PROBABILITY
AND
MATHEMATICAL STATISTICS

Yol. 14, Fasc. 1 (1993), pp. 89-113

ANTI-IRREDUCIBLE PROBABILITY MEASURES

BY

K. URBANIK (WROCLAW)

Abstract. The paper is devoted to the study of anti-irreducible
probability measures associated with generalized convolutions. In
particular, for convolutions other than the max-convolution it is
proved that the set of anti-irreducible measures is a proper subset of
the set of all infinitely divisible measures. Moreover, for a special class
of convolutions containing a modification of the max-convolution it is
proved that the probability measure concentrated at the origin is the
only anti-irreducible measure.

1. Notation and preliminaries. For the terminology and notation used here,
see [10]. In particular, ¥V and P will stand for the set of all finite signed
measures and the set of all probability measures defined on Borel subsets of the
half-line [0, oo), respectively. Elements of V' and P will be denoted by capitals
M, N and by Greek letters u, v with or without subscripts, respectively. The
sets V and P are endowed with the metrizable topology of weak convergence.
For MeV and ae(0, ©) we define the map T(a) by setting
(T(@)M)(E) = M (a™ " E) for all Borel subsets E of [0, co). Further, for any Borel
subset 4 of [0, c0), M| A will denote the restriction of M to A4, ie. (M| A)(E)
= M(ANE) for all Borel subsets E of [0, c0) As usual we let 4, stand for the
probability measure concentrated at the point c¢. Given M e V we shall denote
by s(M) and at (M) the closed support and the set of atoms of M, respectively.
Throughout this paper, V, will stand for the subset of ¥V consisting of
non-negative measures and U, will stand for the subset of ¥, containing ail
measures M with O¢at(M). Finally, W, will stand for the subset of U,
containing all measures M which do not vanish identically, have a bounded
support and 0¢s(M).

A continuous commutative and associative P-valued binary operation
o on P is called a generalized convolution if it is distributive with respect to
convex combinations and the maps T'(a) with ae(0, ), d, is its unit element,
and an analogue of the law of large numbers

(L.1) T(c)o3" -y
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is fulfilled for a choice of norming constants ¢, (0, co) and y # J,. The power

" is taken here in the sense of operation o. The limit measure y is called
a characteristic measure of the generalized convolution in question. By
Proposition 4.4 in [10] the characteristic measure is uniquely determined up to
the scale change T(a) with a€(0, oc0). Moreover, by Proposition 4.5 in [10],
there exists a constant x = k(o) belonging to (0, co] and called the characteris-
tic exponent of o such that

(12) T(@)yo T®)y = T(r(x, a, b))y
for any pair a, be(0, o), where _
(1.3) r(c0, a, b)) =max(a,b) and r(x, a, b) = (@ +b)'" if ke(0, o).

The characteristic measure y can be regarded as an analogue of the Gaussian
measure. In the sequel we shall use the notation

Gauss (o) = {T(a)y: ae(0, ac0)}u{do}.

It was shown in [10], Chapter 3, that every generalized convolution can be
extended to a continuous operation on V by setting

(14) (Mo N)(E) = I f 0,0 0,(E)M (dX)N (dy)

for every Borel subset E of [0, co) and M, Ne V. It is clear that the set V is
invariant under O.

Let m,, be the sum of , and the Lebesgue measure on [0, co). It has been
proved in [10], Theorem 4.1 and Corollary 4.4, that each generalized
convolution admits a weak characteristic function, i.e. a one-to-one correspon-
dence p« [i between measures u from P and real-valued Borel functions A
from L_(m,) such that

(u+(1—) = ca+(1-a%, (T@u () =@, (o= as

for all ce[0, 1], ae(0, ), and u, ve P. The weak convergence p,— y is
equlvalent to the convergence fi,— ji in the L,(m)- topology of L (myg).
Moreover, if 4 is absolutely continuous with respect to the measure m,, then
the function £ is continuous and, by Lemma 3.11, Propositions 3.3 and 3.4 and
Theorem 4.1 in [10], '

(1.5) lim £() = A({0}).

Recall that the weak characteristic function is uniquely determined up to
a scale change and

1.6) A0) = § 2(u@x)
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my-almost everywhere. The kernel @ is a Borel function with ©(0) =1 and
.7 12 <1 for te[0, o).

