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Abstract. Assume that the point process {N(t ) ;  t 3 0 )  is observed 
with stochastic intensity of the form I(t) = l,(t)- Y( t ) ,  where A, is an 
unknown almost periodic nonnegative function and Y(t) is an obser- 
vable nonnegative stochastic process. It is shown that the sieve-based 
maximum likelihood estimator of 2, is consistent in the appropriate 
metric of the space of uniformly almost periodic (UAP] functions. The 
same technique establishes the consistency of the sieve-based maxi- 
mum likelihood estimator of a UAP drift function in a stochastic 
differential equa:ion. 

1. Introduction. Let (Q, F, P) be a probability space on which we observe 
a point process { N ( t ) ;  t  2 0) with history (F,; t  2 0), where F ,  are increasing 
sub-a-fields of F. In the sequel it is assumed that the stochastic intensity A(t) of 
the process N(t) is in the multiplicative form 

where Y( t )  is an observable stochastic process, satisfying the predictability 
conditions (see, e.g., [I], [I21 or E131). The function Io(t )  is unknown, 
deterministic, continuous, nonnegative and uniformly almost periodic (UAP) 
on LO, a). 

Alternatively, it will be assumed that a Musion process X(t) is observed, 
which is a strong solution of the stochastic differential equation 

where, as previously, I ,  is an unknown deterministic continuous UAP function 
on [0, a), a(t, X) is F,-measurable for each t 2 0 and W(t) is a Brownian 
motion. 

* Research supported by the Air Force Office of Scientific Research, Contract No. F49620 
85C 0144. 



We recall that a real continuous function A on [O, m) is unformly almost 
periodic (UAP) if for any E > 0 there exists L > 0 such that in any subinterval 
of [0, ca) with the length greater than L there exists a z, belonging to this 
subinterval such that 

sup Il(x+rJ-R(x)l < E .  
x>o  

Sums and products of UAP functions are UAP functions. For more infor- 
mation on UAP functions see, e.g., [4] or [2]. Note also that the space B of a11 
UAP functions on R+ with the norm 

T 

(1.3) llnll = lim (I/T) l~(s)lds, R E B ,  
T-m 0 

is a metric space. The space 3 may be equipped with other norms, such as 
sup norm 

We recall that llAIlsu, 2 11111 2 IIAI1 and that the space B with the norm llLll 
is a nonseparable Hilbert space. 

The space B of UAP functions with the norm (1.3) contains continuous 
and periodic functions A for which 

where z is the period A. This equality shows the obvious equivalence between 
the norm (1.3) and the L1 [0, z]-norm for periodic A. 

This paper deals with the consistent estimation of the unknown function 
A, in models (1.1) and (1.2) using the norm (1.3). In both modelsit is assumed 
that a single realization of a stochastic point process N(t) or the diffusion 
process X ( t )  is observed over an increasing time interval. 

The nonparametric estimation of A, from point process data in the multi- 
plicative intensity model was considered in the pioneering paper of Aalen [I]. 
A detailed study of the statistical theory point processes may be found, 
e.g., in [12] or [13]. However, the methods of Aalen [I] are applicabIe to the 
observations of multiple copies of a point process on a fixed time interval 
exclusively. 

The problem of estimating a periodic function A, from a single realization 
of a point process was considered, e.g., by Krickeberg [14], Pons and 
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Turckheim [24], Lewis [20] or Leikow [15]-[17]. The assumption of 
periodicity of A, is quite natural when applied to such phenomena as: 
earthquake occurrences [27], [28], arrivals at an intensive care unit 
[20], distributional patterns of plants [26] or the number of particles 
entering a Geiger counter [16]. Lewis [20] presented data that showed the 
"time-of-day" effect and allowed to assume that the underlying intensity was 
periodic with known period equal to 24 hours. The same author has also given 
another example concerning the thunderstorm severity in Great Britain which 
had a "seasonal effect". The above papers presented methods of constructing 
strongly consistent and asymptotically normal estimators of the unknown 
function A, for periodic point process models. 

