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Abstract. Some moment bounds and conditions for sums of 
independent random variables are considered. In particular, a method 
is presented to estimate the absolute moments using the related 
characteristic functions. 

0. htrodaction. Estimates for absolute moments of sums of independent 
random variables (r.v.'s) were studied by many authors (see von Bahr and 
Esseen [1], Rosenthal [Ill, Kwapien [7] et al.). If 2 < p < m, Rosenthal's 
inequality implies that each sequence of independent identically distributed 
(i.i.d.) mean zero r.v.'s {X,) generates in L, the subspace isomorphic to 1,. 
For p < 2 it is not true. In this paper we show that in this case each subspace 
of such a type is isomorphic to some Orlicz sequence space I,. If 
P{IXl[ > x) = x-'h(x), where h(x) is a slowly varying function and 
0 < p < r < 2, a calculation of @ becomes particularly simple. 

Esseen and Janson [3] have proved that the condition 

where C is a constant, holds for r = 2 iff EX: < oo and EX, = 0. If 
0 < p < r < 2, then (0.1) is true iff P(IXl[ 2 x) = 0(x-3, x + co, EX1 = 0 for 
r > 1 and 

for r = 1. Braverman [2] have obtained conditions which are equivalent to the 
two-sided estimate 

Let a(") = (1); = 1 and b, = Il a(")ll rF, where 'P is given. In this paper the 
analogues of (0.1) and (0.2) are studied, where nl/' is replaced by b,,. 
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We consider r.v.'s with symmetric distributions only. Using the syrnrnet- 
rization and reasoning as in -[2] and [3] one may extend our results to the 
non-symmetric case. We omit details. 

1. T b  main inequality. All considered r.v.'s are assumed to be defined on 
the non-atomic probability space (52, A ,  P) .  It is well known (see [6 ] )  that if 
X E L,(Q), 0 < p < 2, and f (t) is the corresponding characteristic function, then 

where C(p) depends on p only. 
Let {Zk);=, c L,(Q) be independent symmetric r.v.'s. Denote by f,(t) the 

related characteristic functions and let j? = P(Z, ,  . . . , 2,) be the solution of the 
equation 

It is not difficult to check that the term on the left-hand side is monotonically 
decreasing with respect to and it tends to co (respectively, to 0) as /? 4 0 
(respectively, /I 4 m). Therefore, (1.2) has a unique solution. 

THEOREM 1.1. Let 0 < p < 2. There are positive constants Cj(p), j = 1, 2, 
such that for each set of independent symmetric r.v.'s {Z,);=l c Lp(L?) 

n 

(1.3) CI~)P('I? ... 3 zn) G 1 1  z k l l p  G C2@)fi(Zl1 - - - 9  2"). 
k =  1 

P r o  of. The upper bound. Put 

The corresponding characteristic function is f ( t)  = n;=, f,(t). Write 

We have 

Hence 
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Putting /I = f i (Z , ,  .. ., 2,) and using (l.l), we obtain 

According to (1.2), the first term on the right-hand side is equal to flp. The 
desired estimate follows. 

The lower bound. We need the following auxiliary result. 

PROPOSITION 1.1. Let V be a weakly compact set of probability distri- 
butions on R and M be the set of the related characteristic functions. Then there 
is 6 = S(V) > 0 such that 

Proof. Suppose to the contrary that there are g, E M and t, 4 0 such that 
11 -gk(tk)l 2 1/2. Using compactness, we may suppose that gk(t) -f gjt) for all 
real t and some characteristic function gtt). But then (see [97) gk(t& + g(0) = 1, 
which yields a contradiction. r 

Without loss of generality we may and do assume that 

Then, by (1.21, fl(Zl, . . . , 2,) < 1, so that IIxi=, z,\(, 6 C2(p) (1 4 j 4 n). 
Let V be the set of all r.v.'s X such that llXilP 6 C2(p). Then (1.5) and 
Proposition 1.1 give us g,(t) 2 1/2 for 0 < t < 6 = 6(n. This and (1.6) imply 

Now we apply the inequality (see [4]) 

which holds for each characteristic function g and integer m. From the previous 
considerations we obtain 