Taking a suitable normalization if necessary we may -always assume, by
Theorem 4.2 in [10], that for xe(0, o)

(1.8) () = exp(—1t¥)

my-almost everywhere.

Generalized convolutions admitting a continuous kernel Q are called
regular (see [10], p. 93). In the sequel, 1; will denote the indicator of the set E.
Further, by the max-convolution %, we mean the generalized convolution in-
duced by the operation max (X, Y) on independent random variables X and Y.
By Lemma 2.1 in [10], k(o) = co if and only if 0 = #_. It is known that the
max-convolution is not regular (see [8], p. 219). Throughout this paper, [J will
denote the operation induced by the multiplication of independent random
variables. In other words, :

M[N = z ujgé,;J,M(dx)I\'T(dy) for M, NeV.
0
It is clear that
(1.9) MOIN = T(T(a)M)N(da),
0
where T(0)M is assumed to be M({0})d,. Setting
M) = }:Q(tx)M(dx)

we have the formula

8

(1.10) MON)(@) = | (tx)N (dx) for M,NeV.

o

We say that a probability measure y from P is o-infinitely divisible if for
every positive integer n there exists a measure p,eP such that

(1.11) ' = .

The set of all o-infinitely divisible probability measures will be denoted by
P (o). For regular generalized convolutions, o-infinitely divisible measures
were studied in [8] and [9]. For the max-convolution we have the formula

(1.12) P (*,)=P

(see [7], p. 175). Notice that, by Proposition 3.2 in [11], we may always assume
that the measures y, in (1.11) belong to P, (o). Moreover, if o # *_, then, by
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Lemma 24 in [12], for every peP_(0)
(1.13) A >0

my-almost everywhere. -
In the sequel we shall use the following compactness lemma:

LeEMMA 1.1. Suppose that o ##*,, and p = p" with p,eP, (0)(n=1,2,..).
Then for every ac(0, oo) the sequence of restricted measures nu,|[a, ) is
conditionally compact in U,. Moreover, if in addition the weak characteristic
function i is my-essentially bounded from below by a positive number, then the
sequence ny,|(0, o) is also conditionally compact.

Proof. Since, by (1.6), (1.7) and (1.13), 0 < fi,(t) <1 and j(t) = 4, ()"
mg-almost everywhere, we have the inequality
(1.14) n(1—a,(0) < —logfi(t)
my-almost everywhere. Further, by Proposition 4.2 in [10],
i
lim¢~* § A(u)du = 1.
t—0 0

Consequently, for every e€(0, 1) there exists a closed subset B of [0, 1] with
positive ‘Lebeésgue measure such that

(1.15) [i(t) =z exp(—e) for teB.

Denoting by g~ ! the Lebesgue measure of B and setting A(dx) = q1z(x)dx, we
infer that Ae P, s(1) = B, and the measure A is absolutely continuous with
respect to m,. Thus, by (1.5),
(1.16) lim £(¢) = 0,

| el ]
which shows that for a sufficiently large number b the inequality A(f) <271

holds whenever te[b, c0). Taking into account (1.14) and (1.15) we get the
inequality o

nji,([b, ) < 2n | (1— (@) p,(d2) = 2n [ (1 — f,(6)Ade) < 2¢
0 B
for all indices n. On the other hand, by-Lemma 2.5 in [12], for every ae(0, o0)
the sequence ny,([a, o)) is bounded. Hence we get the first assertion of Lem-
ma 1.1. If, in addition, ji(t) > exp (—d) my-almost everywhere for some constant

de(0, c0), then, by (1.14),

n

(=1

(1= £(ct)uo(de) = n ;f (1= A, ONTOA)d) <d
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for all ce(0, oo) and all indices n. Letting ¢ — oo and taking into account (1.16)
we get, by the bounded convergence theorem, nu,((0, 00)) < d for all indices n,
which yields the conditional compactness of the sequence n,|(0, o). Lem-
ma 1.1 is thus proved.

We shall need the following characterization of the max-convolution.
LeMMA 1.2. If péy+(1—p)é, €P (o) for some pe(0, 1), then o = * .
Proof. Suppose that p,eP and

1.17). poo+(1—p)o; =" (r=1,2,..).

