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MINIMUM L,-PENALIZED DISTANCE ESTIMATORS 
OF A DENSITY AND ITS DERBVATIVES 

Abstmct. Let F be an (m+l)-times Werentiable distribution 
I 

function (df) generating the data. Let f be the density of F. Let F, 
I denote the empirical df. The paper concerns fitting an (m- t  1)-times 

differentiable function G to the data by minimizing d,(G) = IIF,,-GII, 
+/?(n)l~G(m+l'll, where II.Ip,p >, 1, denotes the Lp-norm and B(n)  > 0 
is a sequence of smoothing parameters. Let En be an (appxoximate) 

! minimizer of the above problem. We establish an upper bound for 
t 

t E I I ~ ~ ' - F " ' I ~ , ,  i = 1, ..., rn, with respect to the choice of p, In 
particular, the choicc of p- n-'l''"+l' results in the optimal L,-rate of 
convergence of p, to$ The estimation E ~IP;)-F(~'II: isalso evaluated. 

1. Introduction Let 9 be some family of distribution functions (dfs) and 
let d be a distance between dfs. Let R: F -+R,  be a penalty function and 
denote by F ,  the empirical df. We say that F,: Rn + 9 is a minimum penalized 
distance (MPD) distribution function estimator if 

for every sample point x n ~ R n Y  where j(n) > 0 is a sequence of smoothing 
parameters. Without loss of generality we assume that the infimum is achieved. 
If not, one can use any En that brings d ( g n ,  F,) + ~ ( n )  ~ ( p , )  within E,, decreasing 
quickly to zero. 

The MPD estimator of a density is defined as a derivative of the MPD df 
estimator. 

Given a distance d and a penalty for sharpness R, B(n) plays a similar role 
to that of the bandwidth in the kernel estimation: to balance between the 
maximal smoothing and the maximal fitting the estimator to the data. So an 
important goal is to choose P(n) properly to a given cIass 9 of dfs. 

In 191-[l 11, the problem of strong consistency of MPD density estimators 
was considered when d was the norm sup, 9 was a subclass of (m+ 1)-times 
differentiable functions, and the penalty for roughness was R(F) = sup tF(m+l'(. 
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In [ 6 ]  and [7], the mean integrated square error (MISE) of MPD 
estimators was investigated for d and R generated by the L,-norm with p = 2, 
while the strong consistency was treated for any 1 < p < m. Moreover, in some 
classes of analytic functions the minimum distance estimators (defined by (1) 
with B = 0) were shown to achieve extraordinary rates of L,-, L,- and 
L,-convergence. 

The aim of this paper is to anaIyze the case where 

and 

for 9 being a subclass of (m-k 1)-times MerentiabIe functions. 
In Section 2 we show that the MPD density estimators achieve, for 

a properly chosen sequence P, the best L,-rate of convergence. However, for the 
L,-convergence properties of the MPD density estimators defined via the 
distance (2), we were able to prove a weaker result. Theorem 2.3 implies that 
their MISE converges as O(n-(2m-1)1(2m' ' 3  while the optimal rate is known to 
be O(n-"m"2mf l)). This presumable suboptimality can be explained in the way 
that fitting df to the data in the L,-norm one assumes an importance of the 
distribution tails stronger than necessary when compared with the L2-fitting. 
Further comments and comparisons can be found in Section 3. 

All proofs are given in the Appendix. Somehow related results for 
regression function estimators can be found in [83. 

2. The L1- and L2-rates of convergence of the MPD estimators. In order to 
establish the rates of L1- and L,-convergence of the MPD estimators we shall 
need that the following Lipschitz condition be satisfied: 

There are L and t > 0 such that for all Jyl < t 

In Section 3 we give sufficient and necessary conditions for (3) to hold. 
Throughout the paper we say that fin is an MPD type estimator if f,, is 

a solution of the minimization problem (1) within the class 9 consisting (a) of 
dfs for m d 2; (b) of measure generating functions for rn > 2 (see 171). 

THEOREM 2.1. Let fin be an MPD type estimator of an (m+l)-times 
d~yerentiable df for which (3) holds. Let B(n) be a sequence of smoothing 
parameters tending to zero as n -, m. Then for euery i = 1,  . . . , m 

where H1 and H ,  are some positive constants involving L and IIF(m+l)I/, (see (17) 
and (18) in the Appendix below for their expIicit values). 
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Theorem 2.1 enables one to choose P(n) in an optimal way. 

