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Abstract. A process based on stratification to check the propor- 
tional hazards assumption in a general Cox's regression model is 
considered. The stratification is based on a nonrandom choice of strata 
for individuals together with a random one generated by the be- 
haviour of covariates at failure times. A formal description for the . 
asymptotic performance of the process is given and some statistical 
applications are established. 

1. Introduction. We are interested in the goodness of fit inference for Cox's 
[6] regression model of a general form of Andersen and Gill [3]. This model 
has been extensively studied in the statistical literature (see, e.g., [2], [3] and 
references therein). A class of procedures has been proposed to check the 
assumption of constant proportionality between two hazard rates, a special 
case of Cox's model. They include a method based on total time given by Gill 
and Schumacher [8] and a test of fit based on the score process proposed by 
Wei 1181. The graphical methods for assessing the goodness of fit in the model 
using covariates are discussed in Andersen [l], Arjas [4] and Crowley and 
Storer [7], whereas the procedures based on "partial residuals" and "score 
residuals" are proposed by Schoenfeld [15] and Thernau et al. [16], respec- 
tively. For other procedures see also Gray 191, Marzec and Marzec [ll], 
McKeague and Utikal [12], Moreau et al. [13]. 

In the present paper we stratify data with respect to a nonrandom choice 
of the subset of the whole set of individuals under observation, and simul- 
taneously a random one which is generated by the behaviour of covariates at 
failure times. Next we define the process based on this stratification to check 
the proportional hazards assumption. It should be mentioned that recently in 
[ll] the problem of nonrandom stratification together with asymptotic 
behaviour of Arjas's [4] type processes has been considered. Now a random 
stratification based on covariates leads to the newly defined process that also 
has, under the assumed model of proportiona1 hazards, the trajectories of 
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"martingale type". This is a starting point for all further considerations, and 
therefore it should be noted that general ideas of this approach, to deal 
with stratified processes, were firstly proposed and explored by Arjas [4]. Some 
brief comments about the adaptation of the graphical method described in-141 
to our process are given in Section 2. Consequently, the result obtained 
concerning the asymptotic behaviour of the process of Section 2 also concerns 
the asymptotic behaviour of Arjas's plots arising from a correctly specified 
model. Some goodness of fit tests based on this process are proposed in Sec- 
tion 3. All proofs are given in the Appendix. 

2. Defmitions and model assumptions. Let (O, 9') be a complete 
probability space and let ($: t E [0, T]) be an increasing right-continuous 
family of sub-a-algebras of 97 Local martingales, predictable processes, etc. are 
defined with reference to these sub-@-algebras. Following Andersen and Gill 
[3], let N = ( N , ,  . . . , N,), n 3 1, be the multivariate counting process defined 
so that N ,  counts failures on the i-th subject at times t E [O, T]. Thus N has 
components Ni which are right-continuous step functions, zero at time zero, 
with jumps of size + 1 only, such that no two components jump simuItaneous- 
ly. Assume each Nijz) to be almost surely finite. Following 131 we suppose that 
Ni for i = 1, ..., la has random intensity process l i ,  i.e. 

is a local square integrable martingale, of the Cox's regression form 

Here 8, is a p-vector of unknown regression coefficients, I ,  is an arbitrary 
unspecified baseline hazard function, is a predictable {O, 1)-valued process 
indicating that the i-th individual is at  risk when = 1, and Zi is a p-variate 
column vector process which is assumed to be predictable and locally bounded. 

The maximum partial likelihood estimator fl  of Po is defined as the solution 
of the equation 

(3) U(P, 7) = 0, 
where 

We use the estimator in the inference for goodness of fit in Cox's propor- 
tional hazards model (2). 
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Given I  c (1, . . . , n) and z E RP, let us define the process 

where J ,  c RP is a finite interval containing z, and IY = xi=,&. 
The process H,(B,  z,  -) makes a direct  omp par is on between observed and 

expected failure frequencies, as estimated from the model for individuals in 
stratum I with covariates in J,. Since, under the correct model, H I ( b o ,  z, -) is 
a local martingale, H~(/?, z, -) expresses a balance between the "suitable 
restricted" actual count of failures in stratum I and a corresponding estimated 
collective cumulative hazard. The above argument is used in our statistical 
inference in Section 3. 

It should be noted that the graphical method of Arjas [4] can also be 
applied to the process of the form (5). To observe this take a stratum I and 
a finite interval J , .  Then the x-coordinates should count these individuals from 
stratum I for which the corresponding covariates evaluated at the observed- 
failure times of I belong to J, .  The y-coordinates should mark the values of the 
corresponding estimated collective cumulative hazard. Obviously, under the 
assumed Cox's model one can expect the approximately linear graphs with 
slopes close to one (see [4] for a detailed discussion of a graphical plotting 
technique). 

