variables. Then 

((U, 2) < (U, T )  A (U, Z*)  < ( U ,  T*)) * ( Z , Z * )  < fT,  T*).  
QD QD QD 

Proof.  The representation of 2, Z* implies that 

(cf. [b]), and the same holds for the triplet (U, T, T*). Tchen [8] proved that 

for any function r monotone in u  and for any y independent of ( U ,  2, T ) .  Thus, 
for r = g and q = e ,  

(u, 2") 6 (U, T*)*(Z, Z*) G ( Z ,  T*) 
QD QD 

while for r = gT and u] = ET 

( U ,  2) < (U, 7') - (T*, 2) d (T*, TI. 
QD QD 

Consequently, 

(2, Z") < (2 ,  T*) d (T, T"). E 
QD . QD 

3. The divergence curve based on ((U, Z). A population of objects is 
described by the distribution of a pair (U, Z) ,  where U is an unobservable 
random variable taking on values in a certain set U c R, and Z is an 
observable random variable taking values in a set Z c R. 

Given a n ~ ( 0 ,  I), we are interested in classifying objects to one of the two 
classes which consists, respectively, of objects with values of U not larger than 
the x-th quantik of U (first class) and larger than the X-th quantile of U (second 
class). For any x-th quantile of U, say u,, we find a number a such that 
P(U <u,)+aP(U = u,) = x. Let U,, = 1 if U <ts, or if U = u ,  and I < a ,  
and let U{,, = 2 if U > u, or if U = u, and I > a, where I is a random variable 
uniformly distributed on (0, 1) and independent of U .  Let f denote the density 
of ( U ,  2) with respect to a certain measure which is the product measure of 
a measure A on U and a measure p on Z. The density of Z(U(, ,  = 1 is given by 

fi(4 = J f (u,  z)dV 1 Sf@, z)dpdA. 
usu, u C u , Z  

The density f, of Z1 U(,, = 2 is defined analogously. In further considerations 
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it is convenient to assume that the supports of ZI U(,) = 1 and ZI U(,, = 2 are 
the same. 

A two-class discriminant problem concerning a pair of random variables 
(U(,,, Z ) ,  where U(,, is the class indicator and Z the observable one, will be 
called the two-class discriminant problem based on ( U ,  Z). 

Let 6 be a decision rule based on Z, where S(z) is the probability that an 
object with Z = z will be classified to class 1. The result of classification based 
on 5 is a binary random variable - say I ,  - with values 1 and 2. The joint 
distribution of (U,,, I,) will be denoted by P,, where 

PB(Id = l ) = j a ( z ) f i ( z ) d z ,  f z { z ) = ~ f i ( ~ ) + ( ~ - x ) f 2 ( ~ ) ~  

Let aij(6) = P,(I, = j ( U(,, = i), i # j ,  i, j = 1, 2, be the probabilities of misclas- 
sification. A natural ordering of identification rules is given by 

(3.11 6 < 6'*aij(6) 2 aij(Jf) for i S;j, i, j = 1 ,  2. 

According to Theorem 1 in [2], 6 is admissible with respect to the ordering 
(3.1) iff S is the threshold rule with respect to h(z)  = fz(z) / f i (z) ,  that is, iff for 
some SE[O,  I] and x 2 0 

Let be the set of all admissible rules of the form (3.2). 

LEMMA 1. For any B E  AIu,z, the pair (U(n), I,) is positively quadrant 
dependent. 

Proof.  It is enough to show that 

or, equivalently, 

Because of f,(z) = x f l ( z )  +(1 -7E)f2(z), (3.4) is equivalent to 

(3.5) S f l ( z ) d ~ + s  1 f l ( z )dp> j f,(z)dp+s j fZ(z)dp.  
h < x  h = x  h < x  h = x  . 

For x < 1 and for z E (z: h(z) Q x) we have f2(z) < f, (z) ,  so (3.5) is fulfilled. 
Otherwise, for x > I and for z E ( z  : h(z) 2 x) , f,(z) 2 f ,  (2) and the inequality 

j f , ( z ) d ~ + ( l - s )  j f 1 ( z ) d H  j f*(z)dp+(l--s) j f , (Z)d~,  
h < x  h = x  h < x  h = x  

which is equivalent to (3.5), is true. 
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LEMMA 2. If ( U ,  2) is positively regression dependent, then in the two-class 
discriminant problem the set of threshold ruIes with respect to z E Z is a minimal 
admissible class. 