COROLLARY 2.2. Let P(n> = H3n-(mf 1)l12mC1). Then 

The rate n-m1(2"") is known to be optimal for the Ll-convergence of 
density estimators in the class of m-times differentiable densities (see [I] and 
131). Thus Corollary 2.2 shows how to choose the sequence P(n) of smoothing 
parameters to achieve the best possible rate of decreasing the expected L,-error 
of MPD type estimators. 

Since the L,-distance puts more weight on the distribution tails than the 
L,-distance does, the L,-MPD estimators might be too "heavy" to achieve the 
best rate of decreasing their MISE. In fact, we have the following result: 

THEOREM 2.3. Let pn be an MPD type  estimator of an (m f 1)-times 
difle~entiable df with a compact support. Let P(n) +O as n a a. Then for every 
i =  1, ..., rn 

where H , - H ,  are some positive constants which involve lIF'm+l'Ill and JIF'm'l'll, 

Let us notice that the rate of decreasing the MISE of the L,-MPD 
estimators, following from Theorem 2.3, is slightly worse than the square of 
their Ll-rate of convergence. In fact, an optimal choice of B provided by 
Theorem 2.3 is again ,8-n-(m+1)1(2"+1). 

COROLLARY 2.4. If p(n) = ~ ~ n - ( ~ + ~ ) 1 ( ~ ~ + ~ ) ,  then for i = 1 ,  ..., m 

From Corollary 2.4 and the formulas on H ,  and H ,  one could find an 
asymptotically optimal choice of H ,  which, however, involves IIF'"' l)ll, and 
1/F("' 1 ) 1 1 2  being unknown. 

The optimal rate of  decreasing the MISE for the density estimators in the 
class considered is known to be n-2m1(2m+1) while Corollary 2.4 gives a slower 
rate n-(2"-1)/(2"+1). This corresponds somehow to the known property that 
the minimum distance method in a parametric setup is very sensitive to 
changing the distance of fitting the model to the data (cf. [43 and [5]). 

Let F(L, C) denote the class of all dfs F with the Lipschitz constant not 
greater than L and (IF("+ l)ll1 < C. It is easy to see that the bounds given in 
Theorems 2.1 and 2.3 are uniform over the class F ( L ,  C)  whenever Hi and H ,  
are properly modified. A similar remark concerns the rates of convergence of 
the MPD estimators. 
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3. Some comments. To avoid a slow convergence phenomenon (see [3], 
p. 36, Theorem 1) one should impose a combination of continuity and tail 
conditions on the density J For good reasons the quantity 

can be used as a proper criterion that measures how long-tailed or unsmooth 
f is. Theorems 2.1 and 2.3 involve J l  f(")ll, in H ,  and H,,  respectively. 
Seemingly, fd does not appear but the following lemma shows that it is 
hidden in the Lipschitz condition (3). 

LEMMA 3.1. If (3) holds with the Lipschit2 constant L, then fa $ L. 
Conversely, ffis o unimodul and bounded densityfor which I < c, then (3) is 
satisfied. 

It is of interest to compare the minimum distance method presented here 
with the minimum distance approach of Yatracos [12J (see also Devroye [2]). 
The latter method, which is applicable only to L1 totally bounded families of 
densities, is a kind of the method of sieves. It has a disadvantage that one must 
construct an s-cover of the family of densities F' before sampling from f €9'. 
Our method copes with this problem since it relies on finding the best 
approximation of the empirical df F ,  but after sampling from f. So, only 
a neighbourhood of F ,  has to be known when we construct an MPD estimator 
from a given sample. For this reason our method can be immediately applied 
to such families as the translation class or the scale class which are not totally 
bounded (cf. 121, p. 98). The problems discussed above can be also overcome 
following Yatracos [I 31. 