Note that the process HI@o7 z, -) is ad hoc robust to covariate outliers in 
stratum I due to its direct dependence on the bounded interval J, which 
censors "large" covariate observations (see, e.g., [14]), Consequently, the same 
remark concerns the above-mentioned graphs and tests of Section 3. 

We study the asymptotic properties of the process of the form (5) when the 
measure of J ,  tends to zero as the size of I and n tend to infinity. Let (1, . . . , n} 
be stratified into q strata I,, . . . , Iq.  Moreover, let z,, . . . , z, denote a finite set 
of distinct covariate levels. We use the following notation: 

where Q = {I ,  . . . , q), and also write R = (1, . . . , r). Here n, denotes the size of 
I , ,  w a measure of J,, and zO ,  Z1, Z2 mean 1, Z, zZT, respectively. For 
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z = zi we use the notation wi. If I, = (1, . . . , n} ,  then Sf), N, and Mk are 
denoted by S(j),  37 and M, respectively. We also write H ,  in place of HI for 
I = I, in (5). Moreover, (bki: Q x R) means a qr-variate vector (b,,, . . . , b,, , . . . , 
b l r ,  * 9 bq,). 

We let the assumptions (AHD) of [3] which guarantee the asymptotic 
normality of Cox's estimator f l  be satisfied throughout the paper. They include 
the assumption of the sums SIO)(fl, t), S(l)(fl ,  t )  and S(')(j?, t )  converging 
uniformly for t~ LO, T] and f l  in a neighbourhood of /I, to functions do)(#?, t), 
s(')(fl, t )  and sI2)(j?, t) ,  respectively, in probability. 

Under (6) we make for ~ E Q  and ~ E R  the following 

ASSUMPTIONS. 
E: wi 4 0, nk/n + pk, p k € ( O ,  I), ~ ~ ~ / n ~ ~ ~ 4 t ~  as n + c o ,  where aki 

= n 'w n1/2. 
k i 

F :  SiO)(#?, t )  and Shl)(#?, t )  converge uniformly for t E [ O ,  z] and in some 
neighbourhood of Po to functions sf')(@, t )  and sil)(B, t), respectively, in 
probability. The functions siO) and sill satisfy the same regularity conditions as 
those for sIO) and s(l) which are given in (D) of [3]. 

G: Q,(zi, t) converges in probability to a nonzero bounded function 
q,(zi, t), uniformly for t E [O, z]. 

The conditions (F) and (G) incIude the asymptotic stability and regularity 
assumptions. 

3. Asymptotic properties and goodness of fit tests. Under the assumption of 
Section 2 we can state the following 

THJ~REM 3.1. H,(-)  = ( a i l  ~ ~ ( , f f ,  z i ,  -1: Q  x R) converges weakly as n + oo 
to a qr-variate continuous Gaussian process r(-) = (T,(zi, -): Q x R) with zero 
mean and covariance function defined by 

where u,  t€[O, z] ,  t < u, k ,  ~ E Q ,  i, ~ E R .  Here 

Note that in the case where (N , ,  x, Z i )  are i.i.d. replicates of (N, Y, Z) ,  say, 
the covariance function given in (7) takes a simpler form. Then we have sim) 
- - s(m) , rn = 0, 1, ~ E Q ,  and conclude that the process a i1 f I k ($ ,  zi, a) converges 



Cox's regression model 

weakly to the Gaussian limit process 

where W is a standard Brownian motion. This means that the asymptotic 
randomness of a single Arjas's graph relates to the time transformed Brownian 

. t' 

motion. 
Theorem 3.1 gives the limiting distribution of the process H,  under model 

conditions. The model should be rejected if H ,  is significantly different from 
zero, as measured by some "suitably chosen" functional. We present some 
formal statistical applications in the sequel. 

Let 

where k, I E Q, i ,  j E R, t, u, x, YE [O, TI. Here E; means, if necessary, a gene- . 

ralized inverse of C,. 
Under the above notation, for ~ E Q ,  iER we have 

rnax(laki1~,(8, zi, t)l: ~E[O, ~ ] ) * % f ~ / ~  

is asymptotically distributed as max {I W(t)l: t E [O, I]), where W is the standard 
Brownian motion. 

