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U-FUNCTIONS OF CONCOMITANTS OF ORDER STATISTICS 
BY 

Abstract. Let (X,, x), 1 < i 6 n, be i.i.d.  valued random 
vectors. Denote by Tiin! the Fvalue associated with the i-th order 
statistic Xkn. Concomitants of order statistics may be used to exhibit 
special features of the dependence structure between X i  and I;. We 
prove various distributional limit theorems for so-called U-functions 
(of degree two) of concomitants. The method of proof is based on 
a new conditional projection lemma. 

1. Inarodslction and main results. The main subject of this paper* is to 
provide new results for so-called U-functional of concomitants of order statistics. 
To be precise, assume that (Xi, T), 1 < i < n, is a sequence of independent 
identically distributed R1 + d-valued random vectors on some probability space 
(a, d ,  P). Denote by XI:, < . . . < X,:, the order statistics of the X-sample. The 
Y-vector xi:,, pertaining to the-i-th order statistic is called the i-th concomitant. 
Concomitants of order statistics rather than the Ys themselves play an 
important role, e.g., when the X-random variables are type-I1 censored, i.e., when 
the X's are time-sequentially observed up to X<,):,, where 0 < t < 1, and (-) 
denotes the integer part of .. In this case, Yl, . . . , Y, are not all available, and 
statistical inference about the Ys may be only based on E;l:,l, . . . , 3(,,):,1. What 
is more, even if all pairs (Xi ,  YJi are observed, grouping the X's and analyzing 
the within-group Y's amounts to studying certain (functions of) concomitants 
(see, e.g., [lo]). The most familiar theoretical function describing mean outputs of 
Ygiven some (quankle-) side condition on X is the so-called Lorenz curve, as well 
as the closely related total time on test transform (see, e.g., [4]). A general 
account of the distributional properties of concomitants (of order statistics) was 
given by Yang [12]. L-statistics of concomitants were studied by Sandstroem [8] 
and Yang 1131. An interesting invariance principle for the partial sum process of 
concomitants was derived by Bhattacharya [I]. Applications to testing about 
a regression function are due to Bhattacharya [2]; see also [3] for a comprehen- 
sive review of results available so far. 

* This work has been partially supported by the "Deutsche Forschungsgemeinschaft': 
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In this paper we extend Bhattacharya's [I] result to U-functions of 
concomitants. For this, let h be any symmetric U-kernel (of degree two), and 
set, for 0 6 t 6 1 and n >, 2,. 

1 

for the partial sum process of U-type based on the (dependent) concomitants. 
For t = 1, x(1) becomes a familiar U-statistic of degree two, based on all of the 
Ys (see, e.g., [9]). For t < 1, Y,(t) is an estimator of 

where F denotes the distribution function of the X's and 

is its left-continuous inverse. In other words, the parameter of interest is the 
same as for classical U-statistics, up to the fact that we are only interested in 
the mean of h(I;, I;) given that the pertaining X's fall below the t-quantile. 
Examples will be postponed to the end of this section. 

Let rn(dy1x) denote a (regular) conditional distribution of Ygiven X = x. 
We know from [12] that conditionally on XI:,, . . . , X,:, the concomitants are 
independent and 

2(y;i:n]IXi:n = = m ( d ~  1x1 

(see also [Ill). Write, for i # j, 

Then h(I;i,nl, Yti:nl)-Eij, i # j, are centered conditionally on 9 = cr(X,:,: 1 < r 
< a). Consider, for n 2 2, the process 

1 
S,(t) = ----- C h i :  : - I 0 < t < 1 - 

n(n- '1 i < i + j < < n t >  

Theorem 1.1 below yields the asymptotic normality of &sn(t) for 
0 <t < 1 fixed. The invariance principle is stated in Theorem 1.2 under some 
regularity assumptions on h. Our method of proof is different from that of 
Bhattacharya [I 1, who utilized a strong embedding argument. In contrast, we 
shall apply a conditional projection lemma (Section 3), which may be 
interesting in itself. Analyzing the projection $,, of Sn requires some consistency 
results for U-type Lorenz curves (Section 2). Asymptotic normality and the 
invariance principle for are proved in Section 5, while the proofs of 
Theorems 1.1 and 1.2 are presented in Section 6. 

