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Abstract. Let F be an (m+1)-times differentiable distribution
function (df) generating the data. Let f be the density of F. Let F,
denote the empirical df. The paper concerns fitting an (m+ 1)-times
differentiable function G to the data by minimizing d,(G) = |F,—G|, -

T 4+ BMIG™* V|, where ||, p > 1, denotes the L,-norm and f(n) >0 -
is a sequence of smoothmg parameters. Let F be an (approximate)
minimizer of the above problem. We estabhsh an upper bound for
E|F9—F®|,, i=1,...,m, with respect to the choice of . In
particular, the choice of f~n~1/m*1) results in the optimal L,-rate of
convergence of F, to £ The estimation E || F? — F?);3 is also evaluated.

1. Introduction. Let & be some family of distribution functions (df's) and
let d be a distance between df's. Let R: % >R be a penalty function and
denote by F, the empirical df. We say that F,: R"— % is a minimum penalized
distance (MPD) distribution function estimator if

0 d(F,, F,)+ B)R(E,) = inf (d(F, F,)+ BO)R(F)}

for every sample point x"e R", where f(n) > 0 is a sequence of smoothing
parameters. Without loss of generality we assume that the infimum is achieved.
If not, one can use any F_ that brlngs d(F,, F,)+ B(n)R(F,) within ¢, decreasing
quickly to zero.

The MPD estimator of a densuy is defined as a derivative of the MPD df
estimator.

Given a distance d and a penalty for sharpness R, f(n) plays a similar role
to that of the bandwidth in the kernel estimation: to balance between the
maximal smoothing and the maximal fitting the estimator to the data. So an
important goal is to choose f(n) properly to a given class & of df’s.

In [9]-[11], the problem of strong consistency of MPD density estimators
was considered when d was the norm sup, & was a subclass of (m+ 1)-times
differentiable functions, and the penalty for roughness was R(F) = sup [F™"* 1)),
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In [6] and [7], the mean integrated square error (MISE) of MPD
estimators was investigated for 4 and R generated by the L,-norm with p = 2,
while the strong consistency was treated for any 1 € p < co. Moreover, in some
classes of analytic functions the minimum distance estimators (defined by (1)
with f=0) were shown to achieve extraordinary rates of L,-, L,- and
L.-convergence.

The aim of this paper is to analyze the case where

)] - d(F, F,) = [|F(1)—F,(t)dt
and

R(F) = jurfm“)(t)[dt

for # being a subclass of (m+ 1)-times differentiable functions.

In Section 2 we show that the MPD density estimators achieve, for
a properly chosen sequence f, the best L,-rate of convergence. However, for the
L,-convergence properties of the MPD density estimators defined via the
distance (2), we were able to prove a weaker result. Theorem 2.3 implies that
their MISE converges as O(n~ (™~ 1/@m+ 1y while the optimal rate is known to
be O(n™2"**m*1) This presumable suboptimality can be explained in the way
that fitting df to the data in the L,-norm one assumes an importance of the
distribution tails stronger than necessary when compared with the L,-fitting.
Further comments and comparisons can be found in Section 3.

All proofs are given in the Appendix. Somehow related results for
regression function estimators can be found in [8].

2. The L,- and L,-rates of convergence of the MPD estimators. In order to
establish the rates of L,- and L,-convergence of the MPD estimators we shall
need that the following Lipschitz condition be satisfied:

There are L and ¢ > 0 such that for all |y| <t

3) JIF(x+y)—F(x)*2dx < Liy/Y>.

In Section 3 we give sufficient and necessary conditions for (3) to hold.

Throughout the paper we say that F_ is an MPD type estimator if F is
a solution of the minimization problem (1) within the class # consisting (a) of
df’s for m < 2; (b) of measure generating functions for m > 2 (see [7]).

THEOREM 2.1. Let F, be an MPD type estimator of an (m+ 1)-times
differentiable df for which (3) holds. Let B(n) be a sequence of smoothing
parameters tending to zero as n— oo. Then for every i=1,...,m

- . . BlLim+ 1112
EnFs:’—F<“||1<ﬂ"‘f‘““’{H1[ - ] +ﬁH2},

where H, and H, are some positive constants involving L and |F™* V|, (see (17)
and (18) in the Appendix below for their explicit values).
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Theorem 2.1 enables one to choose f(n) in an optimal way.
COROLLARY 2.2. Let B(n) = Hyn mT1/Cm+ 1) Thep

E ”F";D_F(i)”l S n—(m+1—i)/(2m+ I)EHIH%/(m+1)+H2H3]H;i}(m+ 1)-

The rate n~™m*1) js known to be optimal for the L,-convergence of
density estimators in the class of m-times differentiable densities (see [1] and
[3]). Thus Corollary 2.2 shows how to choose the sequence f(n) of smoothing
parameters to achieve the best possible rate of decreasing the expected L,-error
of MPD type estimators.