Note that the test statistic of Corollary 3.2 is based on a suitably normed 
maximal distance between the counted failures and the corresponding es- 
timated collective cumulative hazard for individuals in stratum I, with 
covariates in J , , .  ConsequentIy, it has an intuitive appeal to the graphical 
method since it measures the maximal value of the observed "trend" of the 
graph (see [4] and [Ill). A derivation of the distribution of the limit variable 
can be found in [ 5 ] ,  and a table in [17]. 
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Now we present some xz-type statistics based on the process H,. Let 
0 = to < t ,  < . . . < tm = z be a partition of [0, 23 into rn intervals, let hki and g,, 
k E Q, i ER, r E ( 1 ,  . . . , m) be given numbers with hki # 0 and g,  # 0 for some 
k, i, r. 

Let 

Under (9) and the above notation we have 

COROLLARY 3.3. The random uariables 

and 

are asy~nptoticaIfy X 2  distributed with one degree of freedom. 

Note that, in view of Theorem 3.1, if shm) or sr' equals sIml, m = 0, 1, then 
Uktij can be taken to be zero. This implies that in the case where ( N , ,  x, Zi) are 
observations of independent replicates of (N, Y, Z )  the test statistics of the 
above corollary can be of a simpler form. 

From a practical point of view the time axis should be divided into 
rn intervals tr] which will contain approximately the same number of 
observations 1 I (Zj ( s )  E J, , )  dN,(s), where the sum and the integral are over 
j ,  E E I k  and s E [t,- t,], respectively. Some further practical way to determine 
weights g, of the test statistic based on ai can be based on the follow- 
ing, considerations. Obviously, by plotting the t-time coordinates against 
H,(B, zi,  t )  one can expect, under the assumed model, to obtain the trajectory 
oscillating round about zero. Otherwise, there will typically be groups of 
intervals [t, - t,] for which the corresponding expected estimated cumulative 
hazards are systematically too high or too low to match to the data. 
Consequently, by considering 

we can choose only the time intervals for which the corresponding d, shows the 
largest deviations from zero. Then we can determine the corresponding weights 
g, to obtain g, A, of the same positive sign. In view of the standardized factor of 
the test statistic based on Zki the choice of weights g, restr'cted to the set 
(- 1,0, + 1) seems to be practically useful. A similar practic a procedure can 
also be used to determine weights hki of the test statistic based on 3. 
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Let 8, and B denote (qr x qr)-matrices with elements of the form Kiu(O, T )  

given by (9) and Cov [r,(zi, a), r , (z  j, z)] given by (71, respectively. 

COROLLARY 3.4. ~ , ( z ) ~ B i H , ( z )  is asymptotically x2 distributed with 
rank (3) degrees of freedom. 

In a general situation the exact value of rank(B) seems extremely hard to 
obtain. However, when (N, ,  k;, Zi) are i.i.d. replicates of (N, Y, Z), where Z is 
a time independent random vector, the problem simplifies. Then rank(3) 
equals q-1. To observe this note that, in view of condition G of the 
Assumptions, the function qk{z, t )  is now equal to q(z), say, k E Q. Consequently, 
by (7) we infer that Cov [rk(zi, T ) ,  T,(zj, z)] is of the form 

where the integral is over LO, z], k, EEQ, i, ~ E R .  It can be shown that rank(@ 
equals the rank of the matrix with the elements pk, = pk(I fk = I) - pJ, k, 1 E Q. 
Thus the assertion follows. 

Now we present some verbal discussion concerning the power of the tests 
of Corollaries 3.2-3.4. First observe that in view of (5) all these tests are based 
on the quantities of the following form: 

S C 1 Izj J,I C CS (ik?dN, - 6 (1) dN,,I, 
I I # I k  

where 
n 

NIk corresponds to the notation of N,, and the integral is over (s, t ] ,  say, with 
0 < s < t < z. This means that for these departures from the assumed model of 
proportional hazards where there are some differences between the strata (I), 
as far as the distribution of (Ni, &, ZJ is concerned, the power of the 
considered tests should be relatively high. Then the covariates with dis- 

I tributions concentrated round about the levels {z) should also affect the 
power. Otherwise, the gain in power is expected to be slight and only the 
appropriate choice of (z) can influence the higher power values. This, however, 
concerns the problem of choice of a stratum generated by the levels of covariate 
space. 