Putting rn = [1/6] + 1 and using (1;1), we obtain 

Since m6 > 1 and (1.7) holds, the desired estimate follows. ria 
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2. AppKcaeiom. Let us recall some definitions of the theory of sequence 
spaces. Let Y (x) be a non-decreasing function on LO, oo), Y(O) = 0 ,  and 
Y(m) = m. We shall suppose that 

for 0 < x < 1 and some constant C. The Orlicz space I, consists of all real 
sequences a = (ak),", such that 

m 

!P(lakl/t) < .o for some t > 0. 
k =  1 

It is easy to check that the relation (2.1) implies Y(x+  y) < B(!f (x)+  YIy)) for 
0 < x, y < 1 and some constant B. Hence, if a, b E l,, then a + b E I,. 

Put for a ~ i ,  
m 

(2.2) llalllp = inf{t > 0 :  C Y(lu,l/t) < 1 ) .  
k =  1 

This functional is a quasi-norm. If Y(x) is convex, then it is a norm and I, is 
a Banach space. If Y ( x )  = xP, then I, = 1,. 

The following property of Orlicz sequence spaces is well known and may 
be easily verified. 

PROPQSI~ON 2.1. The following conditions are equiuaIent : 
(i) Y , ( x )  < u!P,(x) for 0 < x < 1 and some constant u; 
(ii) (lull,, < Cllalllp, for aII finite sequences a and some constant C.  

Let (Xk)Am_, c Lp@)  be a sequence of symmetric i.i.dr.v.'s and let f ( t )  be 
the common characteristic function. Put 

The inequality (1.8) implies (2.1) for !P = @,(x). Applying Theorem 1.1, we get 
the following result. 

COROLLARY 2.1. There are positive constants Cj(p) ( j  = 1 ,  2) such that for 
each a = (ak}; = 

In some cases it is more convenient to use the distribution function instead 
of the characteristic function. For the X€LP(S2) we put , 
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Let 

PROPOSITION 2.2. Let 0 < p < 2. There are positive constants a j  = aj(p) ,  
j = 1, 2, such that for every symmetric r.v. X€LP(K2) 

Proof.  Put F(x)  = PIX < x) and 
X 

(2.8) g,(x) = J (1 - cos(u))u-P-l du. 
0 .  

It is not difficult to verify that 
m 

@, (x)  = 2xP j zP gp(xz) d F (2) 
0 

and there are positive constants bj  = bj(p) (j  = 1,2) such that b, < g, (~)xp-~  
< b, (0 < x < 1) and b,  < g,(x) < b, (x > 1). Hence 

where 0 < x < 1 and c,, c, > 0 depend on p only. 
Denote the summands in (2.9) by Jk(x), k = 1, 2. Integrating by parts, 

we get 

Jl(x) = -P{IXI 2 x - ~ ) / ~ + x ~ G ( x - ~ ) / ~  

and 

J2(x) = P{IXI 2 ~-~) /2+(9 /2 )x~H, (x -~ ) .  

Using this, (2.6) and (2.9) the relation (2.7) follows. 

The obtained results imply the following assertion. 

COROLLARY 2.2. Let 0 < pj < 2 (j = 1,2) and { x ~ } ~ = ,  c L,(Q) be se- 
quences of symmetric i.i.d.r.0.'~. The following conditions are equivalent for some 
constants C j  ( j  = 1, 2, 3): 

(i) for all U , E R  and n = 1 , 2 ,  ... 
n n 

R em ark. Suppose Xi1) = Xi2) = Xk and 

4 - PAMS 14.1 
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where C is a constant. I t  is not difficult to verify that (2.10) implies (iii), and 
therefore (i) for the exponents p, < p = p, <; 2. This assertion had been 
obtained by Kwapien 171 (see also Vakhania et al. [12]). However, it is easy to 
check that (2.10) does not follow from (iii). 

