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EQUIVALENT CONDITIONS FOR THE CONSISTENCY
OF NONPARAMETRIC SPLINE DENSITY ESTIMATORS

BY

GRZEGORZ KRZYKOWSKI (GDANSK)

Abstract. We study the nonparametric spline density estimators of
probability density. The equivalence of weak convergence for L;-con-
sistency of one density and completely for L,-consistency of ali
densities is proved. It is equivalent also to suitable rates of convergence
of window parameter.

1. Introduction. For r > 1, let N?(x) =r-[0, ..., r; (—x)7 '], xeR, be
the r-th order B-spline associated with the knots 0, ..., r. Here, for f: R' — R*,
[sgs - --» S,; f] denotes the divided difference of f taken at the points s, ..., s,.
The B-spline N has the support [0, r], it is a piecewise polynomial of degree
r—1, and it is of class C"~2 for r > 2. By translation and scaling of N we can
obtain a B-spline basis for any equally spaced set of knots on R. Let
t;=(i+0)h for ieZ=1{0, F1, ¥2,...}, heR, =(0, +©0), and § =0 if r is
even and 6 =1 if r is odd. We set

N&(x) = N?((x—t)/h) for xeR and ieZ.

The spline operator considered in the note will be defined by the kernel
0. R*—-R?, introduced by Ciesielski [1], where

O (x,y) =Y K INOx)-NO(», (x,y)eR* r>1,heR,.

seZ

The kernels Qf are local due to the following property:

1.1 P (x,y)=0 if [x—=y| > rh.
They are aiso bounded: ’
(1.2) 0<OP(x, ) <1/h,  (x,y)eR>

We now assume that we are given a probability space (Q, #, Pr)
and a simple sample of size n, i.e., a sequence X, ..., X, of iid. real-valued
random variables such that their common distribution has density f.
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The spline density estimator is defined by

(1.3) SanG) =071 Y 0P (x, X)), xeR".
i=1
The estimator f, ; is neither of kernel nor of series type, but it has some
properties of estimators of both these types. In particular, it is local like kernel
estimators (cf. (1.1)). We can see the relationship with the series type estimators
if we write the definition formula in the following form:

14)  furn) = Y auaNO(x), where a,,=n"" 3 BTN ().
seZ i=1
In other words, f,, is a linear combination of B-splines.
Asymptotic properties of a large family of such estimators in several
variables are discussed in [3].
Another look at the linear combination of B-splines as the density
estimators can be found in [7].

2, The Theorem. Before formulating the main result of our paper
(Theorem A) let us introduce the following notation:

Random variables J,, ne N, are said to be exponentially convergent to zero,
in symbols J, — 0 exponentially, if for each positive ¢ > O there exist b > 0 and
no such that for all n greater than n,

Pr{|J,| > ¢} <exp{—bn}.

THEOREM A. Let f,, be the spline density estimator defined by (1.3).
Moreover, let J, = [|fus—f|, h=h,, neN, be the sequence of L,-distances
between f and f,, . Then the following statements are equivalent:

(i) h,—0 and nh,— ©o;

(i1) for some density f, J,—0 in probability;

(iii) J,—0 in probability, for all densities f;

(iv) J,— 0 with probability one, for dll f;

(v) J,—0 exponentially, for all f.

An analogue of Theorem A for kernel density estimators was obtained by
Devroye [4]. : '

We will try to extract the key facts used in the proof of Theorem A. They
are collected in several lemmas, which are of independent interest.

LeMMA 1. Let ¥ be the family of disjoint intervals in R*. Suppose that, for
given m > 0 and for all BeV, |B| = m > 0, where |B| denotes the Lebesgue
measure of the set B. Let u, be the empirical probability measure for the sample
Xy, ..., X, and let u be the probability measure of density f. For every & >0
there exist positive A,, A, and A5 such that for all ne N

Pr{y |u,(B)—u(B)l > ¢} <exp{—nid;+m A, +43}.

Be¥
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Proof Denote by S, p the closed interval [x—R, x+R], where xeR,
ReR,, and by 8% its complement in R'. Choose an R >0 such that
1 (S5 z) < & Divide ¥ into two subfamilies:

P, ={Be¥: BnSox#9} and ¥,={Be¥: BnSor=9}.
Note that ¥, is finite. Now,

Y |, (B)—p(B) =2 ) ((B) =1, B+ . (4n(B)—p(B)).

Be¥:> Be¥2,1(B) Z un(B) . Be¥,

Let us estimate the second term:
Y (4 (By—p(B)) < 1, (S5,0)— Y, u#(B)£p(S5.»)