We shall prove Theorem 1.1 under the assumption 
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It follows from (1.1) that Eij  as well as the functions f, andf, to be introduced 
now are we11 defined (almost surely): 

Also, let 
~ l b ,  b,  c, d ,  e) 

a, 6 ,  c ,  d, ~ E R .  

1.1. THEOREM. Under (1.11, for each 0 6 t 6 1, 

,,&~,,(t) + J ( 0 ,  4V(t)) in distribution, 

where V(t) = Vl (t)- V2(t) and 
t t t  

~ ( t ) = j [ [ f l ( ~ ~ ~ ( u ) , F ~ ( v ) , F ~ ( w ) ) d u d v d w ,  i = l , 2 .  
0 0 D 

An alternative representation of V will be given in the lines following 
Lemma 4.1. As for an invariance principle, for s < t set 

S S  t 

K(s, t) = 4 J  [j(f, -f,)(~-'(u), FP1(v), F-l(w))dudvdw. 
0 0 0 

1.2. THEOREM. Assume that 

(1.2) f,, f, and g, are hur~ded. 

Then in distribution 

in the space D[O, 11. Here B is a continuous zero means Gaussian process with 
covariance function K. 

Condition (1.2) is satisfied if 
(i) h is bounded or 

(ii) the conditional distributions m(dx I a) are dominated by some measure 
v with Radon-Nikodym derivatives f (x, a) such that (as, e.g., for f,) the 
functions 

(x, Y >  z1 -+h(x ,  y)h(x, z)f(x, a)f  ( Y ,  b)f(z, 4 
are bounded in L, (v@v@v). 

We only mention here that Theorem 1.2 also admits a bootstrap version. 
This will be needed if, for a particular h, the distribution (of a functional) of B is 
difficult to compute. 

10 - PAMS 14.1 
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In the examples below, Y is assumed to be real valued. 

1.3. EXAMPLE. If h(x,  y) = i ( x -  yj2, then x(t)/t2 is an estimator of the 
conditional variance ~ a r ( ~  1 X $ F - '(t)) (provided that F o F - l (t)  = t). For 
multivariate Y's, a slight modification of this example yields an estimator of 
conditional covariances. 

1.4. EXAMPLE. Put h ( x ,  y) = le+y,o). In classical nonparametrics this h is 
related to the Wilcoxon one-sample signed rank statistic designed for testing 
symmetry at zero. In the present (conditional) setup 

under symmetry (and continuity). Suppose we want to test the hypothesis 

Ho: m(. 1 a) is symmetric at zero on [ F -  '(ti), F-  '(t,)]. 

A test of Ho may then be based on S,(t)-Sn(t,), t, d t < t,, with Eij  replaced 
by 1/2. 

1.5. EXAMPLE. For bivariate Y= (Y1, Y2), the expression 

leads to a conditional version of Kendall's tau. This may be used to test the 
independence of Y' and YZ given X < F-'(t). 

2. U-type Lorenz curves: consistency. For a distribution function (d.f.) F on 
the real line with existing nonvanishing expectation ,u = j xF(dx), the (theoreti- 
cal) Lorenz curve is defined as 

In economics, when F may be interpreted as the income distribution of an 
individual from a given population, L(t) represents the (normalized) mean 
income of an individual belonging to the lowest t-th fraction of income 
possessors. An empirical analogue of L is given by 

where F ,  is the empirical d.f. of the observed data, and pn is the sample mean. 
A detailed study of L, may be found [ 5 ]  and [4]. Since F l l  admits 
a representation 

(2.11 F,~(U) = F- l(~;l(es)), 

in which Fn is the empirical d.f. of a uniform sample, we may write 



with h = F 1 .  For the purpose of this paper, we need to generalize L, resp. L,, 
in two different directions. Firstly, more general (not necessarily monotone) h's 
are required. Secondly, functions h of k (k 3 2) variables need to be considered. 
In view of (2.1), we may restrict ourselves to a uniform sample. So, let h be 
a measurable function defined on the (open) unit cube Ik satisfying 

Write 

and set (assuming p #O) 

An empirical analogue of .L is given by 

where 

R,(t) = n-k  h(xrL:n, . . . , xik:")- 
ii  # ,..# ik  - r j  < ( , I }  

Note that R,(l) is (up to a slight difference in the normalizing factor) a classical 
U-statistic. Also, 

f t  

L,(t) = ~ ; ~ ( 1 ) j . . . S  h~F;~(u)l ,~(u)du.  
0 0 

The set A, is such that its complement has Lebesgue measure 0(1/n), and 

hoF i l (u )  = h(Fi1(u1), . .. , Fil(uk)) 

for short. 

