PROBABILITY AND MATHEMATICAL STATISTICS Vol. 14, Fasc. 1 (1993), pp. 143–155

U-FUNCTIONS OF CONCOMITANTS OF ORDER STATISTICS

BY

WINFRIED STUTE (GIESSEN)

Abstract. Let (X_i, Y_i) , $1 \le i \le n$, be i.i.d. \mathbb{R}^{1+d} -valued random vectors. Denote by $Y_{[i:n]}$ the Y-value associated with the *i*-th order statistic $X_{i:n}$. Concomitants of order statistics may be used to exhibit special features of the dependence structure between X_i and Y_i . We prove various distributional limit theorems for so-called U-functions (of degree two) of concomitants. The method of proof is based on a new conditional projection lemma.

1. Introduction and main results. The main subject of this paper* is to provide new results for so-called U-functional of concomitants of order statistics. To be precise, assume that (X_i, Y_i) , $1 \le i \le n$, is a sequence of independent identically distributed R^{1+d} -valued random vectors on some probability space $(\Omega, \mathscr{A}, \mathbf{P})$. Denote by $X_{1:n} \leq \ldots \leq X_{n:n}$ the order statistics of the X-sample. The Y-vector $Y_{[i:n]}$ pertaining to the *i*-th order statistic is called the *i*-th concomitant. Concomitants of order statistics rather than the Y's themselves play an important role, e.g., when the X-random variables are type-II censored, i.e., when the X's are time-sequentially observed up to $X_{\langle nt \rangle;n}$, where 0 < t < 1, and $\langle \cdot \rangle$ denotes the integer part of \cdot . In this case, Y_1, \ldots, Y_n are not all available, and statistical inference about the Y's may be only based on $Y_{[1:n]}, \ldots, Y_{[\langle nt \rangle:n]}$. What is more, even if all pairs $(X_i, Y_i)_i$ are observed, grouping the X's and analyzing the within-group Y's amounts to studying certain (functions of) concomitants (see, e.g., [10]). The most familiar theoretical function describing mean outputs of Y given some (quantile-) side condition on X is the so-called Lorenz curve, as well as the closely related total time on test transform (see, e.g., [4]). A general account of the distributional properties of concomitants (of order statistics) was given by Yang [12]. L-statistics of concomitants were studied by Sandstroem [8] and Yang [13]. An interesting invariance principle for the partial sum process of concomitants was derived by Bhattacharya [1]. Applications to testing about a regression function are due to Bhattacharya [2]; see also [3] for a comprehensive review of results available so far.

* This work has been partially supported by the "Deutsche Forschungsgemeinschaft".

W. Stute

In this paper we extend Bhattacharya's [1] result to U-functions of concomitants. For this, let h be any symmetric U-kernel (of degree two), and set, for $0 \le t \le 1$ and $n \ge 2$,

$$Y_{n}(t) = \frac{1}{n(n-1)} \sum_{1 \le i \ne j \le \langle nt \rangle} h(Y_{[i:n]}, Y_{[j:n]}),$$

for the partial sum process of U-type based on the (dependent) concomitants. For t = 1, $Y_n(1)$ becomes a familiar U-statistic of degree two, based on all of the Y's (see, e.g., [9]). For t < 1, $Y_n(t)$ is an estimator of

 $E[h(Y_1, Y_2)1_{\{X_1 \leq F^{-1}(t), X_2 \leq F^{-1}(t)\}}],$

where F denotes the distribution function of the X's and

$$F^{-1}(u) = \inf \{ x \in \mathbf{R} : F(x) \ge u \}, \quad 0 < u < 1,$$

is its left-continuous inverse. In other words, the parameter of interest is the same as for classical U-statistics, up to the fact that we are only interested in the mean of $h(Y_1, Y_2)$ given that the pertaining X's fall below the t-quantile. Examples will be postponed to the end of this section.

Let m(dy|x) denote a (regular) conditional distribution of Y given X = x. We know from [12] that conditionally on $X_{1:n}, \ldots, X_{n:n}$ the concomitants are independent and

$$\mathscr{L}(Y_{[i:n]}|X_{i:n} = x) = m(dy|x)$$

(see also [11]). Write, for $i \neq j$,

$$E_{ij} = \iint h(x, y) m(dx | X_{i:n}) m(dy | X_{j:n}).$$

Then $h(Y_{[i:n]}, Y_{[j:n]}) - E_{ij}$, $i \neq j$, are centered conditionally on $\mathscr{F} \equiv \sigma(X_{r:n}: 1 \leq r \leq n)$. Consider, for $n \ge 2$, the process

$$S_n(t) = \frac{1}{n(n-1)} \sum_{1 \le i \ne j \le \langle nt \rangle} [h(Y_{[i:n]}, Y_{[j:n]}) - E_{ij}], \quad 0 \le t \le 1.$$