However, in nonparametric approaches to the estimation of the periodic 
factor of the intensity of a point process it was assumed that the true period of 
the estimated function is known (see, e.g., [24], [I41 or 1151, [17], [18]). On the 
other hand, in the parametric case there are several methods of estimating the 
period (see, e.g., [27], [28]). This paper presents a nonparametric method of 

I estimating a periodic function from a stochastic point or diffusion process 
without prior knowledge of the period. 

I Observe that the sum of two periodic functions with periods (say) 1 and 
I 

I $, respectively, is not periodic but it is almost periodic (see [4]). On the other 
! hand, in a formal setting, it is quite desirable that the space of functions of 

interest be equipped with a linear structure. In this context, the choice of the 
space of UAP functions appears quite naturally. 

The statistical motivation for the selection of the space of UAP functions 
is the following. There is an interest in estimating the unknown periodic 
function A, with an unknown period A,,. In practice, however, it is possible to 
indicate the countable set A of the real numbers such that A,, E A. Now, in the 
space B of all UAP functions on the real line for each Ai from A and a given 
length of the observation interval, say n, we can find the compact set O(i, m,) of 
appropriately normalized trigonometric polynomiaIs with the period A,, where 
m, is the number of terms in the polynomial. The sequence m, tends to infinity 
for n tending to infinity. Therefore, the set 

w n 

K =  U K,, where K,= 0 O(i,m,), 
n = l  i =  1 

where the closure is in the sup norm, is a separable subset of B since O(i, m,) 
are separable. Moreover, &EK, SO we can proceed with our nonparametric 
inferential investigations on K instead of on B. This makes our estimation 
problem feasible since the set K, unlike the whole space B, is separable. The 
detailed construction of the sets O(i, m,) will be presented in Section 2. 

In a general context the above statistical motivation enables us to assume 
that the unknown A, belongs to the set K which is separable, i.e. K = U,K, 
and K, are compact. 



Despite the broad applicability of periodic point process models and the 
number of theoretical results in this field (see e.g. [20], [27] or [15j), an almost 
periodic analogue of the theory does not exist. It should be pointed out, 
however, that many physical and demographical phenomena could be success- 
fully modelled with the help of periodic approach had the true period of the 
phenomena been known. 

There is also a vast literature on the estimation of a drift function, say A,, 
in a stochastic dfierential equation like (1.2). The maximum likelihood method 
based on sieves'was used by Geman and Hwang [9] to obtain a consistent 
estimator of the unknown function A, in the model 

(1-4) dX ( t )  = I ,  ( t )  + d W (t), 

where W is a Wiener process and the observations are generated by 
independent copies of the process X(t). A more general version of the model 
(1.4) for the independent data was considered by Beder [3] and Nguyen and 
Pham [22]. The almost periodic models for stochastic differential equations of 
the type (1.2) have been considered by Dorogovtsev [7] under the assumption 
that the estimated function A, belongs, to a compact (hence finite-dimensional) 
subset of the space of UAF functions on the positive half-line. In Section 3 we 
present an intinite-dimensional analogue of the results of Dorogovtsev for the 
model (1.2). 

Section 2 is devoted to the maximum likelihood method based on a sieve 
and its application to the model (1.1). Here, the unknown function 1, is 
assumed to belong to a countably compact subset of the space B and the 
consistency of the maxirnw likelihood estimator in the model (1.1) is 
demonstrated. Section 3 contains a result on the consistency of the maximum 
likelihood sieve-based estimator of the function do in the model (1.2). 

Methods based on the assumption of almost periodicity and (1.2) are 
frequently used in signal processing context. For example, in the recent paper 
of Dandawate and Giannakis 161 the model (1.2) was used, where a(t,  X) 
described an information signal, L,(t) - deterministic modulating function, 
and W(t) denoted a noise. In the mentioned paper the assumption of almost 
periodicity of the modulating function 1, was used to model nonstationary 
signals. It is also known that the statistical methods based on periodicity or 
almost periodicity are widely applied in modelling AM and FM radio signals 
in the underwater environment (see, e.g., [8]). 

2. M h u r n  likelihood estimation in point process models. In this section 
we assume that the observations come from a point process {N(t); t 2 0) with 
a stochastic intensity d(t) of the form (1.1). The unknown function 1, is 
assumed to belong to a separable subset K of the space B with the norm (1.3). 