Assume now that the symmetric distribution F is determined by the 
formula 

where hlx) is a slowly varying function at infinity, i.e., h{xy)/h(x) -+ 1 (x -, GO) 

for all y > 0. If p < r, then this distribution has a finite absolute p-th moment. 
In the case p = r the latter is true iff 

In the sequel we will assume that the condition .(2.12) holds. 
Let p < 2 be fixed. Consider the functions 

1-1 

(2.14) y 2 ( x ) =  xZ J h b ) y - l d y ,  
0 

m 

(2.15) Yp(x) = xP j hty)y-ldy.  
x - 1  

Let f (t) be the characteristic function of the distribution (2.1 1). It is well known 
(see [ 5 ] ,  Chapter 2) that ( 1  - f( t)) /Yr(t)  -, c > 0 (t + 0)  for 0 < r < 2. Using the 
Karamata representation for the slowly varying functions, one may prove that 
there are positive constants uj = uj(p, r ,  h) ( j  = 1,2) such that for 0 < p 
< r < 2  and O e x < l  

(2.16) u, !f',(x) G @,(XI < u, Y,(x), 

where @, is determined by the formula (2.3). 

COROLLARY 2.3. Suppose 0 < p < r < 2 and {Xk),"=, are i.i.d.r.v.'s with the 
common distribution function satisfying (2.11) and (2.12) i fp  = r. Then there are 
positive constants cj = cj(p, r ,  h) ( j  = 1, 2) such that, for each-a = (a,}E=, and 
n = 1, 2 ,  ..., 

n 

3. One-sided estimates. In this section (X,)F= is a sequence of symmetric 
i.i.d.r.v.'s and f (t) is the common characteristic function. Here we consider the 
upper bound 
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where a = (a,):= ,, Y is a given function and C does not depend on a, or n. 
Corollary 2.1 and Proposition 2.1 imply that (3.1) is equivalent to the relation 
@,(x) 6 u!P(x) (0 < x < I), where u is a constant and 9, is determined by the 
formula (2.3). However, the pointwise conditions on the behaviour l-f(t) 
(t -+ 0) or P{lXll 2 x) (x + m) are more convenient. We obtain them for the 
case Y = YC, where Y, is determined by the formulae (2.13H2.15). In the 
sequel h(x)  will be assumed to be continuous. 

THEOREM 3.1. Let 0 < p < r < 2. The following conditions are equivalent: 
(i) for the function Yr the estimate (3.1) holds; 

(ii) 1 - f It) = 0 (P,(t)) (t + 0); 
(iii) P(IX,I 3 x) = O(Y,(x-I)) {x -, a). 

1 

THEOREM 3.2. Let 0 < p < r = 2. The following conditions are equivalent: 
(i) for the function Y = Y, the estimate (3.1) holds; 
(ii) 1 - f (t) = 0 (!I-', It)) (t -, 0); 
(iii) P{IX,I 2 x) = O(x-'h(x)) ( x  4 m), where h(x) is the function given 

by (2.14). 

Consider the case p = r < 2. It is easy to check that the estimate 
1 -f (t) = O(Y,(t)) (t + 0) implies the relation @,(t) = O(Yp(t)) (t + O), which is 
equivalent to (3.1). The author does not know if the converse implication 
is true. We formulate an analogue of the previous theorems using the 
function @,. 

THEOREM 3.3. Let 0 < p = r < 2. Assume (2.12) holds and let the function 
Yp be determined by (2.15). Then the following conditions are equivalent: 

(i) for the function Y = !Pp the estimate (3.1) holds; 
(ii) @, (t) = 0 (Yp(t)) (t + 0); 
(iii) j: P{[X,I 2 y )  yP-'dy = O(Y,(x-I ) )  (x + co). 

In all theorems of this section the equivalence (ii) e( i i i )  is well known and 
can be easily verified. Using the properties of a slowly varying function (see [ 5 ] ,  
Chapter 2) one can easily prove that the condition (ii) of Theorems 3.1 and 3.2 
implies that @,(t) = O(Yr(t)) (t + 0). Thus the implication (ii) (i) follows. The 
equivalence (i) - (ii) of Theorem 3.3 follows directly from Proposition 2.1 and 
Corollary 2.1. Therefore, only the implications (i)*(ii) in ~ h e o k s  3.1 
and 3.2 require proofs. 

First we establish some auxiliary results. Let us write a(") = (1);=, and 
b, = la(")llF,. From (2.2) we obtain 

Put 
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is the characteristic function of S,. 
I According to (3.1) we get 

(3.5) I I S . I I ~ G  c ( n =  1 , 2 ,  ...I. 