Theorem 1.1 below yields the asymptotic normality of $\sqrt{nS_n(t)}$ for $0 < t \le 1$ fixed. The invariance principle is stated in Theorem 1.2 under some regularity assumptions on h. Our method of proof is different from that of Bhattacharya [1], who utilized a strong embedding argument. In contrast, we shall apply a conditional projection lemma (Section 3), which may be interesting in itself. Analyzing the projection $\hat{S_n}$ of S_n requires some consistency results for U-type Lorenz curves (Section 2). Asymptotic normality and the invariance principle for $\hat{S_n}$ are proved in Section 5, while the proofs of Theorems 1.1 and 1.2 are presented in Section 6.

We shall prove Theorem 1.1 under the assumption

$$(1.1) Eh^2(Y_1, Y_2) < \infty.$$

U-functions of concomitants

It follows from (1.1) that E_{ij} as well as the functions f_1 and f_2 to be introduced now are well defined (almost surely):

$$f_1(a, b, c) = \iiint h(x, y)h(x, z)m(dx|a)m(dy|b)m(dz|c),$$

$$f_2(a, b, c) = \iint h(x, y)m(dx|a)m(dy|b) \iint h(x, y)m(dx|a)m(dy|c).$$

Also, let

 $g_1(a, b, c, d, e)$

 $= \iiint h(x, y)h(x, z)h(x, u)h(x, v)m(dx|a)m(dy|b)m(dz|c)m(du|d)m(dv|e),$ a, b, c, d, e \in **R**.

1.1. THEOREM. Under (1.1), for each $0 \le t \le 1$,

 $\sqrt{n} S_n(t) \rightarrow \mathcal{N}(0, 4V(t))$ in distribution,

where $V(t) = V_1(t) - V_2(t)$ and

$$V_i(t) = \int_0^t \int_0^t \int_0^t f_i(F^{-1}(u), F^{-1}(v), F^{-1}(w)) du dv dw, \quad i = 1, 2.$$

An alternative representation of V will be given in the lines following Lemma 4.1. As for an invariance principle, for $s \leq t$ set

$$K(s, t) = 4 \int_{0}^{s} \int_{0}^{s} \int_{0}^{t} (f_1 - f_2) (F^{-1}(u), F^{-1}(v), F^{-1}(w)) du dv dw.$$

1.2. THEOREM. Assume that

(1.2) f_1, f_2 and g_1 are bounded.

Then in distribution

$$\{\sqrt{n} S_n(t): 0 \le t \le 1\} \to \{B(t): 0 \le t \le 1\}$$

in the space D[0, 1]. Here B is a continuous zero means Gaussian process with covariance function K.

Condition (1.2) is satisfied if

(i) h is bounded or

(ii) the conditional distributions m(dx | a) are dominated by some measure v with Radon-Nikodym derivatives f(x, a) such that (as, e.g., for f_1) the functions

$$(x, y, z) \rightarrow h(x, y)h(x, z)f(x, a)f(y, b)f(z, c)$$

are bounded in $L_1(v \otimes v \otimes v)$.

We only mention here that Theorem 1.2 also admits a bootstrap version. This will be needed if, for a particular h, the distribution (of a functional) of B is difficult to compute.

10 - PAMS 14.1

W. Stute

In the examples below, Y is assumed to be real valued.

1.3. EXAMPLE. If $h(x, y) = \frac{1}{2}(x-y)^2$, then $Y_n(t)/t^2$ is an estimator of the conditional variance $\operatorname{Var}(Y | X \leq F^{-1}(t))$ (provided that $F \circ F^{-1}(t) = t$). For multivariate Y's, a slight modification of this example yields an estimator of conditional covariances.

1.4. EXAMPLE. Put $h(x, y) = 1_{\{x+y>0\}}$. In classical nonparametrics this *h* is related to the Wilcoxon one-sample signed rank statistic designed for testing symmetry at zero. In the present (conditional) setup

 $\iint h(x, y)m(dx \mid a)m(dy \mid b) = 1/2$

under symmetry (and continuity). Suppose we want to test the hypothesis

H₀: $m(\cdot | a)$ is symmetric at zero on $[F^{-1}(t_1), F^{-1}(t_2)]$.

A test of H₀ may then be based on $S_n(t) - S_n(t_1)$, $t_1 \le t \le t_2$, with E_{ij} replaced by 1/2.

1.5. EXAMPLE. For bivariate $Y = (Y^1, Y^2)$, the expression

$$h(Y_i, Y_j) = \operatorname{sgn}[(Y_i^1 - Y_j^1)(Y_i^2 - Y_j^2)]$$

leads to a conditional version of Kendall's tau. This may be used to test the independence of Y^1 and Y^2 given $X \leq F^{-1}(t)$.