Be'¥, Be¥, )
< |, (S5,8) — (85, 0) + 1(S6,8)-
Hence
Y e (B)—p(B) < 3u(S5,5) + |1, (S5,8) — (S5, )

Be¥;

The elementary inequality In(1+ x) = 2x/(2+x) for x > 0 implies the modifica-
tion of Hoeffding’s inequality [5, Theorem 3]: If &,, &,, ..., £, are independent,
E(, =0, §,<b, Eé}f =0d? (i=1,2,...,n), then for 0 <e<b

12 ne?
- . < PR
n ,-_:Zl él ? E} 2exp { 202 +bs}
By this inequality for Bernoulli random variables we have
22)  Pr{ Y |u(B)—p(B) > 4e} < Pr{ln, (550 —n(Ss.0)l > &
Be¥,
' —2ne?)
< .
2exp{ 24-¢ }

Let ¥, = {B}}¥-. Since || Jf=; B <2R+2m, we have k <2R/m+2. For
ie{l, ..., k} we denote by Y, the number of elements of the sample X, ..., X,
contained in the set B,. It is easy to see that

2.1) Pr{

. k
Pr{ Y lu(B)—p®B) > =Prin " ¥ [Y,—E(¥)>s}.

Be¥, ji=1
From the equality
k
Y |Yi/n—E(Y,/n) = 283912 [Y./n—E(Y./n)]|,
i=1 ied

where A is the set of all subsets of the set {1, ..., k}, we obtain

Pr{ ¥ Iu,(B—p(B) >} < 2supPr{| ¥ [V,—E(¥))| >na/2}. - -

BeY¥ ied
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The random variable Z,-E 4Y; has the binomial (n, p,) distribution, where
ps=Pr{X,e(JicaB;}. Then, again, by inequality (2.1) for the Bernoulli
random variable we have

2
o {BEZ‘P, I (B) = (B)] > &} < 2"“exP{ 2(';84-5)}.

Since k < 2R/m+2, we come to the statement

23) Pr{ Y |u,(B)—u(B) > e} < exp{—ne,+e,),

Be'V,

where &, = ¢2/2(1+¢) and ¢, = (2R/m+ 3)In(2). Combining (2.2) and (2.3) we
get the desired conclusion.

The next two lemmas concern the behavior of the spline operator
Of: L, —L, given by the formula

24 o)) = [ (MO (x, y)dy for xeR.
LemMa 2 (Ciesielski [2]). Let QP be the above spline operator. Then

100 (N—F 1l <8R+, (fi h) for 0<h<1,

where @, 1 (f, h) =supy <ull42f|l, and A} is the 2-nd order progressive
difference with step t.

LeMMA 3 (nonexistence of unbiased spline density estimators). Let
feL*(R), f#0, and let Q) be the spline operator given by formula (2.4) with
r 2 2. Then [1QP(f)—f| > O for each he R, , and lf {h,: neN} is a sequence of
positive numbers, then

lim {{Q§(f)—f| =0 implies h,—0.

Proof. Suppose to the contrary that | Qi (f)—f ||, = O for some heR,
and probability density f. Thus, for almost all xeR?,

f6) =Y, asNG(x),  whete ag,=h™" [ [(HNG,(5)dy.

seZ

By the stability inequality (see [6]) we have {a,;; s eZ} €l, (Z). Let us compare
o (f) to f:

f) =00 () =Y auNENx) = Y. (X as.hgs'—s,h) NP (x),
seZ s'eZ seZ .
where gy, =h"'(N"), N®,) depends on s'—s and h, only. Since the
sequence of splines { N ,,}SE z forms a basis in the space of sphnes of order r with
simple knots {t; seZ}, we get for all seZ

(25) Asy.n = 2 a’shgs —s,h*

seZ
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Let us introduce, for teR?,

T,(t) = ). az,exp {ist}.

seZ

By (2.5) we obtain
T;I(t) = Z ( Z Qs h gs-s',h) exp {iSt} = ( Z Ay 1 CXP {iS’t})G(t) = T;:(t)G(t)s

seZ s'eZ seZ

where G(t) —Z _ _rﬂgu,,exp {itu}. Then for each teR"* we get T,(t)(1—G(2))
= 0. Since G is a nontrivial trigonometric polynomial and G(t) # 1 for almost
all teR?, it follows that T, =0 and, consequently, that f=0, which is
impossible.

For the second statement of Lemma 3 suppose that QP ()—fl,
converges to zero as n— co. In the case where h, tends to infinity as n— oo,
using Fatou’s lemma and (1.2) we have

liminf||Qf) () —fll, > IllmlanQi,"(f)—fllll Iflly = 1.

n—w

If {h,: ne N} has a subsequence convergent to a finite limit, for simplicity, let
h,— 6 > 0; then

lim inf | NN =fl = 129 (N)—f1l, >0,

and the proof is complete..