2.1. LEMMA. Under (2.2), with probability one 

sup jL,(t)-L(t)l -0. 
O S t 6 1  

P r o  of. We may assume without loss of generality that h is nonnegative, 
otherwise decompose h into its positive and negative parts. For h 2 0, L, and 
I, are nondecreasing and continuous. By a usual uniformity argument 
(introducing appropriate grids), we only need to prove pointwise consistency. 
So, fix 0 < t < 1 (t = 0 and t = 1 are trivial). Since R,(1) -t p with probability 
one, by the SLLN for U-statistics (cf. [9]) it suffices to show 

t t 

(2.3) j . . . j [h(u) - h oFn- (u)] lA,(u)da -t 0 P-a.s. 
0 0 
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Since IIFnml -Id11 4 0 P-a.s., (2.3) is immediate for a uniformIy continuous h. 
For a general h, choose a uniformly continuous function g such that, for given 
E > 0, 

which is possible by Lusin's theorem. Apply (2.3) to g. On the other hand, 

by the SLLN for U-statistics. Since E > 0 was arbitrary, this completes the 
proof. sl 

2.2. Remark.  The results of this section may be easily extended to 
functions L,, of k variables, i.e., for which integration is taken over LO, t , ]  x . . . 
. .. x [O, t,] with not necessarily equal t,, ..., t,. Also we have formulated 
Lemma 2.1 for the normalized Lorenz curve, though we shall only consider the 
nonnormalized estimators. 

3. A conditional projection lemma. Let Yl, . . . , Y, be arbitrary random 
vectors and let S be any square-integrable statistic, i.e., a measurable function 
of the Y's. Also, let 9 be any sub-cr-field of the basic cr-field d. We seek for 
a random variable L of the form 

where Zi is a(& 9)-measurable, such that L approximates S well within the 
class of statistics satisfying (3.1). When the Y's are independent (and if formally 
we set 9 = (0, a)), Hajek [6] showed that the function L minimizing the 
I?-distance to S is of the form 

To motivate our conditional projection lemma, note that in our situation S will 
be a function of the concomitants, which are typically dependent. On the other 
hand, we know that the concomitants are conditionally independent given the 
order statistics. Consequently, it is likely that a proper approximation of S by 
functions L should aIlow for summands Zi which are measurable y, enlarged 
by 9= cr(Xj:", I < j  < n). 

A basic assumption throughout this section will be 

(3.3) ( ,  ] ( S F  for i # j  
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3.1. LEMMA. Under E S ~  < c~ and (3.31, let 

Then the following holds: 
(i) ~ ( 9 1 9 )  = E(S1 S); 
(ii) E [(S - $')' 1 F] = Var (S ( 6) - ~ a r ( $  I 9); 
(iii) for any L of the form (3.1), 

i.e., $ minimizes the left-hand side. 

3.2. Remark.  Recall that for Lemma 3.1 no independence assumption 
was required. On the other hand, if the Y's are independent and if we set 
F= {a, 9), then (3.3) is easily verified, and $ reduces b (3.2). 

Proof  of Lemma 3.1. The proof is similar to that of Hajek [6],  
appropriately modified to meet the conditional setup. First, needless to say that 
$ is of the form (3.1). Equality (i) is trivial, since 9 c n(x, 9). Relation (ii) 
follows from (iii) if we set L = E(S 1.9) = E(S  ( 9). For (iii), assume E(S J 9) 
= 0 = ~($196) w.1.o.g. We then have 

From (3.3) we obtain 

for i # j ,  
ECE(SI K,  9) I q, HI  - ~ [ ~ ~ ~ s ,  for i=j. 

It fo~Iows that E(S[  $, 8) = E(S I x, 8), whence 

and therefore we get (iii). 