Hence the sequence {S,},"=, is weakly compact. Let N be the set of all 
characteristic functions corresponding to the limit distributions of {S,],"= and 
M = N u  { f,),"=, . It follows from Proposition 1.1 that there is 6 = 6(M) > 0 
such that g(t) > 1/2 for all g~ M and 0 < t < S .  Therefore, on (0, 81 the 
function $,(t) = -(l~~(~(t)))/!P,(t) is defined and 

The condition (ii) of Theorems 3.1 and 3.2 is equivalent to the boundedness 
of $f(t) in the neighbourhood of zero. 

The following proposition is well known. 

PROPOSITION 3.1. If v (x )  is a slowly varying fu~lction, then v(xy)/v(x) 4 1 
( x  -i m) uniformly on each segment 0 < p 6 y d v. 

PROPOSITION 3.2. Let g~ M and f,(,,(t) + g(t) for euery real t. Then 
4,-(b~dt) + #~#(t) uniformly on every segment 0 < p < t < 6 = S(M). 

Proof.  Put for r = 2 

Let v(x) = htx) if r < 2 and v(x) = H(x) if r = 2. From (2.13) and (2.14) we 
obtain !P,(x) = x'v(x- l). Therefore, (3.4) and (3.6) give us 

(3.8) f,(t) = e ~ p ( - n b ; ' t ' u ( b , t - ~ ) $ ~ ( b , ~ t ) ) .  

The formula (3.2) implies - .  

where 0 < t < 6. Hence 

u(bd t - r  
l # ~ ( ' i ~ f ) - # ~ ( b i ~ t ) l  < ll~g(&(t))-l~g(fm(t))l v(bnt- 1) 
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We have f,(t) 3 1/2 for 0 < t < S and all n = 1, 2, ... Hence 

and Ilog(f,(t))/ ,< 2. It is well known (see [93) that the convergence of 
characteristic functions is uniform on each finite segment. The function (3.7) is 
slowly varying and, by (3.2), b, + m. Combining the above estimates and 
Proposition 3.1 completes the proof. 

PROPOSITION 3.3. The sequence { 4 f ( b ,  l t))$, is compact in the sense of 
the uniform convergence on every segment 0 < p < f < 6. 

This proposition follows directly from the previous one and the weak 
compactness of {S,),", 

P r o o f  of ( i )s( i i )  i n  Theorems 3.1 and 3.2. Suppose (i) holds. Using 
the formula (3.2) we get 

Put b, = 1. Since b, 4 a, we have 

(3.11) 1 <d=supb,+,/b, < a. 
n t O  

According to Proposition 3.3, we obtain 

It is easy to check up that, for every t ~ ( 0 ,  6), there is an integer n > 0 such 
that S/d < b,t = s < 6. Therefore, 0 < 4/(t) = 4, (bil(b,t)) = 4,(bi1 s) < B. 
This estimate and (3.6) imply (ii). 

Remark. The above proof shows that (ii) follows from the condition (3.3, 
which is weaker than (i). Putting h(x) = I, we obtain the Esseen and Janson 
result [3], mentioned in the Introduction. 

4. Two-sided estimates. In this section we consider the two-sided estimates 
n 

(4.1) cl !lall'P 11 akxkllp < ~2 ~ ~ a ~ ~ Y ~  
k = l  

- .  

where, as before, {X,},"= is a sequence of symmetric i.i.d.r.v.'s, Y is one of the 
functions (2.13)-(2.15) and c, , c, are positive constants. 

THEOREM 4.1. Let 0 < p < r < 2. The following conditions are equivalent: 
(i) for the function Y, the estimate (4-1) holds; 

(ii) there are positive constants u, v, w such that I 

uY,.(t)<l-f(t)GvY,(t) ( O < t < w ) ;  

(iii) there are positive constants A, B, C such that 

A Y , ( x - ~ ) < P { I X , I > X } < B Y ~ ( X - ~ )  ( x ~ c ) .  
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THEOREM 4.2. Let 0 < p .< r = 2. The foliowing conditions are equivalent: 
(i) for the function Y, the estimate (4.1) balds; 

(ii) there are positive constants u ,  v ,  w such that 

u'P2(t) < 1 - f( t)  G uY,(t) (0 < t < w); 

(iii) there are positive constants A, B,  C such that 

where h(x)  is a function from (2.14). 