2. U-type Lorenz curves: consistency. For a distribution function (d.f.) F on the real line with existing nonvanishing expectation $\mu = \int xF(dx)$, the (theoretical) Lorenz curve is defined as

$$L(t) = \mu^{-1} \int_{0}^{t} F^{-1}(u) du.$$

In economics, when F may be interpreted as the income distribution of an individual from a given population, L(t) represents the (normalized) mean income of an individual belonging to the lowest t-th fraction of income possessors. An empirical analogue of L is given by

$$L_n(t) = \mu_n^{-1} \int_0^t F_n^{-1}(u) du,$$

where F_n is the empirical d.f. of the observed data, and μ_n is the sample mean. A detailed study of L_n may be found [5] and [4]. Since F_n^{-1} admits a representation

(2.1)
$$F_n^{-1}(u) = F^{-1}(\overline{F}_n^{-1}(u)),$$

in which \overline{F}_n is the empirical d.f. of a uniform sample, we may write

$$L_{n}(t) = \mu_{n}^{-1} \int_{0}^{t} h(\overline{F}_{n}^{-1}(u)) du$$

with $h = F^{-1}$. For the purpose of this paper, we need to generalize L, resp. L_n , in two different directions. Firstly, more general (not necessarily monotone) h's are required. Secondly, functions h of $k \ (k \ge 2)$ variables need to be considered. In view of (2.1), we may restrict ourselves to a uniform sample. So, let h be a measurable function defined on the (open) unit cube I^k satisfying

(2.2)
$$\int_{I^k} |h(u)| du < \infty, \quad u = (u_1, \ldots, u_k).$$

Write

$$\mu = \int_{I^k} h(u) du$$

and set (assuming $\mu \neq 0$)

$$L(t) = \mu^{-1} \int_0^t \dots \int_0^t h(\boldsymbol{u}) d\boldsymbol{u}.$$

An empirical analogue of L is given by

$$L_n(t) = R_n(t)/R_n(1),$$

where

$$R_n(t) = n^{-k} \sum_{\substack{i_1 \neq \dots \neq i_k \\ i_i \leq \langle nt \rangle}} h(X_{i_1:n}, \dots, X_{i_k:n}).$$

Note that $R_n(1)$ is (up to a slight difference in the normalizing factor) a classical U-statistic. Also,

$$L_n(t) = R_n^{-1}(1) \int_0^t \dots \int_0^t h \circ \overline{F}_n^{-1}(u) \mathbf{1}_{A_n}(u) du.$$

The set A_n is such that its complement has Lebesgue measure O(1/n), and

$$h \circ \overline{F}_n^{-1}(\boldsymbol{u}) \equiv h(\overline{F}_n^{-1}(\boldsymbol{u}_1), \ldots, \overline{F}_n^{-1}(\boldsymbol{u}_k))$$

for short.

2.1. LEMMA. Under (2.2), with probability one

$$\sup_{0 \leq t \leq 1} |L_n(t) - L(t)| \to 0.$$

Proof. We may assume without loss of generality that h is nonnegative, otherwise decompose h into its positive and negative parts. For $h \ge 0$, L_n and L are nondecreasing and continuous. By a usual uniformity argument (introducing appropriate grids), we only need to prove pointwise consistency. So, fix 0 < t < 1 (t = 0 and t = 1 are trivial). Since $R_n(1) \rightarrow \mu$ with probability one, by the SLLN for U-statistics (cf. [9]) it suffices to show

(2.3)
$$\int_{0}^{1} \dots \int_{0}^{1} [h(u) - h \circ \overline{F}_{n}^{-1}(u)] \mathbf{1}_{A_{n}}(u) du \to 0 \qquad P-\text{a.s.}$$

Since $\|\overline{F}_n^{-1} - \mathrm{Id}\| \to 0$ *P*-a.s., (2.3) is immediate for a uniformly continuous *h*. For a general *h*, choose a uniformly continuous function *g* such that, for given $\varepsilon > 0$,

$$\int_{I^k} |g-h|(u)du < \varepsilon,$$

which is possible by Lusin's theorem. Apply (2.3) to g. On the other hand,

$$\left| \int_{0}^{t} \dots \int_{0}^{t} \left[g \circ \overline{F}_{n}^{-1}(u) - h \circ \overline{F}_{n}^{-1}(u) \right] \mathbf{1}_{A_{n}}(u) du \right| \leq \int_{I^{k}} |g - h| \circ \overline{F}_{n}^{-1}(u) \mathbf{1}_{A_{n}}(u) du$$
$$\rightarrow \int_{I^{k}} |g - h|(u) du < \varepsilon$$

by the SLLN for U-statistics. Since $\varepsilon > 0$ was arbitrary, this completes the proof.