Since the L,-distance puts more weight on the distribution tails than the
L,-distance does, the L,-MPD estimators might be too “heavy” to achieve the
best rate of decreasing their MISE. In fact, we have the following result:

THEOREM 2.3. Let F_ be an MPD type estimator of an (m+1)-times
differentiable df with a compact support. Let B(n)—0 as n— co. Then for every
i=1,.
ﬁl/'(m+1}

BIFP—FO|3 < ﬁ“""“’"'"*”[ H4+B2H5]

ﬂl/(m+ 1)

+ﬂ‘2i/(m+ 1)|:

where H,~H, are some positive constants which involve |F e+t D)\, and |F™*Y)|,.

Let us notice that the rate of decreasing the MISE of the L,-MPD
estimators, following from Theorem 2.3, is slightly worse than the square of
their L,-rate of convergence. In fact, an optimal choice of f provided by
Theorem 2.3 is again f~n~ m*T1/@m+1)

COROLLARY 24. If B(n) = Hgn ™+W/Em+ D then for i=1,...,m
E ilﬁﬂ)_F(x)“% < n—(2m+1—2i)/(2m+ 1)[H4Hé/(m+1)+H5H§+0(1)].

From Corollary 2.4 and the formulas on H, and Hs one could find an
asymptotically optimal choice of Hy which, however, involves |[F™ V|, and
|Fm+ D, being unknown.

The optimal rate of decreasing the MISE for the dens1ty estimators in the
class considered is known to be n~2™2m* 1 while Corollary 2.4 gives a slower
rate n~ Gm~V/2m+D This corresponds somehow to the known property that
the minimum distance method in a parametric setup is very sensitive to
changing the distance of fitting the model to the data (cf. [4] and [5]).

Let & (L, C) denote the class of all df's F with the Lipschitz constant not
greater than L and |[F™* V), < C. It is easy to see that the bounds given in
Theorems 2.1 and 2.3 are uniform over the class & (L, C) whenever H, and H,
are properly modified. A similar remark concerns the rates of convergence of
the MPD estimators.

H,+p*H 7],
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3. Some comments. To avoid a slow convergence phenomenon (see [3],
p- 36, Theorem 1) one should impose a combination of continuity and tail
conditions on the density f. For good reasons the quantity

- D,(f)= |Jf(m)”{/(zm+1)“\/f)zm/(zm+1)

can be used as a proper criterion that measures how long-tailed or unsmooth
f is. Theorems 2.1 and 2.3 involve |f™)|, in H, and H,, respectively.

Seemingly, | \/f does not appear but the following lemma shows that it is
hidden in the Lipschitz condition (3).

LemMa 3.1. If (3) holds with the Lipschitz constant L, then j\/f < L.

Conversely, if fis a unimodal and bounded density for which j\/f < 0, then (3) is
satisfied. .

It is of interest to compare the minimum distance method presented here
with the minimum distance approach of Yatracos [12] (see also Devroye [2]).
The latter method, which is applicable only to L, totally bounded families of
densities, is a kind of the method of sieves. It has a disadvantage that one must
construct an g-cover of the family of densities #* before sampling from fe #.
Our method copes with this problem since it relies on finding the best
approximation of the empirical df F, but after sampling from f. So, only
a neighbourhood of F, has to be known when we construct an MPD estimator
from a given sample. For this reason our method can be immediately applied
to such families as the translation class or the scale class which are not totally
bounded (cf. [2], p. 98). The problems dlscussed above can be also overcome
following Yatracos [13].

APPENDIX

Proof of Theorem 2.1. Let k be an (m+ 1)-times continuously differen-
tiable function vanishing outside an interval with the properties

[k(x)dx =1 and [x'k(x)dx=0for i=1,...,m

Let F, be the kernel estimator

Fy(x)=h"[F, t)k( - )dt

where h = h(n). Let F, be the MPD type estimator corresponding to the
sequence of smoothmg parameters B(n). From Theorem 2.1 of Gajek [7] we
infer that if h(n) = C,B(n)/™*+1 with

© Cy = [ IO, m—)Y/f o™+~ k(o) do] ms D,
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then for i=1,...,m—1
E|IF®—F|, < C,B(n) "™+ VEd,(F,),

where d (F) = |F,—F|, + B(n)|F™* V|, and C, is a constant independent of
both n and F, involving the kernel k in the following way:

m+1

) C,= mal—

”k(t)” C—1

Hence, applying the triangle inequality, we get

E|FO—F®|, < C,p(m) " VEd,(F,)+E|FP—FO|,.
Since d,(F,) < d,(F,), we have
(6) B|FP—FO|; < C,B(m)~ """ VEd,(F,)+E|FP—F®,.

We shall evaluate the right-hand side of (6). Let us observe that, under the
conditions imposed on k, the following identities hold:

(7) FP(x)=h"'" 1fk“)< )F(t)dt+jj7L);"iF‘m+1)(x z)k(v)dzdv
0

and

(8) F)(x)=h"'" 1jk“’< ; >F (D)dt.

