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Abstract. The suggested ordering of estimators uses the separation
measure between the population with true and estimated values of
parameter. It allows us to choose one estimator as better in the cases
where variances are equal or where information contained in variances
is not satisfactory. - '

1. Introduction. The purpose of this paper is to suggest a new method of
comparing estimators. The general motivating idea may briefly be described as
follows. Let # = {P,:0c®} be a family of distributions of the observed
random variable. If 8 is the true value of the parameter and our estimate is §'
(i.e. @ is the observed value of the estimator, say ), then the relevant question
should be “How close are the distributions Py, and P, ?” rather than “How
close are 6 and 6'?” Now, closeness between distributions can be expressed in
a number of ways. We propose to regard distributions as “close” if they are
difficult to discriminate. Thus we can take as the measure of closeness any
index of discrimination or separability. In this paper we investigate the
possibilities of taking the index ar(F, G) based on the Gini Index of
discrimination. If § is an estimator of 6, then the performance of § can be
judged by the properties of the random variable AR,(f), defined for a sample
point x as ar(Pae, Pg).

While from the point of view of the general statistical theory this approach
consists simply of taking ar(Pj,, P,) as a loss function L{0(x), 6), the nature of
index ar allows for more than the usual approach based on the concept of risk
E{AR,(6)} and the corresponding notion of admissibility. One namely can
order estimators by requiring that the random variables AR,(0) be stochas-
tically ordered for each 6. Such an ordering is stronger than that based on
domination of risk functions.

What is perhaps more important, in some cases the distribution of AR, )
does not depend on 0. This opens up an interesting possibility of comparing
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estimators of different parameters in unrelated families on one universal scale
of performance of estimators.

2. The Lorenz order. Let & be the class of all non-negative random
variables with positive finite expectations. For any random variable X in % the
Lorenz curve L, is defined by

(1) Ly(w=p"" IFx '0)dy,  uel0, 1],

where u is the mean value of X and the inverse distribution function Fx?!
given by

Fx'() = sup{x: Fx(x) <y}.
The Lorenz partial order <, on % is defined as follows:
X< Yo Lyw>Ly(w), uel0,1].

Let X,, X,, ... be 1id. random variables from # andlet X,,n =1, 2, ...,
and X;,, i=1,..., n, denote the corresponding sample mean and the i-th
order statistic. Arnold and Villasefior [2] showed that for any n we have

(1) X n \LX n—13

(ii) if the common density of the X,’s is symmetric on the interval [0, @]
then X, 15043 <p Xnt 1220415

(i) in certain cases the sample median is Lorenz ordered with respect to
the sample mean. : :

Since sample means, and also medians, are estimators of the population
mean, Arnold and Villasefior attempt to use the corresponding Lorenz curves
to evaluate and compare variability of these estimators. The ordering proposed
in the present paper, although different from <, refers in a way to <, and to
the summary measure of inequality called the Gini Index [1, p. 35]. We shall

-analyze properties of this ordering for estimators of location parameters. In

particular, we obtain some results concerning ordering of sample means and
medians which are analogous to the results given by Arnold and Vlllasenor in
the case of <, for sample means and medians."

3. A separation measure analogous to the Gini Index. The degree of
separation between two distributions can be defined and then estimated in
various ways. For instance, Kowalczyk [5] used a decision theoretic approach
to this problem, treating it as a discrimination between two classes. This idea
will be shortly presented in the sequel. Let I be the classified variable, Z be the
observed random variable, and let & be the support of Z. Furthermore, let ki
and F; denote the density (with respect to some measure v) and cdf of random
variable Z; defined as Z|I =i (i = 1, 2). We shall consider randomized decision
rules & = (J,, 6,), where d,(z) is the probability that the classified object is
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allocated to class i when z is observed, so that 6,4+, =1. Let a;;(d)
= (2 £i(2)0 ;(2)dv(2) be the probability that an object from class i is classified as
belonging to class j. A natural ordering of decision rules is given by

@) 58 < a;(8) = ay(d) for i #j (,j=1,2).