Observe that, by (1.4),

B-

( 6:‘:j)ﬂn(dx1) au'n(dxl) s ﬂn(dxn)’

B =

Q ey 8
O ey, 8
Qs 8

i=1

which yields the inclusion

(1.18) s(O s,)<{0,1}
j=1
for (u,xp,x ... x p)-almost all n-tuples x,, x,, ..., x,. By the continuity of
the mapping
(g Xgs e X)) > O 6,

ji=1
we conclude that the above inclusion holds for all x,, x,, ..., x,es(s,). In
particular, we have
(1.19) 5007 = {0,1} for all xes(y,).
Suppose that the set s(u,) contains two positive numbers a and b. Setting
¢ =a/b, by (1.19) we have

$(62") = s(T(c)63") = ¢s(53") < {0, c}.

Comparing this relation with (1.19) we get the inclusion s(6;") = {0}. Thus
07" = d, and, consequently, by Lemma 2.3 in [13], §, = §, which contradicts
the assumption a > 0. This proves the inclusion

(1.20) s(u)<{0,a,} (m=2,3,..)

for some a,e(0, c0). Moreover, the inequality y, # J, yields
(1.21) a,es(p,) (Mm=2,3,..).

Now we shall prove that

(1.22) s(w) = {0, a}
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for a certain index k > 2. Suppose the contrary. Then, by (1.20), u, = 04,.»
which, by (1.17), yields

poo+(1—p)d, =da; (n=2,3,..).

Hence the measure pd,+(1—p)d, is o-stable ([10], Section 2) and, consequent-
ly, by Lemma 2.2 in [10], has no atom at the origin, which is a contradiction.
Relation (1.22) for a certain index k > 2 is thus proved. Substituting n =k,
X, =Xy =...=X-1 =0 and x, = q, into (1.18) we get the inclusion s(J,,)

c {0, 1}, Wthh yields a, = 1. Further, settingn =k, x; = x, = 1 and x; =

= x, = 0 into (1.18) we get the inclusion s(3, 0 d,) < {0, 1}. Consequently,
5 05 = ad,+(1—a)d, for some ae[0, 1]. Hence, by standard calculations,
the probablllty measure a(l+a) '0,+(1+a)" 15, is an idempotent other
than 6,. Applying Theorems 4.1 and 4.2 from [13] we get the equality o = %
which completes the proof.

Given M e U, we define the probability measure n(M) by setting
(M) = e (0, + Y, M°/k!),
k=1

where d = M([0, o). We record for later reference the following simple
formulae:

(1.23) n(M)"(t) = exp ojo (Q(tx)— 1) M (dx)
my-almost everywhere, o .

(1.24) n(M)or(N) = n(M + N),
(1.25) : T(a)n(M) = n(T(a) M)

for M, NeU, and ae(0, ). Moreover, n(M,) - n(M) whenever M, —» M in
U, . Finally, observe that the mapping U, 3 M — n(M) is one-to-one. In fact,
the equality n(M) = n(N) with M, NeU, yields, by (1.23),

M (t)—M([0, 0)) = N()—N([0, )
my-almost everywhere or, equivalently,

M —M([0, o0))d, = N—N([0, 00))d,
Since both measures M and N have no atom at the origin, the last equality
yields M = N, which completes the proof.

Throughout this paper, Poiss (o) will stand for the set of all measures 1r(M )
with MsU,. We begin with a simple characterization of this set.

LemMA 1.3. A measure pePoiss(o) if and only if peP (o) and [i is
mg-essentially bounded from below by a positive number.



Anti-irreducible probability measures 95

Proof Necessity. By (1.24) we have n(M) = n(M/n)*" for all positive
integers n. Hence Poiss (o) = P_ (o). Further, by (1.23), we have the inequality
n(M) (t) = _exp(——lM (C0, oo))) my-almost everywhere, which completes the
proof of the necessity of our conditions.

Sufficiency. First consider the case o =%,. Then =1 ,; and,
consequently, A(t) = u([0, t~1]) for te[0, o0). The boundedness of fi(t) from
below by a positive number yields O e at (u). Setting M({0}) = 0 and M((x, o))
= —log u([0, x]) for xe[0, ov) we infer that MeU, and u = n(M).