Let PI be the distribution of the point process { N ( t ) ;  0 < t < T )  indexed 
by A E  B, where T is finite. It is well known (see, e.g., [21f, Theorem 19.7, or [13], 
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Theorem 5.2, p. 170) that the family of measures PT = {PIT; L E  B}  is domina- 
ted, i.e., there exists P ~ E  PT such that P I  < PT for any P f  E PT. The measure 
PT may be chosen to correspond to a Poisson proceds with intensity 1 on 
COY TI- 

The density of P% with respect to P: may be represented in the form 

I The log-likelihood function will be defined as 

-T T 

= T-' j Y(s)(l -A(s))ds+ T-I ~ l o ~ l ( s ) d ~ ( s ) .  
0 0 

For the technical convenience the "entropy" is defined as 

(2.3) H t l ,  T ) =  -EA,L(A, T )  
T 

= -T-I  ~ E ( Y ( ~ ) ) - ( I - ~ ( s ~ + ~ , ( s ) ~ o ~ R ( s ) } ~ s .  
0 

In the nonparametric setting the direct maximization of the likelihood 
function L(11, T )  fails. A way to circumvent such difficulties is to introduce 
a sieve, i.e., a family of increasing compact subsets {K,) of the set K such that 
U,K,  = K (see, e.g., [lo], [9] or [15]). This idea is consistent with the practical 
need for separable subsets indicated in the Introduction. Let us now define the 
family of subsets O(i,  m,J on which the sieve ( K , )  will be built. 

Let us introduce 
mn 

W( i ,  m,, t )  = (uigk sin(2nkt/Ai) C O S ( ~ X ~ ~ / A J ) ,  
k = - m .  

where ucl, and /li,k are real coefficients, A , E A ,  and A is the countable set 
containing the period A,, of the unknown A,. 

Now, put 

O(i, rn,) = {A E B: i(t) = min(m,, max(m; ', W(i ,  m,, t)))) , 

where m, is integer and rn, + m for n + ao . 
To see better the formula for the set O(i,  m,) it helps to observe that if 

n ~ O ( i ,  m,), then A(t) = W(i, m,, t) for mL1 < W(i, m,, t) d m,, k(t) = mi1 for 
W(i, m,, t) < m i '  and i(t) = rn, for W(i, m,, t) > m,. 

Observe that O(i, m 3  is compact in the space B with topology generated 
by the norm (1.3) (see also [7]). We will put now 
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where lirn,,, rn, = oo and m, is usually caIIed the size of the sieve. Obviously, 
the set K, is also compact, so we can call the family {K,) a sieue. 

It  is easy to see now that for a function AEK, 

and 

where m, is the sequence tending to idmity (a size of the sieve), and R' denotes 
the derivative of the function A. 

In the sequel, we will put m, = [max(TU, I)], where 1.1 denotes the integer 
part and a > 0. It is also understood that n = [max(T, I)]. 

The sets of functions having the property (2.4) and (2.5) are compact in 
3 in the topology generated by the norm (1.3) (see, e.g., [7]). Moreover, the 
function L(1, T )  is continuous on K,, so the maximum likelihood estimator 2, 
may be defined by 

L(&, T )  = max L(1, T), T > 0. 
k K a  

The following assumptions will be used in the sequel: 

(A.1) The process Y(s )  is q-mixing with the mixing rate y(s] = 0(s-=) for 
s outside the neighbourhood of zero. 

(A.2) For p = 1 or p = 2 the p-th moments of the process Y satisfy the 
following inequalities: 

0 < inf EYP(s)  < sup EYP(s) < co. 
s>o  s > O  

THEOREM 2.1. Assume that conditions (A.1) and (A.2) are fulfilled and that 
the M L E  1, is defined by (2.6) over the sieve K ,  with the properties (2.4) and (2.5). 
Assume also that 0 < a < 1/4, i.e., the sequence m,, tends to infinity slower 
than d l 4 .  Then the estimator 2, is consistent, i.e., 

IIAT-IZoll -) 0 in probability as T + co, 

where 11 - 1 1  is the norm de3raed in (1.3). 

For the proof we need the following two lemmas. 