A rule § will be called a threshold rule with respect to a function h: & - R
if for some se[0, 1] and # it takes the form

1 if h(z) <n,
0,(2) = {S ~if h(z) =9,
0 if h(z) > 7.

)

The most important case is where h is the likelihood ratio

L@@ i f1(z) >0,
h(z)={joo e =0

It has been shown (see [3]) that the class 4 of threshold rules with respect to
h is the minimal class of rules admissible with respect to the ordering (2). Now,
for any set U of decision rules é = (J,, 4,) we can consider the subset of unit
squares consisting of all possible pairs of error rates (a,;(5), a12(9)), 6eU. If

U is the set of all threshold rules with respect to some function #, the error rates

will form a curve in unit square, joining points (0, 1) and (1, 0). In particular, if
U = 4, then this curve, denoted by Cy, r,, is called a divergence curve (see [4]).
Specifically,

B) - Cr.r, = {Fi@+s(Fi(z+)—Fi(2), 1 - Fi(2)—s(Fi(z+)— Fi(2))},

where ze %, se(0, 1), and F! is the cdf of h(Z)|[I =i (i =1, 2). Pairs of
distributions can be ordered in the following way:

4 (Fy, F,) <c(Ff, F3)<> Cprps < Cr, 1,

The latter inequality means that for any pair (x*, y*)€ Cp: = there exists y such
that -y > y* and (x*, y)eCp, r,.

If h(Z)|{I =i for i =1, 2 are continuous random variables with the same
support, then Cg,r, is equal to the Lorenz curve for h(Z)|I =1 and the
ordering (4) is equal to the Lorenz order for A(Z)|I = 1 and h*(Z*)|I = 1. Tt is
also natural to consider an analogue of the Gini Index, denoted by ar and
defined as twice the area between the divergence curve and the segment joining
the points (0, 1) and (1, 0). If F%, F% are continuous, then

©) ar(Fy, Fy) = I—ZiF'i((F’{}‘l(t))dt,
0

where (F%)™(z) = sup {x: Fi(x) <t}. Without danger of confusion, we shall
use an alternative notation Cy y for the divergence curve of distributions of
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X and Y; similarly, we shall write ar(X, Y) instead of ar(F,, F,) if it is clear
that F, is the cdf of X and F, is the cdf of Y. It can be shown that
() O<ar(Fy, F))<1withar(F,, F,)=0iff F, =F,and ar(F, F,) =1
if inf{x: F;(x) =1} <sup{x: F,(x)=0};
(i) if (F,, Fy) <c(F%, F3), then ar(Fy, F,) < ar(F¥, F§);
(iii) for any increasing function ¢ we have Cz, z, = Cyz,).0z,), hence also
ar(Zy, Z,) = m’((P(Zl)s (Zz))-

4. Evaluating the estimators by the separability index ar. Let 2 = {P,;
0e ®} be a family of univariate distributions and let F, be the cdf of P,. Let
f(X™) be an estimator of 8, X™ being the random sample of size n. For any
0 © and any observed sample x™, ar can be used to measure how much the
distribution function Fy,wm, differs from Fg. Thus, we deal with a random .
variable defined as

ARy(0) = ar(Fyxomy, Fo).

The distribution of AR,(f) serves to evaluate the quality of § in {P,; € ®)}.
Generally, the smaller are the values of ar(Fjxemy, Fo), the closer are the
distributions P, and Py, hence the better is the estimator B(X™) of 0.
Accordingly, ar(Fjxm), Fe) may play the role of the loss function, and the
analogue of the risk function is
E, {ARo(é)} = _f ARy(u)dGj p(u),

where Gjo(u) = Po{0 < u}. The expectation exists, since 0 < AR,(f) < 1
The estimators of # within the family £ can now be partially ordered by
the relation <, defined as follows:

DEFINITION 4.1. We say that §, is AR- dommated by 8, (to be denoted as
0, <. 0,) iff for all 0c® we have

AR( 2) \stARﬂ(él)s

where X <, Y means that Y is stochastically larger than X. We say that 6, and
6, are AR-equivalent (to be denoted as 8, ~,0,) if §, <0, and 0,<,0,. If
él <0, but not 6,<,.0,, we write 0, <, 6,.