33. Remark. Equality (ii) will be applied in the foIIowing way. Assume 
that as n + co the right-hand side converges to zero in probability. Then so 
does the left-hand side. By a conditional Chebyshev inequality (neglecting the 
dependence on n) for each E > 0 we have 

P(IS - $1 B E 1 F )  -, 0 in probability. 

After integrating we get 

~ ( 1 s - 4  2 E )  -P 0 for each E > 0, 
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i.e., 

S- $ + 0 in probability. 

Apart from the applications we have in mind in this paper, conditioning on 
9 is always useful in other situations, when S contains awkward 9-measura- 
bIe components. 

4. U-functions of concomitants: variance and projection. In this section we 
compute the asymptotic variance of a standardized U-function of con- 
comitants. So, let h be a symmetric U-kernel of degree two. Recall S,(t). Clearly, 

k#h 
where the summation always extends from 1 to {nt) .  Since each summand of 
Sn(t) is conditionally centered and the concomitants are independent con- 
ditionally of the order statistics, the summands in (4.1) vanish for pairwise 
distinct indices. For i = k # j = m, the conditional expectation is less than or 
equal to 

But with probability one, by Lemma 2.1, 

By symmetry of h, similar arguments hold for i = m and j = k. Since the factor 
in (4.1) is of order n P 3 ,  the contribution of these index combinations is 
asymptotically zero. So it remains to study the index combinations for which, 
say, i = k but i # j # m. Recall the definition o f f , ,  f, and Vl ,  V2, respectively. 
As in Lemma 2.1, I 

1 Z E[h(qi:nl, Yu:nl)h(~i:nl, q m : n l )  1 Xr:n, 1 < r < n] 
n(n- 112i+ j + m  

< ( n t )  

- - 1 
fl (Xi:n, Xj:n, Xm:n) + Vl (t) 

'('-1)' i+ j+ tm 
C ( n t )  

and 

By symmetry of h, we thus get the following 
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4.1. LEMMA. With probability one, , 

Set 

Then (provided F is continuous) 

and 

In other words, 
F -  I(t)  

Vl( t ) -V, ( t )=  1 Var(y(Y, t ) ]  X = u ) ~ { d u ) .  
4 )  

In the following we shall derive, with 9 = u(X,,,, 1 < r $ n), the conditional 
projection of Sn(t). Use conditional independence to verify (3.3). Set 

kby Xj:n) = J  h b r  z)m (dz I xj:n)- 
Then 

for short, after noticing that h:(l.;,,,,) is also a function of the first (nt) order 
statistics. The h:(qi:,]) variables are conditionally independent and centered. To 
compute the conditional variance of &(t), note that for 1 < i < {nt), and 
1 < j ,  m < {nt) distinct from i 

which in terms off, equals f1(Xizn, Xj:,, X,:,). As for Lemma 4.1 we obtain 

4.2. LEMMA. With probability one 
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Refer to Remark 3.3 and recall Lemma 4.1 to get 

(4.2) ,,& (gn ( t)  - Sn (t)) 0 in probability. 

We want to show that (4.2) holds uniformly in 0 < t < 1 .  For this, the following 
lemma will be crucial. 

4.3. LEMMA. For each n 2 1, the process 

i# j 

is a martingale in 0 G t < 1. 

The proof is standard. 

We may also consider the process Dn as defined on a basic sample space, in 
which the Xi,,'s. take on given values and the concomitants are independent 
with d.f.'s specified by the values taken on by the order statistics. Then D, is 
also a martingale in this conditional setup. As before denote by 9 the o-field 
generated by the order statistics. Kolmogorov's maximal inequality implies 

P(& SUP I D ~ ( ~ ) I  3 E I F) G m - 2 ~ [ ~ ; ( i )  I 91. 
O S t S 1  

Conclude from Lemmas 4.1,4.2 and the conditional projection lemma that the 
right-hand side converges to zero with probability one. So does the left-hand 
side. Integrating we obtain 

~ ( f i  sup IDn(t)l 2 E )  + 0 for each E > 0, 
Odt61 

(4.3) sup IS. (t) - fn(t)l + 0 in probability, 
0 6 t d l  

which enables us to restrict ourselves to the process f n .  This will be done in the 
next section. 