LEMMA 2.2. Given A, E K  and 6 > 0 there exist N(6) and A(6) such that 
Ild(6)-A,Jl < 6 and 1(6)~K, ,  for n 3 N(6). 

P r o  of. Since A, E K = U,K, and the sets K,  are increasing, there exists 
N, such that ~ , E K ,  for n 2 N , .  Moreover, the sets K,, are compact in the 
topology generated by the norm (1.3), so there exists a S-net (A;, . . . , A:) such 
that l119-Roll < 6 for i = 1, . . . , p and n 2 N,. To obtain the assertion it 
suffices now to take A(S) from (A", . . . , 1;) and put N(S) = N , .  rn 
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Observe also that for q y  q > 0-it is possible to find N ( E )  such that for 
I ( c ~ ) E K , ,  n 2 N(E) ,  w6 have' (Z!f(~(d), T ) -  H ( I , ,  T ) (  < E for sufficiently large 
T (see, e.g., [lS] for similar computations). 

The next lemma is based on the proof of Theorem 1, Chapter 8.2, of [10]. 

LEMMA 2.3. If for fixed w E B, 

then II~T(w)-loll + 0 as T + oo. 
Proof.  Keeping in mind a fixes ~ E Q  we drop it from the notation. 

Observe that 

A simple application of the ideas of the proof of the above-mentioned 
theorem of [lO] (see also [15]) yieIds the following implication: 

for h(y) = y --log(1 + y), 
then 

T 

T - l ~ l ~ ~ ( s ) - ~ , ( s ) l d s < g ( ~ ) ,  where q ( ~ ) + O f o r  ~ + 0 .  
0 

Note that the assumption in (2.8) is exactly what we have obtained in (2.7). 
To prove the assertion of the lemma suppose, conversely, that there exists 

s* > 0 such that IIX,-I,,~~ > E* for large T i.e., there exists a subsequence {TI ,  
+ coy such that lim,,, ~~X,-d,ll > E*. Thus we could find ko such that, for 

any k > k,, 

which, on the behalf of the implication (2.8), contradicts the assumption of the 
lemma. 

P roo f  of Theorem 2.1. To prove Theorem 2.1 it suffices now to show 
that 

lim I H ( ~ , ,  T )  - H ( I , ,  T)J = 0 in probability. 
T+ a 



Using the same techniques as in [15]. note that 

where A ( S )  is chosen as in Lemma 2.2. 
On account of Lemma 2.2 the third term of the right-hand side of (2.9) can 

be made arbitrarily srnall for large T and the desired convergence would follow 
if we show the asymptotical neglibility of the first two terms. Following the 
same technical considerations as in [15] note that 

T 

(2.10) I H ( ~ , ,  T ) + L ( ~ , ,  T)1 G, Im, T-I  j (Y(s)-EY(s))dsl 
0 

T t 

+ r n , ~ - ~ ( N ( ~ ) - j A , ( s )  y ( s ) d s ] + r n , ~ - l  sup ( ~ ( t ) - ~ A ~ { s ) ~ ( s ) d s l .  
D O S t d T  0 

We analyze the three terms separately. 
The Chebyshev inequality applied to the first term of the right-hand side 

of (2.10) yields that 

Note that 
1 

(2.1 1) Var ( j (Y (s) - E Y (s)) ds) = E fi ( Y  (s) - E Y (s)) . ( Y  (v)  - E Y (v)) duds 
0 KT 

+ E  ~j (Y(s)-EY(s))-(Y(v)-EY(v))~v~s, 
KCT 

where K, = { ( s ,  v): 1s -v[  < 1,O < s ,  v  < T )  and K",s the complement of KT 
in the set [0, Tf x [0, TJ. 

Observe now that the first term of the right-hand side of (2.1 I), due to the 
assumption (A.2), is of the order O(T). Similarly, the second term of the 
right-hand side of (2.1 1) is of the order O(T  In T ) .  Hence we get the convergence 
in probability of the first term of (2.10). 