We may now introduce the concept of AR- admissibility:

DEFINITION 4.2. The estimator 0 is AR-admissible if there is no estimator 0*
such that * < 0.

A weaker part1al order in the class of estimators may be based on the risk
function.

DEFINITION 4.3, We say that 0, is risk-dominated by 8, iff
Eﬂ {ARO(éZ)} < E9 {ARo(él)}

for all 0€@. In this case we write 0, <z0,.
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Clearly, <, is stronger than <, that is: if §, <,, f,, then 52 <grb,.

The relation <, and the risk-admissibility are defined in the usual way.

An important special case, illustrated by examples in this paper, occurs
when the distribution of AR,(f) does not depend on 8, so that we may write
Hj(u) = Po{AR,(0) < u}. In this case, 0, <, 0, if H;_ (u) = H; (u) for every u,
and 0, <0, if E;[AR,(d,)] < Eo[AR,(8,)], where in the last inequality both
sides are independent of 0.

Suppose now that we have two families of distributions, Z = {P,:0e 0}
and 2 = {Qg-:éeE}, and let 0 and f be estimators of # and ¢ in the families
2 and 9, respectively. Assume that the distribution of AR,(6) does not depend
on 0, and the distribution of ARE(E) does not depend on £. This situation
makes it possible to compare (according to the relation <z, and possibly also
according to the relation <,,) the estimators § and £, even if 2 and 2 concern
two different sample spaces. Thus we have an intriguing possibility of
comparing the quality of estimators of unrelated parameters on an absolute
scale.

5. Evaluating and comparing the estimators of location and scale. In this
section we consider families of continuous univariate random variables indexed
by a one-dimensional parameter 6 such that for any x and for some density
function f

(6) ' Jolx) = f(x—0)
and . _
(7N f(x—@)/f(x—0) is a non-decreasing function of x for 8 < ¢'.

If (6) holds, then @ is called a location parameter; if both (6) and (7) hold,
then we say that the family has a monotone likelihood ratio with respect to the
location parameter 6. Condition (7) is satisfied iff —log f(x) is a convex
function in some open interval (a, b) such that —oo <a<b< +c0 and
[: f(x)dx = 1. We shall prove the following theorem:

THEOREM 5.1. Let & = {P,, 6 @} be a family with a monotone likelihood
ratio with respect to location parameter 8. Let 8 be any estimator of 0. Then the
following conditions hold:

] ARﬂ(é) is an increasing function of |0—0|.

(i) If 0 is a weakly (strongly) consistent estimator of 0, then AR,(6)
converges weakly (strongly) to 0. '

(iii) If for any ¢ we have

(8) 0X,+c,..., X, +0)=c+0(X,, ..., X,),

then the distribution of AR,(0) does not depend on 0.
(iv) 0, <. 0, iff for any @ we have |0,—0) <q10,-0
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Proof. Let F denote the distribution function corresponding to density f.
Conditions (6) and (7) imply that for any 0,, 6,0

)] ar(Fy,, Fg,) = 12 jl'F(F‘l(t)—IOI——Gzl)dt
0

Indeed, observe first that since 4 is monotone by (7), we may use (5) with
h omitted. If 8, < 6,, then we take F,(x) = F(x—#0,) and F,(x) = F(x—0,);
hence Fil(t) = F~(t)+6,. Therefore

. _
ar(Fy, F)) = 1-2[F(F~'(t)+0,—0,)dt.
0 .