P r o  of. It follows from [2] that the minimal admissible class with respect 
to the ordering (3.1) is the class of threshold rules with respect to h(z). Since 
(U, 2) E RD' , we infer that P(U < u, I Z = z) is a nonincreasing function of z. 
So, from the equality 

it follows that h(z) is a nondecreasing function of z. Thus, it is obvious then that 
for every threshold rule 6 with respect to h(z) there exists a threshold rule 6' 
with respect to z such that aij(6) = aij(6'), i ,  j = 1, 2. sa 

A convenient tool to describe the divergence of the distribution of 
Z I U,, = 2 with respect to the distribution of Z I U(,, = 1 is the divergence curve 
for the pair (2 IU(,, = 1, Zl U(,, = 21, denoted by C(U,_,,z, and defined as the set 
of error rates a I 2  (6) and a2, (6) for all S E 

The divergence curve C(uJn,,a is a convex continuous nonincreasing curve on 
the plane joining the polnts (0 ,  1) and ( 1 ,  0).  (The divergence curves in the 
general case, as well as their properties, are described in 141.) 

For any n ~ ( 0 ,  1 )  and any pairs ( U ,  Z), (U', Z'), the notation 

will mean that the divergence curve C(,,m,,Z, lies above the divergence curve for 
C(uix,,,p,, where U;,, is defined by means of U' analogously as U(,, is defined by 
means of U .  

From (3.6) it follows immediately that for any fixed KE(O, 1) we have 
C(u(,,,z) 2 C(Uix,,z+, iff for every decision rule SEA(,,,, there exists 6 ' ~  A(u,,z,, 
such that 

a12(6) 2 a;2tSr), a21(6) 2 a'l2(Jr). 

This means that the divergence of the distribution of 2'1 U;,, = 2 with respect to 
the distribution of Z'IUi,, = 1 is not smaller than the divergence of the 
distribution of ZI U(,) = 2 with respect to the distribution of ZI U,, = 1 .  

Let the notation X -  Y mean that random variables X, Y have the same 
distributions. 

THEOREM 2. FOP any $xed n ~ ( 0 ,  I )  

(3.8) C ( U ( ~ ) . Z )  2 C(ui,),z') 

ifl for all 6 E 8' E A(o, ,zp)  such that 1;. - I ,  

(3-9) (u(,,, 1,) G (u;,), 16.1- 
3 - PAMS 13.2 QD 
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Proof,  Sufficiency. Let ~ E A ~ , , ~ ,  ~'EA~.,,, be such that 

&.(Tb. = 1) = P,(I, = 1). 

Then (3.9) is equivalent to a@) G aij(S), i # j ,  i, j = 1, 2, which implies (3.8). 
N e c e s s i t  y. Let 6 ,  E A ( , , , ,  6b E A,",,z,, be such that 

(3.10) P&(I& = 1) = P,,(I,, = 1) = p,. 

For rules 6 ' ~ A ( ~ r , ~ 1 )  the inequalities a@') < aij(6,), i 4 j, i ,  j = 1, 2, are 
fulfilled iff 

Since (3.10) is equivalent to the equalities 

the equation (3.1 1) is fulfilled for S' = &-, if k = x/(l- n). By the conditions , 
I;;- I,,, the inequalities ~:~(6b)  < aij(do), i # j, i, j = 1, 2, are true 8 

COROLLARY 1. If (U,Z), ( U ' , Z f ) ~ R D f  and U - U ' ,  Z - Z ' ,  then 

(U, 2) < (U', 2') - (v n E (0, 1)) C(U(,,,~) 2 C(u;,,,z,). 
QD 

Proof.  It follows from Lemma 2 that and Alu~,Zr l  are the sets of 
threshold rules with respect to ZEZ.  So 

for all 6 E 6' E A ( u ~ , z ~ )  such that I& -I , .  Thus, the corollary follows now 
from Theorem 2. 