2.2. Remark. The results of this section may be easily extended to functions L_n of k variables, i.e., for which integration is taken over $[0, t_1] \times \ldots \ldots \times [0, t_k]$ with not necessarily equal t_1, \ldots, t_k . Also we have formulated Lemma 2.1 for the normalized Lorenz curve, though we shall only consider the nonnormalized estimators.

3. A conditional projection lemma. Let Y_1, \ldots, Y_n be arbitrary random vectors and let S be any square-integrable statistic, i.e., a measurable function of the Y's. Also, let \mathscr{F} be any sub- σ -field of the basic σ -field \mathscr{A} . We seek for a random variable L of the form

$$L = \sum_{i=1}^{n} Z_{i},$$

where Z_i is $\sigma(Y_i, \mathscr{F})$ -measurable, such that L approximates S well within the class of statistics satisfying (3.1). When the Y's are independent (and if formally we set $\mathscr{F} = \{\emptyset, \Omega\}$), Hájek [6] showed that the function L minimizing the L^2 -distance to S is of the form

(3.2)
$$\hat{S} = \sum_{i=1}^{n} E(S \mid Y_i) - (n-1)E(S).$$

To motivate our conditional projection lemma, note that in our situation S will be a function of the concomitants, which are typically dependent. On the other hand, we know that the concomitants are conditionally independent given the order statistics. Consequently, it is likely that a proper approximation of S by functions L should allow for summands Z_i which are measurable Y_i , enlarged by $\mathscr{F} = \sigma(X_{i:n}, 1 \le j \le n)$.

A basic assumption throughout this section will be

(3.3)
$$E[E(S | Y_i, \mathscr{F}) | Y_i, \mathscr{F}] = E(S | \mathscr{F}) \quad \text{for } i \neq j.$$

U-functions of concomitants

3.1. LEMMA. Under $ES^2 < \infty$ and (3.3), let

$$\hat{S} = \sum_{i=1}^{n} E(S \mid Y_i, \mathscr{F}) - (n-1)E(S \mid \mathscr{F}).$$

Then the following holds:

- (i) $E(\hat{S} \mid \mathscr{F}) = E(S \mid \mathscr{F});$
- (ii) $E[(S-\hat{S})^2 | \mathscr{F}] = \operatorname{Var}(S | \mathscr{F}) \operatorname{Var}(\hat{S} | \mathscr{F});$
- (iii) for any L of the form (3.1),

$$E[(S-L)^2 \mid \mathscr{F}] = E[(S-\hat{S})^2 \mid \mathscr{F}] + E[(\hat{S}-L)^2 \mid \mathscr{F}],$$

i.e., \hat{S} minimizes the left-hand side.

3.2. Remark. Recall that for Lemma 3.1 no independence assumption was required. On the other hand, if the Y's are independent and if we set $\mathscr{F} = \{\emptyset, \Omega\}$, then (3.3) is easily verified, and \hat{S} reduces to (3.2).

Proof of Lemma 3.1. The proof is similar to that of Hájek [6], appropriately modified to meet the conditional setup. First, needless to say that \hat{S} is of the form (3.1). Equality (i) is trivial, since $\mathscr{F} \subset \sigma(Y_i, \mathscr{F})$. Relation (ii) follows from (iii) if we set $L = E(S|\mathscr{F}) = E(\hat{S}|\mathscr{F})$. For (iii), assume $E(S|\mathscr{F}) = 0 = E(\hat{S}|\mathscr{F})$ w.l.o.g. We then have

$$E[(S-\hat{S})(\hat{S}-L) \mid \mathscr{F}] = \sum_{i=1}^{n} E\{(S-\hat{S})(E(S \mid Y_i, \mathscr{F})-Z_i) \mid \mathscr{F}\}$$
$$= \sum_{i=1}^{n} E\{[E(S \mid Y_i, \mathscr{F})-Z_i]E[S-\hat{S} \mid Y_i, \mathscr{F}] \mid \mathscr{F}\}.$$

From (3.3) we obtain

$$E[E(S | Y_i, \mathscr{F}) | Y_j, \mathscr{F}] = \begin{cases} E(S | \mathscr{F}) & \text{for } i \neq j, \\ E(S | Y_i, \mathscr{F}) & \text{for } i = j. \end{cases}$$

It follows that $E(\hat{S} | Y_i, \mathscr{F}) = E(S | Y_i, \mathscr{F})$, whence

$$E[(S-\hat{S})(\hat{S}-L) \mid \mathscr{F}] = 0,$$

and therefore we get (iii).