A similar formula is obtamed when 0, < 01, WhICh proves 0. It follows that
for any estimator 4

(10) AR, () = 1—2}F(F'-1(t)—|é~0|)d£
0

and properties (i) and (ii) follow easily. Property (iii) follows from the fact that
the density of § is of the form 7,(1) = 7(u— 6) for some density function t, while
(iv) follows from the fact that the same increasing function serves to define
AR,(6,) and AR,(0,). =

If the carrier of the distribution is bounded by 6, we have the following
theorem:

THEOREM 5.2. Let ? be a family of univariate continuous distributions
indexed by a real parameter Oe(a, b), where — o0 < a<b < oo. Let r be
a strictly positive function defined on [a, b] such that j r(x)dx < oo.

O If _
k@r(x) for 6<x<b,
Jol) = { otherwise,
where k() = /[, r(u)du, then

min [k(6), k()]

ARy(0) = 1—— [k(0), k(@)1

(i) If o
o _ Jk*(O)r(x) for a<x<0,
Jol) = {0 otherwise,
where k*(0) = /[ r(u)du, then

AR,(6) = min [k*(0), k*(0)]

ax [k*(9), k*(@)]
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Proof (i) The proof follows from the fact that for any 6, <0, the
function h(x) takes the form .
(x) = 0 for 8, < x < 0,,
k(0,)/k(0,) for x=0,.

Consequently, F* is concentrated at two points, 0 and k(6,)/k(0,), and its
cdf is

0 for x <0,
Fi(x) = {k(@l)j'zfr(u)du for 0 < x < k(0,)/k(0,),
1 for x > k(0,)/k(8,).

On the other hand, F% is concentrated at one point, k(8,)/k(0,).

The divergence curve (3) consists of two segments: one vertical segment
joining points (0, 1) and (0, 1— k(ﬂl)jo r(u)du), and a linear segment joining
the latter point with (1, 0). Observe that

02

—k(0,) | ru)du = k(B,)/k(9).

01
The index ar is twice the area between the divergence curve and the line
connecting (0, 1) and (1, 0), hence equals 1—k(0,)/k(0,) (see Fig. 1).

1.,

min [k (8), k(B)]
‘maxZk@), k@1

0
Fig. 1. The divergence curve for (F,, Fy,)

In general, therefore,
min [k(8,), k(0,)]
max [k(0,), k(6,)]

and taking 0 =6,, § = 8, we obtain the proof of (i).
The proof of (ii) is analogous. m

ar(Fy,, Fg,) = 1—
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Let a, beR" and let apgs -5 A and by, ..., by, be the coordinates of
a and b arranged in a non-increasing order. We say that b majorizes a, to be
written as a <, b, if

g

a[;] S .Zl b[;] for k = 1, ey n‘-l and .ZI a[i] = .Z:l b[i]'

1

13

THEOREM 5.3. Let X, X ,, ... be i.i.d. random variables with density function
Jo- If the family {f,; 6 € @} has a monotone likelihood ratio with respect to the
location parameter 0, and for any x we have

50 =f(x—0) = f(—x+0),

then for n=2, 3, ...
(@) for any a, beR" such that a;, b; 20, i=1,...,n, and a<,b

n
Z a;X; <ar
i=1

in particular, X, <, X, 1;

(11) Xn+2:2n+3 gaan+1:2n+1' 4

Proof. Part (i) is a corollary to Theorem 5.1 (iv) and to the following
theorem (see [6]): If X,,..., X, are iid. random variables with density
function ¥ symmetric about 0 and such that —log(x) is convex, then for any
a, feR" such that ¢ <, p and «;, §;,=0, i=1,...,n we have

n n
'Z “iXiI gstl Z ﬁiXi[;
i=1 i=1

1 1 1 1
— =Syl — s, ——, 0,
n n n—1 n—1

and so X, <, X, ;.