5. The projected process: an invariance principle. We first compute the limit 
covariance structure of $. Fix s < t. By conditional independence we obtain 

by Remark 2.2. Note that K ( t ,  t )  = 4 [V1(t)- V2',(t)]. 



5.1. LEMMA. Under (1.11, for 0 < t < 1, 

&(t) + ~ ( 0 ,  K(t, t}) in distribution. 

Proof.  Since, conditionally on 9, gn(t) is a sum of independent centered 
random variables with existing finite second moments for which the limit 
variance exists, we only need to verify Lindeberg's condition. Now, for 5 > 0 
fixed, consider 

If la is bounded, so are .the hi-functions. Since 6n1/' 4 co, the {. . .) sets are 
empty from one n on. So, L, + 0 with probability one. For an arbitrary h, we 
know that the conditional variances of $,,(t) converge to 

4 [ V, (t) - V, (t)] < 4Ey2 ( Y, t) d 4ih2  ( Y, , Y,) 

by the Cauchy-Schwarz inequality. Conclude that the limit variance is small 
whenever h is small in I.?. Thus, for a given E > 0, choosing a bounded kernel 
g such that 

we see that we may approximate $,, = 92 by some ,!?: for which the Lindeberg 
condition holds, and such that 

From the CLT we get P-a.s. 

( 1  < I , 1 < r < n) + ( < x), 5 - J ( O ,  ~ ( t ,  t)). 

Integrating, we get ,!?,,(t) 4 N ( 0 ,  K(t, t)). 
I 

I 
I 

In the following lemma we prove the invariance principle for {gn: n 2 1). 
! 5.2. LEMMA. Under (1.2) 

I in distribution in the space D[O, 11. Here B is a continuous zero rneapls Gaussian 
I process with covariance jxnction K. 

P r o  o f. Convergence of the finite-dimensional distributions follows simi- 
larly to Lemma 5.1, by the CramCr-Wold device. For tightness, since Sn(0) = 0 
is uniformly (stochastically) bounded, it suiXces to prove, for 0 < s < t < u < 1, 

(5.1) E [($,,(t) - $,,(~))'(,!?~(u) - gn(t))l] s const (u -s)'. 
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We shall prove a conditional version of the last inequality. Integrating then 
yields (5.1). Fix 0 < s < t < u < 1. Setting 

Zij K(qi:nl, Xj:n)-Eij, 

we. have 

2 O r >  <ns> (nt> <nt> 

fn ( t )  - fn (s) = [ C C Z i j + C  C ZiiI 
n1I2(n-1) i = ( n s > + l j = l  i = l  j = ( n s ) - t l  

say. We proceed similarly for (t., u). Observe that I(s, t) and I(t, u) are 
conditionally independent. Use (a + b)' 6 2(a2 + b2) and the Cauchy-Schwarz 
inequality to get 

< 4 ( ~ ( 1 ~ ( t ,  u)+112(t, u))(12(s, t)+II2(s, t)) I 91 

+JE[ I I~ (~ ,  U) I S]E[14(s, t) I f ]  +,/E[II~(~, U) I 9]E[114(s, t) IF]). 

By the assumed boundedness off,, we obtain 

4 (nt> n 

E[12(s, t) I 91 $ C C Ifi(xi:n, Xj:n, Xm:n)I 
4'- 'I2 i=<ns>  + 1 j ,m= 1 

Similarly, applying the Zygmund-Marcinkiewicz inequality (cf., e.g., [7], 
p. 186) for 4-th moments, we get by boundedness of g, 

nt)- (ns) 
E[14(s,i)IB]<mnst(( ) .  

Finally, again by the Zygmund-Marcinkiewicz inequality and boundedness 
of g,, 

Eu14(s, tf 1 91 < const 

Similar bounds, of course, hold for (t, u). Let us integrate to get (5.1) whenever 
u-s 2 l /n. For u-s < l/n, the left-hand side of (5.1) is zero. We also have 

E[B(~)-B(s)I2 < constlt-sl. 

Since 3 is Gaussian, this yields continuity of B. The proof of the lemma is 
complete. 
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6. Proofs of Theorems 1.1 and 1.2. Theorem 1.1 follows from (4.2) and 
Lemma 5.1, while Theorem 1.2 is immediate from (4.3) and Lemma 5.2. 
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