3.3. Remark. Equality (ii) will be applied in the following way. Assume that as $n \to \infty$ the right-hand side converges to zero in probability. Then so does the left-hand side. By a conditional Chebyshev inequality (neglecting the dependence on n) for each $\varepsilon > 0$ we have

$$P(|S-\hat{S}| \ge \varepsilon \mid \mathscr{F}) \to 0$$
 in probability.

After integrating we get

$$P(|S-\tilde{S}| \ge \varepsilon) \to 0$$
 for each $\varepsilon > 0$,

W. Stute

i.e.,

$$S - \hat{S} \rightarrow 0$$
 in probability.

Apart from the applications we have in mind in this paper, conditioning on \mathscr{F} is always useful in other situations, when S contains awkward \mathscr{F} -measurable components.

4. U-functions of concomitants: variance and projection. In this section we compute the asymptotic variance of a standardized U-function of concomitants. So, let h be a symmetric U-kernel of degree two. Recall $S_n(t)$. Clearly,

$$(4.1) \quad n \operatorname{Var} \left(S_n(t) \mid X_{r:n}, \ 1 \leq r \leq n \right)$$

 $=\frac{1}{n(n-1)^2}\sum_{\substack{i\neq j\\k\neq m}} E\left[\left(h(Y_{[i:n]}, Y_{[j:n]}) - E_{ij}\right)\left(h(Y_{[k:n]}, Y_{[m:n]}) - E_{km}\right) \mid X_{r:n}, 1 \leq r \leq n\right],$

where the summation always extends from 1 to $\langle nt \rangle$. Since each summand of $S_n(t)$ is conditionally centered and the concomitants are independent conditionally of the order statistics, the summands in (4.1) vanish for pairwise distinct indices. For $i = k \neq j = m$, the conditional expectation is less than or equal to

$$E[h^{2}(Y_{[i:n]}, Y_{[j:n]}) | X_{r:n}, 1 \leq r \leq n] = \iint h^{2}(x, y)m(dx | X_{i:n})m(dy | X_{j:n})$$
$$\equiv :g(X_{i:n}, X_{j:n}).$$

But with probability one, by Lemma 2.1,

$$n^{-2}\sum_{1\leq i\neq j\leq \langle nt\rangle}g(X_{i:n}, X_{j:n})\rightarrow \int_{0}^{t}\int_{0}^{t}g(F^{-1}(u), F^{-1}(v))dudv.$$

By symmetry of h, similar arguments hold for i = m and j = k. Since the factor in (4.1) is of order n^{-3} , the contribution of these index combinations is asymptotically zero. So it remains to study the index combinations for which, say, i = k but $i \neq j \neq m$. Recall the definition of f_1, f_2 and V_1, V_2 , respectively. As in Lemma 2.1,

$$\frac{1}{n(n-1)^2} \sum_{\substack{i \neq j \neq m \\ \leqslant \langle nt \rangle}} E[h(Y_{[i:n]}, Y_{[j:n]})h(Y_{[i:n]}, Y_{[m:n]}) \mid X_{r:n}, 1 \leqslant r \leqslant n]$$

$$= \frac{1}{n(n-1)^2} \sum_{\substack{i \neq j \neq m \\ \leqslant \langle nt \rangle}} f_1(X_{i:n}, X_{j:n}, X_{m:n}) \to V_1(t)$$

and

$$\frac{1}{n(n-1)^2}\sum_{\substack{i\neq j\neq m\\\leqslant \langle nt\rangle}} E_{ij}E_{im} \to V_2(t).$$

By symmetry of h, we thus get the following

U-functions of concomitants

4.1. LEMMA. With probability one,

$$n \operatorname{Var}(S_n(t) \mid X_{r:n}, 1 \leq r \leq n) \to 4[V_1(t) - V_2(t)].$$

Set

$$\gamma(x, t) = \int_{-\infty}^{F^{-1}(t)} \int h(x, y) m(dy \mid v) F(dv) = E[h(x, Y) \mathbf{1}_{\{X \leq F^{-1}(t)\}}].$$

Then (provided F is continuous)

$$V_1(t) = \int_{-\infty}^{F^{-1}(t)} \int \gamma^2(x, t) m(dx \mid u) F(du) = E[\gamma^2(Y, t) \mathbf{1}_{\{X \leq F^{-1}(t)\}}]$$

and

$$V_2(t) = \int_{-\infty}^{F^{-1}(t)} \left[\int \gamma(x, t) m(dx \mid u)\right]^2 F(du).$$

In other words,

$$V_1(t)-V_2(t)=\int_{-\infty}^{F^{-1}(t)}\operatorname{Var}(\gamma(Y,t)\mid X=u)F(du).$$