To prove (ii), we first check by straightforward calculations that the graphs
of the density functions of X, 1.2,+1 and X, 5.2, + 3 are symmetric about 4 and
have two intersection points:

X, =Fq'(G—+/(N=4)N), x,=F;'G+./(N-4)/N),

where N = (4n+6)/(n+1). Then

in particular,

|Xn+2:2u+3_9| SSIIXn+1:2n+1_0|;

and (ii) follows from Theorem 5.1 .(iv). =

We shall now give some examples when one can obtain useful com-
parisons of unbiased estimators (with the same variance) by using the index
AR, even in the case where the estimators are not stochastically ordered.
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These pairs of estimators are such that one of them is inadmissible (as
based on a statistic which is not sufficient). It turns out, in the second example,
that the inadmissible estimator is better according to the new criterion (for
some sample sizes). This shows that the order according to the suggested
criterion differs from the order according to the usual risk function.

ExAMPLE 5.1. Let us consider the family of distributions with the density

—(x—0)] for x> 6,
(1D f“(x)={gxp[ o fziJ;Zo.

Then for any estimator § oi_' 0 we have, using Theorem 5.2 (i):
AR,(0) = 1 —exp(—16—9)).
Let 0,(X,, ..., X,) = Xy.,—1/n and 0,(X,, ..., X,) = X,,—1. Then
X,..~G(, 1/n, 9) and X,~G(m, 1/m, 0),
where the density function of G(a, b, ¢) is given by

_ (=0 'exp[—(x—c)/b]
fx)= e ,

a>0,b>0,x>=2c.

It follows that E(f,) = E(d,) = 0; Var(d,) = 1/n%, Var(d,) = 1/m. Thus,
Var(f),) for sample size n is the same as Var(f,) for sample size n’.
The densities of AR,(f,) and AR,(f,) are:

1x) = {(n/e){(l_x)"_l+(1—x)_"_1} fo<x<<l—e

(n/e)(1 —x)y"1 if 1—e "< x<1
and -
[ne(1—x)]" ' —x)"" '+ [lne/(l—x))" (1 —xy 1
. I(m)(e/m)™
g,(x) = if 0<x<1—1/e,
(nef1—x)1"" 'L —xy""*

if1—1l/eg<x<1.

I (m)(e/m)"

As may be seen from Figs. 2a, b which show the densities and the
corresponding cdf’s for sample sizes giving the same variances (5 and 25,
respectively), the estimators @, (solid line) and @, (dotted line) are not
stochastically ordered. However, one could argue that f, is better than 0,
because, below a certain threshold, smaller values of AR, hence less differen-
tiation between distributions corresponding to a true and estimated parameter
are more likely under #, than under 0,.
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Densities g, (x), g, (x)

N

Qi
0.0 0.2 0.4 0.6 08 L 10

o o o -
b o o o
N 4 .
t t t +

Cumulative disiributions 63 (x), G (x)
o
N

L
T

0.2 0.4 0.6 08
Fig. 2
a — densities of AR,{f,) (solid line) and AR,(8,) (dotted line) for sample sizes 5 and 25, respectively
b — cumulative distributions of AR,(f,) (solid line) and ARy(f,) (dotted line) for sample sizes §
and 25, respectively

=
o

Table 1 gives some numerical comparisons of &, and 0, with
respect to the relation < defined through AR-risks Eo{AR,(0)}. Sample sizes

Table 1. Comparison of means and standard deviations of AR,(f), i = 1,2

AR,(0,) . ARy(th)
sample ; standard | sample standard
. mean . . Y5 mean o

size n deviation | size n deviation
2 02775 0.1724 4 0.2948 0.1809
3 0.2011 0.1383 9 0.2168 0.1424
4 0.1577 0.1152 16 0.1710 0.1162
5 0.1299 0.0985 25 01410 - 0.0978
6 0.1103 0.0861 36 0.1199 0.0843
7 0.0959 0.0764 49 0.1043 0.0740
8 0.0849 0.0687 64 0.0923 0.0660
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are adjusted so that variances of estimators #, and , are equal in each
row.