Since k is (m+1)-times differentiable and vanishes outside some interval, it
follows from (7) and (8) that -

9) E|F9(x)—FP(x)| < h™'E|{[F(x—hv)—F (x)— F ,(x — hv) + F,,(x)]k (v) dv|

H@ MMIW“szm@ﬂw
0

Now, observe that

(10) E|F,(x—hv)—F,(x)—F(x—hv)+ F(x)| < {Var [|F,(x— hv) F,(x)1}'?
n~ Y2 |F(x —hv)— F(x)|*>.

From (9), (10) and (3) we get _

(11) [E|F®(x)—F(x)dx < h"'“’zn_”zLj|v|1/2|k(i)(v)|db

f ol 1= le(v)| dv
m+1—i!

_*_hm+1-—i“F(m-i—l)”1
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Now, we evaluate Ed, (F,). Since k has m vanishing moments, using Taylor’s
series expansion, we get

kv (z— hv)

- J[F(x—hv)— F(x)]k (v)ydv = —Ij F D (x — 2)k(v)dzdv,

and therefore
(12) [F(x)—F,(x) = U [F,(x—hv)—F,(x)— F(x—hv)+ F (x)] k(v)dv
+ § [F (x —hv)— F (x)]k(v)dv|
< [|F,(x—hv)— F,(x) — F(x — hv) + F (x)| |k(v)| dv

+§§( hv)"‘

0

F* O (x — z)k(v)dzdu|.

Now, using (10) and (3), we get .
(13) [E|F,(x)—F,(x)|dx < n~ 2R L [ olt? k(v) dv |

sy, 0RO
Observe that
(14)  Fim*O(x) = =" 1 [ F,(x— ho)k™*+ D (v)dv
= h™ " [ [F,(x—hv)—F,(x)— F (x — hv) + F (x)1k™* Y(v)dv
+h™" [ [F (x— ho) — FG)TE™ D (5)do.

Since k vanishes outside some interval and F and k are (m+ 1)-times diffe-
rentiable functions, we obtain

(15) J[F(x—hv)— F(x)]k™* Y(v)dv = k™1 [ F™+ D(x — ho)k(v)dv.
From (14), (15) and (10) it follows that
JEIFf** P(x)dx < h™™ 'n~ Y2 [ [|F (x— hv)— F (x)|'/? k™ V(v)| dvdz
+F™ D) k() do.
Hence, applying (3), we get
(16) [EIF{ (x)| dx < n~ V2R U2 L |2k D ()| do

+[FO O k@) do.
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Finally, from (6), (11), (13) and (16) it follows that
E|F9—FO), < czﬁ""“"“’[n*mth 102 k()] do

m+1 | m+ 1) f[v|’"+1[k(v)|dv
S L P T
+ BT L o2 kT D (o)l do+ ||F""+”,ulj|k(v)|dv)]

1" 17 |k (v)| dv
(m+1—1i)!

, . - v
+n—1/2h—r+1/2 LJ‘|U|1/2|k(1)(v)|dv+hm+1fx”F(m+1)Hljll

Since h = C, Y™ we get

E|FP—FO| < p=He DLH (B D/n)'> + H,f],

where \
(17)  H; = LCY?[p|'[C, k()| + C1 ' C, kO (0)| + C7 ™ M k™ D(v)[]dv
and -
Cm+1 Um+lk‘l) dU
1), = ey, (IO a0,
+C;1n+1—ij‘lv|m+1—i|k(v)ldv
(m+1—1i)! ’

with C, and C, given by (4) and (5). &
Since Theorem 2.3 can be proved in a similar way, its proof is omitted.

Proof of Lemma 3.1. Applying the Cauchy inequality, we get
y y
[IF(x+z)—Fx)|"?dx = [|[ f(x+z)dz|"?dx = |y|" 2 [|f f**(x +z)dz|dx
. 0 : 0

> |y|"1’2|f(_ff”2(x+z)dx)dz| = |y|i/2_f\/f,
0

Hence, if (3) holds for some L, then j\/f < L. To prove the converse, let us
notice that '

IF(x+y)—F(x)|'?dx = |j f(x+z)dz|1/2dx+ j |f £ (x+z)dz|*? dx
|x|<T 0 I>T
<@EDY( | |_ff(x+z)dz|dx )2+ [ |_f sup f(v)dz|'/*dx
|x|€T © [x|>7T olx—vl<iy

<YPeTY?+ | / sup f(v)dx].

[x|>T  1x~ol<Iy
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So, if for some T >0 and t >0

(19) } sup f(v)dx < 0,

Ix|>T  |x—vl<t

then (3) holds with
=/2T + | sup f(v)dx.

[x|>T  |x—v[<t

Now, observe that if f is unimodal, bounded and j\/f < o0, then (19) holds
true for all positive ¢t and 7. =
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