In the following we shall derive, with $\mathscr{F} = \sigma(X_{r:n}, 1 \leq r \leq n)$, the conditional projection of $S_n(t)$. Use conditional independence to verify (3.3). Set

$$\bar{h}(y, X_{j:n}) = \int h(y, z) m \ (dz \mid X_{j:n}).$$

Then

$$\hat{S}_{n}(t) = \frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq \langle nt \rangle} \left[\tilde{h}(Y_{[i:n]}, X_{j:n}) + \tilde{h}(Y_{[j:n]}, X_{i:n}) - 2E_{ij} \right] \\ = \frac{2}{n} \sum_{i=1}^{\langle nt \rangle} \left\{ \frac{1}{n-1} \sum_{\substack{j=1 \ i \neq i}}^{\langle nt \rangle} \left[\tilde{h}(Y_{[i:n]}, X_{j:n}) - E_{ij} \right] \right\} \equiv \frac{2}{n} \sum_{i=1}^{\langle nt \rangle} h'_{i}(Y_{[i:n]})$$

for short, after noticing that $h'_i(Y_{[i:n]})$ is also a function of the first $\langle nt \rangle$ order statistics. The $h'_i(Y_{[i:n]})$ variables are conditionally independent and centered. To compute the conditional variance of $\hat{S}_n(t)$, note that for $1 \leq i \leq \langle nt \rangle$, and $1 \leq j, m \leq \langle nt \rangle$ distinct from i

 $E[\tilde{h}(Y_{[i:n]}, X_{j:n})\tilde{h}(Y_{[i:n]}, X_{m:n}) \mid \mathscr{F}]$

 $= \int \int \int h(y, z) h(y, x) m(dz \mid X_{j:n}) m(dx \mid X_{m:n}) m(dy \mid X_{i:n}),$

which in terms of f_1 equals $f_1(X_{i:n}, X_{j:n}, X_{m:n})$. As for Lemma 4.1 we obtain

4.2. LEMMA. With probability one

$$n \operatorname{Var}(\hat{S}_n(t) \mid X_{r:n}, 1 \leq r \leq n) \to 4 [V_1(t) - V_2(t)].$$

Refer to Remark 3.3 and recall Lemma 4.1 to get

(4.2)
$$\sqrt{n}(\hat{S}_n(t) - S_n(t)) \to 0$$
 in probability.

We want to show that (4.2) holds uniformly in $0 \le t \le 1$. For this, the following lemma will be crucial.

4.3. LEMMA. For each $n \ge 1$, the process

$$D_{n}(t) \equiv S_{n}(t) - \hat{S}_{n}(t) = \frac{1}{n(n-1)} \sum_{\substack{i,j=1\\i\neq j}}^{\langle nt \rangle} \left[h(Y_{[i:n]}, Y_{[j:n]}) + E_{ij} - 2\tilde{h}(Y_{[i:n]}, X_{j:n}) \right]$$

is a martingale in $0 \leq t \leq 1$.

The proof is standard.

We may also consider the process D_n as defined on a basic sample space, in which the $X_{i:n}$'s take on given values and the concomitants are independent with d.f.'s specified by the values taken on by the order statistics. Then D_n is also a martingale in this conditional setup. As before denote by \mathcal{F} the σ -field generated by the order statistics. Kolmogorov's maximal inequality implies

$$P(\sqrt{n} \sup_{0 \leq t \leq 1} |D_n(t)| \geq \varepsilon \mid \mathscr{F}) \leq n\varepsilon^{-2} E[D_n^2(1) \mid \mathscr{F}].$$

Conclude from Lemmas 4.1, 4.2 and the conditional projection lemma that the right-hand side converges to zero with probability one. So does the left-hand side. Integrating we obtain

$$P(\sqrt{n} \sup_{0 \le t \le 1} |D_n(t)| \ge \varepsilon) \to 0 \text{ for each } \varepsilon > 0,$$

i.e.,

(4.3)
$$\sqrt{n} \sup_{0 \le t \le 1} |S_n(t) - \hat{S}_n(t)| \to 0$$
 in probability,

which enables us to restrict ourselves to the process \hat{S}_n . This will be done in the next section.

5. The projected process: an invariance principle. We first compute the limit covariance structure of \hat{S}_n . Fix $s \leq t$. By conditional independence we obtain

$$nE[S_{n}(s)S_{n}(t) | \mathscr{F}]$$

$$= \frac{4}{n} \sum_{i=1}^{\langle nt \rangle} E\left[\left\{\frac{1}{n-1} \sum_{\substack{j=1\\j\neq i}}^{\langle ns \rangle} [\tilde{h}(Y_{[i:n]}, X_{j:n}) - E_{ij}]\right\} \left\{\frac{1}{n-1} \sum_{\substack{j=1\\j\neq i}}^{\langle nt \rangle} [\tilde{h}(Y_{[i:n]}, X_{j:n}) - E_{ij}]\right\} \middle| \mathscr{F}\right]$$

$$= \frac{4}{n(n-1)^{2}} \sum_{i=1}^{\langle ns \rangle} \sum_{\substack{j=1\\j\neq i}}^{\langle ns \rangle} \sum_{\substack{m=1\\m\neq i}}^{\langle ns \rangle} [f_{1}(X_{i:n}, X_{j:n}, X_{m:n}) - E_{ij}E_{im}] \rightarrow K(s, t)$$

by Remark 2.2. Note that $K(t, t) = 4[V_1(t) - V_2(t)]$.