As may be seen, the minimum of five observations (adjusted to remove
bias) is a better estimate (in the sense of average AR) than the mean of twenty
five observations (adjusted to remove bias).

ExaMPLE 5.2. Let

1/6  for 0 < x <4,
Jolx) = { otherwise.

Consider two unbiased estimatorsr of 0, namely
g3 = [(n+1)/n]Xn:n and g4. = 2}(m+1:2m+13

so that f, is the double median for sample size 2m+ 1. Elementary calculations
give here

Var(0,) = #?*/[n(n+2)] and Var(d,) = 0*/2m+3),
so that variances are equal if
(12) m = [n(n+2)—3]/2.

Now, we have AR,,(@) = 1—min (6 )/max (9, ), which leads to the following
densities of AR,(f;) and AR,(f,):

1
( n 1) {n(l X) (= 1)+n(1 X)" 1} f0<x< n+—1,
93(.7() = n n 1
n—1 3 <
o (+1) n(l—x) lfn—-_*_lgx\l

and

(m|)222m+1 (1 _x)2m+2

2m+ 1)
oL

! —2x)" |
(@2m+1)! { (1—-2x) +(1—x2)'”} if0<x< %
ga(x) = 1
if —<x<l1.

27

Figs. 3a, b show the graphs of the above densities and the corresponding
cdf’s. As may be seen, the estimators 8, (solid line) and §, (dotted line) for n = 5
and m = 33 adjusted so as to equalize the variances are not stochastically
ordered. This time, however, it is hard to decide which estimator has smaller
mean of AR. Numerical comparison of d, and 8, for various sample sizes is
given in the following table.

4 — PAMS 132
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a

Densities gz(x), g (%)

0.4 1

Lumulative distributions Gs(x), 64 (x)
(=]
N

0.0 0.2 08 x 10
0.2 0.4 0.6 08 , 10
Fig. 3

a — densities of AR,(#,) (solid line) and AR,(f,) (dotted line) for sample sizes 5 and 33, respectively
b — cumulative distributions of AR,(8,) (solid line) and AR,(f,) (dotted line) for sample sizes 5 and

33,

respectively

Table 2. Comparison of means and standard deviations of AR9(§3)
and AR,(0,)

AR(65)
sample
. mean
S1Z€ n
3 0.1917
5 0.1259
7 0.0939
9 0.0749

standard
deviation

0.1454
0.1020
0.0784
0.0636

sample size
nn+2)—2

13
33
61
97

AR4(6,)

standard

mean ..
deviation

0.1853 0.1296
0.1245 0.0890
0.0943 0.0682
0.0760 0.0554

This time the order of relation <, becomes reversed with increase of
sample size. The maximum of 5 observations (adjusted for unbiasedness)
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is inferior to double median of sample of 33. However, adjusted maximum of
7 observations is already better than double sample median from sample of
size 61.

To conclude, let us remark that the preceding considerations concerning
location parameters are easily transferable to the case of scale parameters. We
say that B is a scale parameter if for any x

(13) gp(x) = (1/B)g(x/B), B >0,

for some density function g; the family (g,: f € %) has a monotone likelihood
ratio with respect to § if-

(14)  g(x/B)/g(x/B) is a non-decreasing function of x for g < f'

Then for any f we have
1
AR4(B) = |1—2{ G([min (B, B)/max (B, B)IG~*(t))dt|,
0 ‘ (

where G is the distribution function corresponding to g. If X is continuous and
non-negative with g, satisfying (13) and (14), then the family of distributions of
Y = In X satisfies (6) and (7) for the location parameter « = In . Let & be any
estimator of ae A = {«; « = In ; f B} such that d is valued in 4. Let f be the
estimator of f, defined by

~

BXy, ..., X,) = exp[4(Y,, ..., ).

Then the distributions of AR,(B(X,, ..., X,)) and of AR (4(Y,, ..., 1)) are
equal, which means that § and 4 are in this sense equivalent estimators of § and
o, respectively.
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