It is worth noting that instead of assuming that U- U' and Z-Z' it is 
enough to assume that there exist increasing functions $ and $ such that 
U-#(U')  and Z-$(Z'). 

4. Some identification ruIes based on expert @pinions. Let (U, Z,  Z*)' be the 
monotone experts model. For simplicity we assume that U is a continuous 
random variable, but this assumption is not essential. For a given z, we want to 
construct an identification rule for (U(,,, Z), keeping in mind that the 
distribution of (Z*, Z) is all we know. So, we "replace" the considered two-class 
discriminant problem based on (U, Z) by a suitable two-class discriminant 
problem based on (Z*, Z). 

Let us introduce Z&, (valued 1 or 2) as an analogue of U(,): for any n-th 
quantile of Z*, say z:, we find a number a such that 
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and put Z$, = 1 if Z* < z,* or if Z* = zd and I < a, where I is a random 
variable uniformly distributed on (0, 1) and independent of Z*. So we consider 
(Z&, Z) instead of (U(,), 2). 

THEOREM 3. In any monotone experts model (U, Z, Z*) for any fixed 
x ~ ( 0 ,  11, 

I 

C(Z~,,,ZI 2 C(V(,,,Z). 

Proof.  By Theorem 2 it is enough to prove that, for all 6 E 

S'E A(Z*,zl such that I*,- I,, we have 

which is equivalent to 

I (4.1) Pr(U,, = 1, I ,  = 1) 3 Pr(Z&) = 1, IQ. = I), 
! 
I We have to show that, for any chosen K, q ~ ( 0 ,  I), 

(4.2) P ( U  < u,, Z < z,)+bP(U < u,, Z = z,) 

2 P(Z* < zz, Z < z,)+aP(Z" = z:, Z < z,) +bP(Z8 < zg, Z = 2,) 

+abP(Z* = z,*, Z = z,), 

where a and b are defined by 

Since both sides of (4.2) are linear functions of b, it is enough to prove (4.2) for 
b equal to 0 and 1. For b = 0, we wil l  show that for any z 

We have 

P(U < u,, z < z) = j F Z , ,  =u(z)dFu(u) 
U < U ,  

and the right-hand side of (4.3) is equal to 

1 FZlu=u(z)[Fz*lu=u(z,*)+aP(Z* = z,* I U = u)]dF,(u) 
U C U ,  

+ j Fzlu=u(z)[Fz*lv=U(z~)+aP(Z* = zX I U=u)]dF,(u). 
ubu ,  

Thus, (4.3) is equivalent to 
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For (2, LI)ERD+, FZIu=,(z) is a nonincreasing function of u; therefore, 
replacing FzIu=,(z) by Fzl,=,X(z) on the left-hand side of (4.41, we get the 
expression which is less than or equal to the left-hand side of (4.4), and finally 
we have 

Fzlv,,,,(z)(n-n) = 0. 

For b = 1 we proceed analogously after replacing Z < z, by Z < z,. rn 

Note that if U - Z * ,  then Theorem 3 follows from Corollary 1. 

EXAMPLE. Let us consider a normal experts model (U, Z, Z*), i.e. the 
model with 

Z = @U+(l - Q ~ ) ~ ~ ~ & ,  @€(O, I), Z* = @*U+(1 -Q*2)112~*, ,*€(0, I ) ,  
where U, E, E* are i.i.d. N(0, 1) random variables. It is easy to check that the 
normal experts model is a monotone experts model and that 

U Y  0, 1 1 ,  1 ,  (Z, Z*)-N2(0,  0, 1 ,  1, ee*). 
It is known that in the family of bivariate normal distributions the ordering d 

OD 

is concordant with the ordering based on the correlation coefficients. From 
Corollary 1 it follows that if 

(U, 2)-N,(O, 0, 1 ,  1, el and V ,  Z')-N,(O, 0, 1,  1, e'), 
then 

e e' - (v E (0, 1)) C(U~,,..Z) 3 CW;,).~.). 

In Fig. 1, an example of divergence curves C(u(,l,z, and C(z~ml,z, in normal 
experts model is presented. 

Fig. 1. Divergence curves C,LI,,),Z) and Ccq=,,,, in normal experts model [or = Q* = .5 and n = .25 
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