5.1. LEMMA. Under (1.1), for $0 \le t \le 1$,

 $\hat{S}_n(t) \rightarrow \mathcal{N}(0, K(t, t))$ in distribution.

Proof. Since, conditionally on \mathscr{F} , $\hat{S}_n(t)$ is a sum of independent centered random variables with existing finite second moments for which the limit variance exists, we only need to verify Lindeberg's condition. Now, for $\delta > 0$ fixed, consider

$$L_n = L_n(\delta; X_{r:n}, 1 \le r \le n) = \frac{4}{n} \sum_{i=1}^{\langle ni \rangle} \int_{\{|h'_i(y)| \ge \delta n^{1/2}\}} [h'_i(y)]^2 m(dy | X_{i:n}).$$

If h is bounded, so are the h'_i -functions. Since $\delta n^{1/2} \to \infty$, the $\{\ldots\}$ sets are empty from one n on. So, $L_n \to 0$ with probability one. For an arbitrary h, we know that the conditional variances of $\hat{S}_n(t)$ converge to

$$4[V_1(t) - V_2(t)] \le 4E\gamma^2(Y, t) \le 4Eh^2(Y_1, Y_2)$$

by the Cauchy-Schwarz inequality. Conclude that the limit variance is small whenever h is small in L^2 . Thus, for a given $\varepsilon > 0$, choosing a bounded kernel g such that

$$E[(h-g)^2(Y_1, Y_2)] \leq \varepsilon,$$

we see that we may approximate $\hat{S}_n = \hat{S}_n^h$ by some \hat{S}_n^g for which the Lindeberg condition holds, and such that

$$\limsup_{n\to\infty} E[(\hat{S}_n^h - \hat{S}_n^g)^2 | X_{r:n}, 1 \leq r \leq n] \leq \varepsilon.$$

From the CLT we get *P*-a.s.

$$\boldsymbol{P}(\boldsymbol{S}_n(t) \leq x \mid X_{r:n}, 1 \leq r \leq n) \to \boldsymbol{P}(\boldsymbol{\xi} \leq x), \quad \boldsymbol{\xi} \sim \mathcal{N}(0, K(t, t)).$$

Integrating, we get $\hat{S}_n(t) \to \mathcal{N}(0, K(t, t))$.

In the following lemma we prove the invariance principle for $\{\hat{S}_n: n \ge 1\}$.

5.2. LEMMA. Under (1.2)

$$\{\hat{S}_n(t): \ 0 \le t \le 1\} \to \{B(t): \ 0 \le t \le 1\}$$

in distribution in the space D[0, 1]. Here B is a continuous zero means Gaussian process with covariance function K.

Proof. Convergence of the finite-dimensional distributions follows similarly to Lemma 5.1, by the Cramér-Wold device. For tightness, since $\hat{S}_n(0) = 0$ is uniformly (stochastically) bounded, it suffices to prove, for $0 \le s \le t \le u \le 1$,

(5.1)
$$E\left[\left(\hat{S}_n(t)-\hat{S}_n(s)\right)^2\left(\hat{S}_n(u)-\hat{S}_n(t)\right)^2\right] \leq \operatorname{const}(u-s)^2.$$

We shall prove a conditional version of the last inequality. Integrating then yields (5.1). Fix $0 \le s \le t \le u \le 1$. Setting

$$Z_{ij} \equiv h(Y_{[i:n]}, X_{j:n}) - E_{ij},$$

we have

$$\begin{split} \hat{S}_n(t) - \hat{S}_n(s) &= \frac{2}{n^{1/2}(n-1)} \Big[\sum_{i=\langle ns \rangle + 1}^{\langle nt \rangle} \sum_{j=1}^{\langle ns \rangle} Z_{ij} + \sum_{i=1}^{\langle nt \rangle} \sum_{j=\langle ns \rangle + 1}^{\langle nt \rangle} Z_{ij} \Big] \\ &\equiv \mathrm{I}(s, t) + \mathrm{II}(s, t), \end{split}$$

say. We proceed similarly for (t, u). Observe that I(s, t) and I(t, u) are conditionally independent. Use $(a+b)^2 \leq 2(a^2+b^2)$ and the Cauchy-Schwarz inequality to get