The second term of the inequality (2.10) will be analyzed with the help of 
the SLLN for martingales (see [23]).  In particular, it sufices to show that for 
some a > 1 

m 

(2.12) E(S (m,2T-2)d<M)(T))  < a, 
u 

where (M)(t) is t h e  practable variation process corresponding to the 
martingale M. Applying now the assumption (A.2) and the fact that rn, = [TQJ 
for 0 < a < 1/4 we easily get the inequality (2.12) for any a > 1. 
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To the third term we apply the inequality of Burkholder, i.e., for any 
square-integrable martingale M 

where the constant C does not depend on the martingale M .  
Observe now that due to (2.13) we have 

(2.14) P{ sup M ( ~ ) > E )  <(E-~T-~~~).cE{<M)(T))~. 
OStST 

The sequence on the right-hand ,side of (2.14) is summable when 
0 < a < 1/4. 

The application of the Borel-Cantelli lemma yidds the P-a.e. convergence 
for the first term in (2.9). The second term of the expression (2.9) may be 
analyzed analogously. This completes the proof of Theorem 2.1 

To obtain strong consistency of the estimator 2, we need the following 
assumption: 

(A.3) The process {Y(t); t 2 0) is stationary and uniformly bounded, 
r i.e., there exists a constant C such that Y(s) < C for any s 3 0 and 
I 

WEB. 

COROLLARY 2.4. Assume that the conditions (A.l), (A.2) and (A.3) hold. Then 
the maximum likelihood estimator ;IT o f l ,  in the model (1.1) is strongly consistent 
in the norm (1.3), i-e. ll;i,-A,~ + 0 almost surely as T+ CQ. 

Proof.  The proof follows along the lines of the proof of Theorem 2.1. 
It suffices, therefore, to demonstrate that 

T 

(2.15) m, T - l 1 ( Y (s) - E Y (s)) ds -+ 0 a.s, 
0 

We will show that 

which, due to the Borel-Cantelli lemma and the fact that m, = [Tql, will suffice 
to complete the proof of Corollary 2.4. To see that (2.16) holds note that on the 
account of the stationarity of the process Y we have 



where K = ((v,, a,, v,): v,+v,+v, < T, a,, u,, v, > O), Y(s) = Y(s)-EY(s) 
and C, is a finite constant. We are now ready to use Lemma 4, p. 172, of [5]. 
From this lemma it follows that 

where Ki=((vl,v,,u,): vj,v,dvi, j , k = 1 , 2 , 3 ,  j # k ,  j # i ,  k # i } n K ,  
i = 1, 2, 3, q, is the mixing function connected with the process Y 
(see (A.2)) and C, is a positive constant. Combining now the inequalities (2.17), 
(2.18) and the assumption (A.2) on the speed of convergence of the function 
cp we get the inequality (2.1.6) which. proves the almost sure convergence 
of (2.15). 

Remark  2.5. The assumption (A.3) on the boundedness of the process 
Y may be replaced by a stronger mixing property assumption for Y: Suppose 
that the process {YIs); s 3 0) is stationary and $-mixing with the rate 
+Is) = O ( S - ~ ) .  Then the following inequality holds: 

For the definition of $-mixing and the proof of the inequality (2.19) see, e.g., 
1251. 

Straightforward calculations, based on the inequalities (2.18), (2.19) 
applied to the process Y show that the equality (2.16) still holds in the $-mixing 
case. 

The mixing assumption is quite understandable in practice when model- 
ling processes with the long-term independence property. When such a proper- 
ty holds, then it is usually assumed that the dependence vanishes after a finte 
number of observations. Therefore, the assumptions of q-mixing or +-mixing 
and related polynomial rates of convergence for q and $ are not really very 
restrictive. 

Remark  2.6. For finite n and, hence, finite rn, the estimator 3, may be 
computed by using maximization algorithms for the function ~ ( x , ,  T). Such 
aIgorithms provide methods of computing the coefficients of the trigonometric 
polynomial W(i ,  m,, t )  defined at the beginning of this section. This issue will 
be studied in a subsequent research on properties of the estimator 1, in the 
almost periodic stochastic process models. 

3. Nonparametric maximum likelihood estimation in diffusion models. 
In this section it is assumed that the observations are generated by a diffusion 
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process {X(t); t > 0) being a strong solution of the stochastic differential 
equation 

dX(t) = Ao(t)-a(t, X)dttdW(t), 

where A, is the unknown UAP function, a is the nonanticipative functional, 
and W is a Wiener process. 