Suppose now that o # *_,. The measure y can be written in the form
p="u," for some p,€P (o). By Lemma 1.1 in [12] there exists a subsequence
n, <n, <... such that B '

(1.26) lim (1=, (1) = —log (1)

my-almost everywhere. Put M, = m, 1, 1(0, o0) (k = 1, 2, ...). By Lemma 1.1 the
sequence M, is conditionally compact in U,. Passing to a subsequence if
necessary we may assume without loss of generality that M, — M for some
MeU,. Consequently, n(M,)— n(M). Since, by (1.23),

2(M,)' (t) = exp (my (i, () — 1))

my-almost everywhere, we conclude, by (1.26), that z(t) = n(M)"(t) my-almost
everywhere. Thus u = n(M), which completes the proof.

2. Factorization of probability measures. Let y, ve P. We say that v is
a divisor of u if u =vol for some AeP. The set of all divisors of u will be
denoted by D(o, ). It is clear that {6, u} = D(o, u). By Proposition 2.4 and
Corollary 2.3 in [13] we have the following statement:

ProrosiTiON 2.1. For every peP the set D(o, p) is compact.

By Lemma 2.3 in [13] the equation vo 1 = 4, yields v = A = J,. Hence we
get the following

PROPOSITION 2.2. D(o, 8o) = {8} _
ProrosiTION 2.3. If ueD(o, p,) and p,eD(o, uy), then p, = p,.

Proof. Suppose that u, = p,ov, and p, = u, ov, for some v,, v,€P.
Setting 1 =v,ou,, we have p, = y; 04, which yields u, =y, 04°" for all
positive integers n. Thus 4°"e D(o, u,) and, by Proposition 2.1, the sequence 1°*
is conditionally compact. By Theorems 4.1 and 4.2 and Corollary 3.5 in [13]
we conclude that either o = #_, or o # *_ . and 1°" — §, as n — 0. In the case of
the max-convolution our assertion is obvious. In the remaining case we have,
by Corollary 2.4 in [13], 4 = 8,, which by Proposition 2. 2 ylelds v, =V, = .
Consequently, u, = i,.

LEMMA 2.1. If o # =, then for every M € U, the following inclusion is true:
D(o, n(M))nP (o) = Poiss (o). '
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Proof. Suppose that ve P_ (o) and vo i = n(M) for some A = P. Then
#(t) = m(M)" (t) my-almost everywhere, which, by Lemma 1.3, yields v Poiss (o).

LeMMA 2.2. Suppose that o # *,, Me U, , and D(o, n(M)) = P (c). Then
for every NeU, with n(N)eD(o, n(M)) the inclusion s(N) c s(M) is true.

Proof. Applying Lemma 2.1 we conclude that there exists a measure
Qe U, fulfilling the condition n(N)o n(Q) = n(M). Hence and from (1.24), by
the uniqueness of the correspondence M < n(M), we get the formula
M = N+Q which yields the desired inclusion.

Given pe P, by a y-norm we mean a function 4 . from D(o, y) into [0, o)
continuous at J, and fulfilling the condition

(2.1) 4,vod)=4,+4,4)

whenever voieD(o, u) (see [7], p. 37).
We shall need the following lemma:

LeEmMA 2.3. Suppose that o # *,. Then for every uc P other than d, there is
a p-norm A, with A,(u) > 0. ' »

Proof. Suppose that ue P and p # J,. First we shall prove that there
exists a number b(u)€(0, 1) such that the set

B(u) = {t: te[0, 1], b(w) < A} < 1}

has positive Lebesgue measure. Suppose the contrary. Then, by (1.6) and (1.7),
the set {t: t€[0, 17, |A() ¢ {0, 1}} has the Lebesgue measure 0. Since, by
Proposition 4.2 in [10],

t
limt™! | gwdu = 1,
t—+0 0

we conclude that the set {¢: te[0, 1], fi(f) = 1} has positive Lebesgue measure.
Applying Lemma 2.1 in [12] we get the equality 4 = é,, which contradicts the
assumption. The existence of the desired constant b(u) is thus proved.
Put . _
A4,0)= — | log|p()ldt for veD(o, p)._
B(p)

Notice the.t
22) b(p) < |A@)] < P

for ve D(o, p) and my-almost all te B(u). Consequently, 0 < 4,(v) < oo for all
veD(o, p). The inequality |fi(z)] < 1 on B(y) yields 4,(x) > 0. Formula (2.1) is
evident. It remains to prove that the function 4, is continuous at d,. Suppose
that v,eD(o, u) and v, > J,. By Lemma 1.1 in [12] each subsequence of
indices contains a subsequence n, <n, <... such that g, — 1 mgy-almost
everywhere. By (2.2) and the bounded convergence theorem we get the relation




Anti-irreducible probability measures 97

A #(vnk‘)i—> 0 = 4,(3,) which proves the continuity of 4, at §,. The lemma is thus
proved.