$$E[(\hat{S}_{n}(u) - \hat{S}_{n}(t))^{2}(\hat{S}_{n}(t) - \hat{S}_{n}(s))^{2} | \mathcal{F}]$$

$$\leq 4\{E(I^{2}(t, u) + II^{2}(t, u))(I^{2}(s, t) + II^{2}(s, t)) | \mathcal{F}\}$$

$$\leq 4\{E[I^{2}(t, u) | \mathcal{F}]E[I^{2}(s, t) | \mathcal{F}] + \sqrt{E[I^{4}(t, u) | \mathcal{F}]E[II^{4}(s, t) | \mathcal{F}]}$$

$$+ \sqrt{E[II^{4}(t, u) | \mathcal{F}]E[I^{4}(s, t) | \mathcal{F}]} + \sqrt{E[II^{4}(t, u) | \mathcal{F}]E[II^{4}(s, t) | \mathcal{F}]}\}$$

By the assumed boundedness of f_1 , we obtain

$$E[I^{2}(s, t) | \mathscr{F}] \leq \frac{4}{n(n-1)^{2}} \sum_{i=\langle ns \rangle + 1}^{\langle nt \rangle} \sum_{j,m=1}^{n} |f_{1}(X_{i:n}, X_{j:n}, X_{m:n})|$$
$$\leq \operatorname{const} \frac{\langle nt \rangle - \langle ns \rangle}{n}.$$

Similarly, applying the Zygmund-Marcinkiewicz inequality (cf., e.g., [7], p. 186) for 4-th moments, we get by boundedness of g_1

$$E[I^4(s, t) | \mathscr{F}] \leq \operatorname{const}\left(\frac{\langle nt \rangle - \langle ns \rangle}{n}\right)^2.$$

Finally, again by the Zygmund-Marcinkiewicz inequality and boundedness of g_1 ,

$$E[II^4(s, t) | \mathscr{F}] \leq \operatorname{const}\left(\frac{\langle nt \rangle - \langle ns \rangle}{n}\right)^4.$$

Similar bounds, of course, hold for (t, u). Let us integrate to get (5.1) whenever $u-s \ge 1/n$. For u-s < 1/n, the left-hand side of (5.1) is zero. We also have

$$E[B(t) - B(s)]^2 \leq \operatorname{const} |t - s|.$$

Since B is Gaussian, this yields continuity of B. The proof of the lemma is complete. \blacksquare

6. Proofs of Theorems 1.1 and 1.2. Theorem 1.1 follows from (4.2) and Lemma 5.1, while Theorem 1.2 is immediate from (4.3) and Lemma 5.2.

REFERENCES

- [1] P. K. Bhattacharya, Convergence of sample paths of normalized sums of induced order statistics, Ann. Statist. 2 (1974), pp. 1034-1039.
- [2] An invariance principle in regression analysis, ibidem 4 (1976), pp. 621-624.
- [3] Induced order statistics: theory and applications, in: P. R. Krishnaiah and P. K. Sen (Eds.), Handbook of Statistics, Vol. 4, 1984, pp. 383-403.
- [4] M. Csörgö, S. Csörgö and L. Horváth, An asymptotic theory for empirical reliability and concentration processes, Lecture Notes in Statist. 33, Springer, New York-Heidelberg-Berlin 1986.
- [5] C. M. Goldie, Convergence theorems for empirical Lorenz curves and their inverses, Adv. in Appl. Probab. 9 (1977), pp. 765-791.
- [6] J. Hájek, Asymptotic normality of simple linear rank statistics under alternatives, Ann. Math. Statist. 39 (1968), pp. 325-346.
- [7] I. A. Ibragimov and R. Z. Has'minskii, Statistical Estimation, Springer, New York-Heidelberg-Berlin 1981.
- [8] A. Sandstroem, Asymptotic normality of linear functions of concomitants of order statistics, Metrika 34 (1987), pp. 129-142.
- [9] R. J. Serfling, Approximation Theorems of Mathematical Statistics, Wiley, New York 1980.
- [10] N. L. Spruill and J. L. Gastwirth, On the estimation of the correlation coefficient from grouped data, J. Amer. Statist. Assoc. 77 (1982), pp. 614-620.
- [11] W. Stute and L. J. Wang, The strong law under random censorship, Ann. Statist. (to appear).
- [12] S. S. Yang, General distribution theory of the concomitants of order statistics, ibidem 5 (1977), pp. 996–1002.
- [13] Linear combination of concomitants of order statistics with application to testing and estimation, Ann. Inst. Statist. Math. 33 (1981), pp. 464–470.

Mathematical Institute University of Giessen Arndtstr. 2 D-35392 Giessen, Germany

Received on 22.5.1992; revised version on 25.2.1993

.