APPENDIX 

P r o  of of T h e  o re  m 2.1. Let k be an (m + 1)-times continuously differen- 
tiable function vanishing outside an interval with the properties 

J k(x)dx = 1 and J x i k ( x ) d x  = 0 for i = I ,  . .. , m. 
Let F,  be the kernel estimator 

where h = h(n). Let p,, be the MPD type estimator corresponding to the 
sequence of smoothing parameters P(n). From Theorem 2.1 of Gajek C7-J we 
infer that if h(n) = C , ~ ( n ) l K m * l )  with 

(4) C 1  = [ i  l lk ( i~~] l (m- i ) ! /J  J ~ ~ ~ ' ~ - ~ ~ k ( v ) ~ d v ] ~ ~ ~ ~ + ~ ) ,  
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then for i = 1, ..., rn-1  

where d , ( q  = 1 1  Fn - FII + D(n) 1 1  F("+')11 and Cz is a constant independent of 
. both n and F,  involving the kernel k in the following way: 

Hence, applying the triangle inequality, we get 

E ~ ~ ~ : ) - F ( ~ ) ~ ~ ~  ~ ~ p ( ~ ) - ~ / ~ ~ + ~ ) ~ d ~ ( f l ~ ) + ~ ~ ~ ~ f ) - ~ ( ~ ) ~ ~ ~ .  

Since d,(p,)  d dn(Fh),  we have 

(6)  E I I F : ' - F ( ' ) I I ,  < ~ , f i ( n ) ' ~ ( " + ~ ) ~ d , ( ~ h ) + E I F f ) - F ( ~ ) ~ l ~ .  

I We shall evaluate the right-hand side of (6). Let us observe that, under the 
conditions imposed on k, the following identities hold: 

I 

I x - t  h ~ ( ~ - k ~ ) m - i  
I , (7 )  f i l ( ~ ) = h ~ - ~ ~ k ( i ) ( ~ ) F ( t ) d t + j j  ,, (m-i)! F ( ~ +  1 ) ( ~ - ~ ) k ( 2 i ) d ~ d v  

and 

~ f ) ( ~ )  = h-' -1  x - t  j P ( ~ )  F,( t )d t .  

Since k is (m+ 1)-times differentiable and vanishes outside some interval, it 
follows from (7)  and (8)  that 

F("+l ) (x -  z )k(v)dzdv  
(m-i)! 

Now, observe that 

(10) E IFn@ - hv) - F,(x)  - F ( x  - hv) I- F(x)l < (Var [I F,(x - hv) - F , ( X ) ~ ] ) ~ ~ ~  

< n - 1 1 2 1 ~ ( x - h v ) - F ( ~ ) 1 1 ~ 2 .  

From (9), (10) and (3) we get 
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Now, we evaluate Edn(F,). Since k has m vanishing moments, using TayIor's 
series expansion, we get 

and therefore 

(12) IF,(x)- F,,(x)l = IS [F.(x - hv) - F,(x) - F(x - hv) s F(x)] k(v)dv 

i + j  [F(x-hhv)- FIX)] k(v)dul 

i < 1 lFn(x-hv)-F,(x)-F(x-hv)+F(x# Ik(v)ldu 

Now, using (10) and (3), we get 
1 
I (13) SEIF,(X)- ~ , (x) ldx  < n-l/%'JZ~j l v~"~~k(~ )~d t l  

Observe that 

(14) FLm+l)(x)= h - m - l S F n ( x - h ~ ) k ( m + l ) ( v ) d ~  

I - - h-"-1 1 [Fn(x- hv) - F,(x) - F(x- hv) + F(x)] k("+')(v)dv 

Since k vanishes outside some interval and F and k are (m+ 1)-times diffe- 
rentiable functions, we obtain 

From (14), (15) and (10) it follows that 

+ IIF(m+i)II, Jlk(v)ldu. 

Hence, applying (3), we get 
I 
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Finally, from (61, (l l) ,  (13) and (16) it follows that 

Since h = C, B1flmtl), we get 

E - 1 < ' ,f-i/(mi. l)rHl{plKm+ l),/n)112 + ~ ~ p - j ,  
where 

and . . 

with C, and C, given by (4) and (5). rn 

Since Theorem 2.3 can be proved in a similar way, its proof is omitted. 

P r o  of of Lemma 3.1. Applying the Cauchy inequality, we get 

Hence, if (3) holds for some L, then I,,@ < L. To prove the converse, let us 
notice that 
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So, if for some T > 0 and t > 0 

then (3) holds with 

Now, observe that iff is unimodal, bounded and J$ < co, then (19) holds 

, +  - true for all positive t and T .  rn 
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