3. Proof of Theorem A. The proof will be established by proving two
lemmas. The first states the implication (i) = (v), the second one the implication
(ii) = (i). The remaining implications are clear.

LemMA 4. Let {h,: neN} be a sequence such that

lim h,+ (nh,)"! =

n—+oo

and let f,4 be given by formula (1.3). Suppose that the simple sample has
a density f. Then J, = | fun,—f |, tends to zero exponentially.

Proof of Lemma 4. For given ¢> 0 find finite positive constants
v, a,, ..., a, and v disjoint finite intervals 4,, ..., 4, in [0, r] of equal length
such that the function N® =3""_ a;x,, satisfies

INO =Ny <o, [NO—=N9|;<e and N <1,

For xeR and heR,, we introduce the following notation:

T =ntY 0P, X) and  OPUO) = /)00 &, y)dx,

j=1

7 — PAMS 132
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where

o (x,y)=h"") N (x/h—s) N (y/h—s) for (x, y)eR>.
Now,
(3.1 I foa =S N1 < N STl s + 1 Fona— @t (Nl

+HIOR (N~ N+ 120N ~S 11

Let F, be the empirical distribution of the simple sample X,,..., X,.
Then

(G2 W fum—Fmlls < (10 (x, y)— 0P (x, y)dx)dF, (y)
<[ S NO(y/h,—5)IN® (x—s5)— N (x~s)|

seZ

N0 (x—5) IN® (3/h, — $)— NO (y/h, — 9| dx] dF,, ()
< JINO—FO), [T NO(3/hy—$)] dF, (3)
seZ

+ JINOI | NO =N, dF, (y) < 2e.

In the same way, replacing the empirical distribution F, by the distribution
function of the sample F, we obtain

(3.3) 199 ()0 (NN, < 2
Let us estimate | f,,—Q0% (N);:

B4 NFs)=0P NN, <Y BN (x/h~3)|[f N (y/h—~s)d[F,(y)— F(y)]|dx

seZ

< X [N (y/h=s)d[F,(y)—F(y)]|

seZ

= ZIZ ,IxA,(y/h S)d[F WM—F)]|

seZ j=1
= Z a; Y |ua( h(s+A)) u(h(s+4)),

where p, and p are the measures having distributions F, and F, respectively.
Combining inequalities (3.1){3.4) and Lemma 2 we have

Pr{|l for—fll1 = (va* +6)e} < Z Pr{3, [uy (b, (s+ A))—n(h, s+ A4)) > ¢},

seZ
where a* = max {q,, ..., a,}.

By Lemma 1 there exist positive b,, b,, b; and ny,e N such that
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(3.5 Pr{| fun.—f 1 = &} < exp{—nb,+h; ' by+bs}
for n > n,. Lemma 4 is thus proved.

LEMMA 5. Let f,, be given by formula (1.3). Suppose that {h, neN} is
a sequence such that | fou,—fl—0 in probability as n— . Then h,—0
and nh,— co.

Proof. Since J, <2 for all n, we have hm,,_.mE(J)—O By Jensen’s
inequality we obtain

E(J) NE fop—f 11 = 128 (=S

So QP (f)—fl;~0 as n—>co and, by Lemma 3, h,—0. From the in-
equality

E(J,) = El fur,— 20 D1 = 1 f=2R(N;
and Lemma 2 we have '

(3.6) lim E|l f,5,— Q0 (N, = 0.

Let, for given xeR, A, = {w: Vie{l, ..., n}, X;¢8S, ). Hence
E | £4— 00 (N1 = [E [ fun()— () () xa.] dx
> [E(Q(f) () 2a.) dx— [ E (fon (%) xa,) dx
It is clear that f,,(x) x4, = 0 for all xeR! and for each weQ. Thus
JE(fon () xa.)dx = 0.

To estimate the first term we note that if u is the probability measure with
density f, then

FE(@(£)(9-%a.)dx = [ O (1) () Pr {4} dx
= QNG Pr{ () (X,eSiml dx
= § 0P (/) (9 exp {nlnp (S5} dx

> o ( f)(x>'e"p{_"1_ﬁ%%)} o

If liminf, . , nh, = s < co, then by Fatou’s lemma we have

liminf [ E (Q§2(f) (9 £.) dx > [liminf 02 (/) ()-exp {"" s }dx
n=® 1—“(th,.r)

n— o0

= [ f(x)-exp { —2rsf(x)} dx > 0,
which contradicts (3.6).
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