Some practical remark about this looks like the following (see also [20]). 
The partition of the range of a covariate Z based on the finite number of the 
covariate levels {z) can be constructed as follows. For each coordinate Zk of 
Z which is of a continuous type, one can choose the same finite number of the 
one-dimensional levels (2,) and the corresponding intervals (J,), with zk E Jk,  
so that they contain approximately the same large number of coordinate 



observations (Zi)k, i = 1 , . . . , n, evaluated at the observed failure times. On the 
other hand, each discrete coordinate of 2, e.g. that of a qualitative type as an 
indicator of sex, treatment group, etc. (see [lo]), can determine the correspond- 
ing level coordinate. In particular, if the range of the covariate Z is discrete, 
one may want to use each value of Z as a partition. This leads to the choice of 
{z) and ( I ) .  It should be mentioned that the ways of choice of the stratacation 
based on the strata {I) are discussed in [4] (see also [Ill). 

APPENDIX 

Proof  of Theorem 3.1. Fix ~ E Q  and ~ E R .  By using the mean value 
Lagrange theorem, in view of (11, (5 )  and (61, we obtain 

where is given by (9), and is on the line segment between Po and f?. First 
observe that n-li2 I$@, zi, t) converges in probability to vk(zi, t), given by (X), 
uniformly for t~ [0, z]. This follows by the asymptotic stability and regularity 
conditions and the fact that, by Lenglart's inequality (see [19]), n-'m(z) is 
bounded in probability whereas 

converges in probability to zero, uniformly for t E [0, z]. Moreover, in view of 
[3], n112(B-/30)-~-1 U(flo, Z) converges in probability to zero, where U is 
given by (4). Consequently, the process 

H,(-) = (ak1~,(f? ,  Zi, .): Q X R) 

is asymptotically equivalent to the process A,(-) with the components 

Consider a (qr+p)-variate local square integrable martingale G,(-) with the 
components 

(.) 

n-"' Qk(zi, s){dMk(s)- nksXO)(bo, ~)/[nS(~)(j?,, s)] d M  (s)), k~ Q, i E R ,  
0 
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and the last one is the vector equal to U(P,,  a) given by (4). It can be shown that 
G, satisfies the assumptions of Theorem 1.2 of [3], and consequently this 
process converges weakly to a (qr+p)-variate Gaussian martingale with 
continuous sample paths and zero mean. Let Gn(.) be the process obtained from 
G,(.) so that only the last component of G,(-), i.e. U(&, .) is replaced here by 
U(#lo, 7). The process R, itself may be written as f (G,,), where f is the function 
from Dqr[O, z] x RP to Dqr[O, TI' defined by 

f (x, 16) = ( X ~ ~ - U ~ ( Z , ) ~ - ' U :  Q x R) 
for x E Dq'[O, 21, u E HIP, and vh(zi), E given by (8). Obviously, f is continuous on 
Cqr[O, z] x RP relative to the product Skorokhod topology. Consequently, in 
view of Theorem 5.1 of [ 5 ] ,  the process B, converges weakly to a continuous 
qr-variate Gaussian process r, say. Obviously, r has zero mean. A direct 
calculation brings a formula for the covariance function of r of the form (7), 
which completes the proof, 

Proof  of Coro l l a ry  3.2. It follows from Theorem 3.1 that the process 
a,  '~,(fl, zi, .) converges weakly to W(A(.)), where W is the standard Brow- 
nian motion and 

t 

A ( t ) = ~ , ( l - p , ) j q k Z I z i , ~ ) ~ ( ~ ) ( B o , ~ ) A o ( ~ ) d ~ ,  ~ E C O J I .  
0 

In view of the consistency of j? and the Assumptions, the integrand of xi given 
in (9) converges. in-.@robability to p,(l -pk)qj!(zi, s), uniformly in s E [0, z]. By 
applying ienglart's inequality one can infer that zi is the consistent estimate of 
A(z). Consequently, the scale-change property of the Brownian motion 
completes the proof. 

P roo f  of Coro l l a ry  3.3. By the same arguments as those we used to 
deal with Ti in the preceding proof we can show that Ukihi(u, t, X, y) g i G  by 
(9) is the consistent estimate of Cov [r,(zi, u)-rk(zi, t), rk{zi, y)- rk(zi, x)] 
obtained from (7), where x < y < t < u. Similarly, Wkiki(t, ec) given in (9) 
converges in probability to the above-mentioned covariance, but with x = t 
and y = u. Quite analogously we conclude that Wkiv(O, z) is the consistent 
estimate of Cov [rk(ziP z), rl(zj, z)]. Thus Theorem 3.1 completes the proof. 

P r o  of of Coro l l a ry  3.4. First note that 8, is the consistent estimate 
of 3. Consequently, by Theorem 3.1, H,(~)~B;H,(~) converges weakly to 
r(z)=B- r(z). This completes the proof. 
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