A probability measure u is said to be irreducible if u # 6, and D(o, y)
= {J,y, u}. A probability measure u is said to be anti-irreducible if D(o, u)
contains no irreducible measure. Throughout this paper I(o) will stand for the
set of all anti-irreducible measures. The set I(0) has drawn much attention since
the inception of decomposition theory (see [7], Sections 2.8, 2.9 and 5.7). The
problem of describing anti-irreducible measures for the ordinary convolution
has a long history but it has not been solved yet (see [4] and [6]). It is known
that for the max-convolution

(see [7], p. 175). For the Kingman convolutions, Ostrovskii obtained in [5] the

nice formula I(o) = Gauss (o). It is of interest to clarify whether it is possible to

realize the extremal case I(o) = {J,} for some generalized convolutions. Sec-

tion 3 will be devoted to the study of this problem. '
By Proposition 1.2 we have d,eI(o). It is clear that

(2.4) " Dlo,wcI(0) for pel(o).

Bingham proved in [2] that for regular convolutions anti-irreducible measures
are infinitely divisible. We shall show that this result remains true for arbitrary
convolutions.

THEOREM 2.1. For every convolution o the inclusion 1(0) < P (o) holds.

Proof. By (2.3) it suffices to consider the case o # * . By Theorem 4.2 in
[13] the measure J,, is the only idempotent in the semigroup (P, o). Taking into
account Definitions 2.2 and 10.6 in [7] we conclude, by Propositions 2.1 and
2.3 and Lemma 2.3, that (P, o) is a normable Hun semigroup. Thus, by
Theorem 8.9 in [7], every anti-irreducible probability measure u is in-
finitesimally divisible, i.e. for every neighbourhood U of J, it has a represen-
tation u = p,op,0...om with p;elU (j=1, 2, ..., k). Of course, all partial
products u; oy, 0...op; (1<iy <i, <...<i, < k) belong to D(o, p). Since,
by Proposition 2.1, the set D(o, y) is compact, we apply Theorem 10.7 in [7]
and obtain the infinite divisibility of u, which completes the proof.

THEOREM 2.2. uel(0) if and only if D(o, u) < P, (o).
Proof. By (2.3) it suffices to consider the case
(2.5) O # *,.

The necessity of the condition in question is an immediate consequence of
inclusion (2.4) and Theorem 2.1. We prove its sufficiency indirectly. Suppose
that D(o, u) = P (o) and the set D(o, u) contains an irreducible measure v.
Since veP (o), we have v= A0l for some A #4,. Of course, AeD(o, v)

7 — PAMS 141
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= {8,, v}, which yields A = v. In other words, v is an idempotent other than J,,
which, by Theorems 4.1 and 4.2 in [13], contradicts (2.5). The theorem is thus
proved.

THEOREM 2.3. For every convolution o other than ., 1(0) is a proper subset
of P (o). -

Proof. Setting @ =), , k™ '27%63* and M = Q|(0, o0) we have Me U,
and, by (1.23),

(M) (t) = exp i k~127HQ ) —1) = (2— Q@)1
k=1

my-almost everywhere. Introduce the notation

P =2%/(142%) and v, =p S, +(1—-p)8¥ (k=0,1,..).
Of course, v,€P and, by‘ Lemma 1.2, '
(2.6) voé P (0).

Moreover, ¥,(t) = p, +(1—p,) Q% (t) m,-almost everywhere. Using the formula

9]

C—x)"t=[](p+(1—p)x*) for xe[—1,1]
k=0
we get the equality
(M) () = ] ¥(®)
. o k=0

my-almost everywhere. Hence vyov,0... ov, » n(M) as n— co. By Corolla-
ry 2.3 in [13] the sequence v, 0v, 0...0v, is conditionally compact. Taking its
cluster point A we have the equality v, 0 A = n(M). Thus v, € D(o, n(M)), which,
by (2.6) and Theorem 2.2, yields n(M)¢ I(0). On the other hand, n(M)e P (o),
which completes the proof.