To find an MLE of the UAP function Lo the technique of Section 2 will be 
applied. As previously, let PT denote the distribution of the process (Xlt); 
0 < t s T) for A E K, K being a countable compact subset of the space B. It is 
well known that in such a case the family PT = {PI; A E  B )  is dominated by 
a measure Pg corresponding to a Wiener process on [0, T] and the likelihood 
function LII, T )  is of the form 

T T 

(3.1) L(;I,T)=T-1jA(t).a(t,X)dX(t)-(2T)-1[A2(t).a2(t,X)dt. 
0 0 

For the details see, e.g., [21J, Theorem 7.7, or [19]. 
The MLE of the UAP function #lo will be defined following the method 

presented in Section 2. As previously, the sieve {K,) is defined by 
n 

K, = U 00, mJy 
i =  1 

where the sets O(i, m,) were defined in Section 2. 
The maximum likelihood sieve-based estimator 1, is defined as 

(3.2) L(&, T) = max L(1, T), T > 0, , 

AEK,, 

where L(A, T) was defined in (3.1). 
Before stating the consistency result the following assumptions are 

introduced: 

(B.1) The process a(t, X) is q-mixing with mixing function rp(t) = OIt-') 
for t outside a neighbourhood of zero. 

(B.2) There exists q > 0 such that idt,, Ea2(t, X )  > q. Moreover, the 
fourth moments of a are bounded, i.e., sup,,,Ea4(t, X) < oo. 

THEOREM 3.1. Suppose that the conditions (B.1) and (B.2) are fulJilled. 
Moreover, let m,, the size of the sieve, be of the order [Tfl, T >  0 for 
0 < u < 1/4. Then the maximum likelihood estimator AT defined in (3.2) and based 
on the sieve (K,) i s  weakly consistent, i.e., I I X ~ - R ~ ~ ~  3 0  in probability as 
T + m, where 1 - 11 is the norm deJined in (1.3). 

Proof.  The line of argument is virtually the same as in the proof of 
Theorem 2.1. Observe first that 



Therefore, for an arbitrary UAP function we have 

T 

EU' ((t , x)(A(t) - lo(t))2 dt . I W ,  T)--H(AO, T)I = (2T)- S 
0 

It is now very easy to see that, by the assumption (B.2), Ill-Roll 
< ? ( E )  for IH(I1, T)-H(Ao, T)I < E, where q ( ~ )  -f 0 for E + 0. After com- 
putations similar to those of Theorem 2.1 it is clear that to show Theorem 3.1 it 
suffices to prove that ( H ( X , ,  T)-H(A,, T ) )  tends to zero in probability. 
Observe that 

T 

(3.4) H ( d , T ) + L ( ~ , T ) = T - 1 ~ I ( t ) A , ( t ) ( ~ 2 ( t , X ) - E ~ Z ( t , X ) ) d t  
0 

From the S'LLN for martingales (see [23]) it is straightforward to see 
that the third term of the right-hand side of (3.4) tends to zero almost 
everywhere. The variance of the first term of the right-hand side of (3.4) may be 
represented as 

where ii2(t, X) = az(t, X)-Ea2(t ,  X). 
Applying now the assumptions (B.1) and (B.2) and the same considerations 

as in the proof of Theorem 2.1 it is easy to see that the. term 

is of the order O(T).  Therefore, we get the convergence in probability 
of the first term of the right-hand side of (3.4). The proof of Theorem 3.1 is now 
complete since the second term of the right-hand side of (3.4) may be handled 
analogously. H 

Remark  3.2. The condition (B.1) for the functional a(t, X) seems 
to be restrictive, nevertheless, it is fulfilled for the models considered, 
e.g., by Ibragimov and Has'minskii [Ill, Nguyen and Pham [22] and 
Dorogovtsev [7]. 

Similarly, in the context of the statistical inference for signals the 
assumption (A.l) or (B.l) guarantees the integrability of the covariance 
of the signal u(t, X) which is quite essential in applications (see, e.g., 
E6l or C8l)- 
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