THEOREM 4.3. Let 0 < p = r < 2 and k t  (2.12) be fulfilled. Then the 
following conditions are equivalent: 

(i) for the function Yp the estimate (4.1) holds; 
(ii) there are positive constants u, v ,  w such that 

(iii) there are positive constants A, 3, C such that 

X 

for x > C. 

As above, we only need to prove the implication (i) * (ii) of Theorems 4.1 
and 4.2. So, assume that (i) holds. Theorems 3.1 and 3.2 give us the upper 
estimate in (ii). Using these theorems once more (the implication (ii) (i) for 
4 E (P* r)), we get 

where S, is determined by the formula (3.3). 
Denote by 5 an r.v. with the characteristic function g(t). Let M be the set 

determined in Section 3. We have 1 1  % I l q  < C(q) for every  EM. Using the 
theorem on moments convergence (see [9]) we obtain the next assertion. 

PROPOSITION 4.1. Suppose g, E A4 and gk(t) -, g(t) for all t E R, where g is 
a characteristic function. Then I I  Y,II, -, I 1  %'I,. - .  

The condition (i) implies 

(4.2) cl<llSRllp<cz ( n = 1 , 2 ,  ...). 

PROPOSITION 4.2. Let s u p { f , ( t ) :  p < t 6 v, n = 1,  2, . . .) = 1 for some 
0 < p < v < a. Then there exist a non-degenerate g E M  and to E [ p ,  v ]  such 
that g(to) = 1. 

Proof.  There exist t , ~ [ p ,  v] and integers n(k)Too such that fntk)(tk) -, 1. 
Since the set M is weakly compact, we may assume that t ,  + tori b, v] and 
fn(,](t) + g ( t )  for all t ER and some g E M. Hence fn(k)(tk) -, g(tO), i.e., g(t,) = 1. 
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Since the r.v.'s X, are symmetric, the degeneration of g implies Y, = 0. But 
from Proposition 4.1 we obtain IISnck,lIp + 11 Yg lip = OI which contradicts (4.2). 

P ~ o ~ o s I n o ~  4.3. There is an integer m such that 

where d is determined by ths formula (3.11). 

Proof.  If this assertion does not hold, then, for every integer m, there are 
non-degenerate gm E M and t, E [l/(db,), l/b,] such that g(r,,,) = 1. Hence Q, 
corresponds to a symmetric lattice distribution. If a, is the maximal step of 
this distribution, then am 2 21t/t, 2 2xb,. 

Taking into account the weak compactness of M, one can choose integers 
m(k) such that g,(,,(t) 4 g(t) for all real t and some g E M. It can be easily 
verified that am + ao implies g(t) = 1, i.e., Y, = 0. But from (4.2) and Proposi- 
tion 4.1 we obtain 11 %',I[, 2 c, > 0 for all  EM. This contradiction proves the 
proposition. 

The following assertion follows easily from (3.10). 

PROPOSITION 4.4. For each 0 6 p < v and an integer n, there is a S > 0 
such that 

P roo f  of (i)-(ii) in  Theorems 4.1 a n d  4.2. We use the notation 
of the previous section. We need to show that there are constants E, S > 0 
such that 4f(t) > E if 0 < t < 6. 

Put I = [l/(db,,J, l/b,] such that (4.3) holds for the integer m. Choose 
6, > 0 for which (3.6) is fulfilled. There is an n, such that t/bn < 8, for all t E I 
and n 2 n,. Combining this, (4.3) and (3.9) we get 

Since t ~ l ,  we obtain t-' 2 b',. Using Proposition 3.1, we conclude that there is 
an integer n, such that 

- .  

inf{v(bJ/~(b,t-l): t ~ l ,  n 2 n,) = ol > 0. 

Hence, for t E I and n 2 no = max { n ,  , a,), 

(4.4) 4f(b,1t) 2 (-log(y))b~a = E > 0. 

Now apply Proposition 4.4, where p = l/(db,) and v = l/b,. If t ~ ( 0 ,  d), 
then s = t b , ~  I for some a 2 no. From (4.4) we obtain 

This and (3.6) give us the lower estimate in (ii). 
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