~We say that a generalized convolution o has the Cramér property if its
characteristic measure y fulfils the condition D(o, y) = Gauss(o). Generalized
convolutions with the Cramér property were studied in [14]. It is well known
that the ordinary convolutions and the symmetric ones have the Crameér
property. Ostrovskii proved in [5] that the Kingman convolutions have also
this property. Observe that, for the max-convolution y =4,, D(x,,?y)
= {v: s(v) = [0, 1]} and Gauss(*,) = {J,: a€[0, c0)}, which shows that *
has not the Cramér property.

Now we shall give a convenient sufficient condition for a convolution to
have not the Cramér property. '

LemMMma 2.4. Let o be a generalized convolution with finite characteristic
exponent k. Suppose that there exists a probability measure ¢ with §(t)
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= (1+ct¥)exp(—t*) for some ce(0, ov). Then o does not have the Cramér
property.

Proof. Put v(dx) = xx* 'exp(—x*)dx and A = T(c'/)y[Jv. Using (1.8)
and (1.10) we have 1()=(1+ct*)~", which yields A()d(t) = exp(—1¥)
my-almost everywhere. Consequently, y = log and AeD(o, y). On the other
hand, by (1.8), ¢ Gauss (o), which shows that the convolution in question does
not have the Cramér property.

Now we shall give some examples of generalized convolutions without the
Cramér property. It is clear that each generalized convolution o is uniquely
determined by the expressions é, o J, with a, be(0, o). In our case they will be
of the form

(27) 5a o 5b (dX) = f(d(a’ b)) 5max(u,b)(dx) + g(as b! x) dx

where d(a, b) = min (a, b)/max (a, b). The case f= 1 and g = 0 corresponds to
the max-convolution. Therefore generalized convolutions (2.7) can be regarded
as a modification of the max-convolution.

ExampLE 2.1. Kendall convolutions. The Kendall convolution depends upon
a positive integer n and is defined by (2.7) with the functlons fE)=01—x)
and '

g(a, b, x) = Z": (k+1)(n)( " .)a”l'kb"(xwa)"‘l(x—b)""‘x‘1"2"1[c,w)(x),
Z kN\k—1

where ¢ = max (a, b). Here we have k=1 and

Qt) = (1—1)" 1, 1](t)

Put o(dx) = ((n+1)) 1x="=3exp(—1/x)dx. By standard calculatlons we get
the formula

6(t) = (1+(n+1)" f)exp(—1)

which, by Lemma 2.4, shows that the Kendall convolutions do not have the
Cramér property. : :

ExamMpLE 2.2: (1, p)-convolutions. This family of convolutions -de-
pends upon a parameter pe(0, 1) and is defined by (2.7) with the functions

f() =1-px, _

g(a, b, x) = pab(2p—1)_1x'3(2p—max’(a‘1, bYX Yl y(x)  if p#1/2
and : ' .
gla, b, x) =27 1abx3(1+2logx—2l0g ¢) 1, o)(x) if p=1/2,
where ¢ = max(a, b) and g = (2p—1)/(1—p). Here we have x =1 and

Q(t) = (1—pi)10,15(2).
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Observe that this convolution in not regular. Setting r = (1—p)~ %,
h(x~Y) =2"1pr2x " [y (1 +x)e *—(1+y)e %)dy

for xe(0, o) and o(dx) = h(x)dx, by standard calculations we get gePI ahd
81 = 1+27 ) exp(—1).

Applying Lemma 2.4 we infer that (1, p)-convolutions do not have the Cramér
property. )

ExampLE 2.3. (2, p)-convolutions. This family of convolutions depends
upon a parameter pe(2, o). The functions f and g appearing in (2.7) are
defined by the formulae

f0) = 1=p(p—1D " x+(p—1) %7
and
gla, b, x) =p(p—1)"2abx3(2(p—2)+ (@ 1 +b*")(1 +p)x' ~*

—2(2p—1)a? " 1bP X2 7 2) 1, (%),

where ¢ = fnax (a, b). Here we have x =1 and
Q@) =(1-p(p— 1)~ t+(p—1) " 7 110,5(1).
Setting | '
o(dx) = (3p) " H{(p—2)x "3 +(p—2)x"*+x"%)exp(—1/x)dx

we get a probability measure with g(f) = (1+3~'t)exp(—1). Applying Lem-
ma 2.4 we infer that the (2, p)-convolutions do not have the Cramér property.

EXAMPLE 2.4. Kucharczak convolutions. We define these convolutions for
any pe(0, 1) by setting in (2.7) f =0 and

g(a, b, %) | |

= (sin np)a"b"k‘"(Zx—a—b)(x—a—b)“”(x—a)_l(x—b)_lI[S,w)(x),
where s = (a”+bP)!/P. Here we have k = p and
Q) = I'(p, )/T'(p),

where I'(p, t) is the incomplete gamma function, ie. I'(p, 1) = Lw e *xP7ldx
for te[0, oo). :
In the study of the Kucharczak convolutions we need the following

LeMMA 2.5. Let pe(0, 1) and be(0, p(1—p)). Then the function
h(t) = (1+bt?)exp(—t?)

is completely monotone on [0, o).




Anti-irreducible probability measures _ 101

Proof. It is clear that the function h is infinitely differentiable on (0, o).
By standard calculations we conclude that its derivatives are of the form
(28) ) = (— 1P g, (P exp(~)  (n=1,2,..),

where g, are polynomials of degree n fulfilling the recurrence formula

d
(2.9) G+1(0) = (1 =p+px)g,(x)=px g, (x) (=1,2,..).
Setting
(2.10) G =Y aut (1=1,2,..),

k=0

we get from (2.9) the recurrence formulae
(2'11) an+1,n+1 = qan,n (n = 19 27 "-)7
(2.12) Aop+1 =M—Dp)ao, mM=1,2,..),

(2.13) aypi1=Mm—p—pR)ay+par—1, m=1,2,...,mn=1,2,..)
with the initial conditions

(2.14) aop,, = p(1—b), ay,, = pb.

From (2.11) and (2.14) we get the equality ° 7
(2.15) a.=bp" (m=1,2,..)

which, by (2.13), yields
Gpprt = Ply—1a+(—p—pm)bp"  (n=1,2,..).
Now by induction one can easily check the formula
Qo1 =p" M (p—8"1br2+871b(2n(1-p)"*—1r?)) (n=1,2,..)
where rr= (14+p)1—p)~ 2. Notice that
p—8 1br? > p—8 1p(1—p)r? >0,

-

which yields the inequality

(2.16) A-1,>0 (m=1,2,..).
Now we shall prove the inequality

(2.17) >0 (k=0,1,...,n)

by induction with respect to n. By (2.14) our statement is obvious for n = 1.
Suppose that inequalities (2.17) are true for k =0, 1, ..., n. We have to prove
the inequalities a3 ,+1 >0 for k=0, 1, ..., n+ 1. Observe that for k= n and
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k = n+1 they are true because of (2.15) and (2.16). It remains to consider the
case 0<k<n—1. Then n—p—pk>2n(l—p)>0 and, consequently, our
assertion is an immediate consequence of (2.13). This completes the proof of
(2.17). Taking into account (2.10) we conclude that all polynomials g,
are positive on the half-line [0, co), which, by (2.8), yields the inequality
(—1y'h®™(t) 20 for n=1,2, ... and te(0, co). Lemma 2.5 is thus proved.

Let us now return to the Kucharczak convolution with parameter
pe(©, 1). Let be(0, p(1—p)) and h(t) = (1 +br?)exp(—t?). Then
(2.18) f h(wu?~*du = p~*(1+b+btP)exp (—tP)

for t[0, o0). By Lemma 2.5 the function k is completely monotone on [0, ).
Taking the Bernstein representatlon

h(t) = | e"™v(dx)
0
with veV,_ we have O¢at(v) and
{ hwuw?~'du = { I'(p, tx)x"?v(dx) for te[O, o).
t 0 .

Consequently, setting o(dx) = p(1 +b)~ 1 I'(p)x ~?v(dx) and taking into account -
(2.18) we conclude that ge P and

0(0) = (1+b(1+b)" ' P)exp(—17),

which, by Lemma 2.4, shows that the Kucharczak convolutlons do not have
the Cramér property.

3. A class of convolutions. Given M, N € V, we denote by C(M, N) the set
of all positive numbers c¢ fulfilling the condition M(E) < cN(E) for all Borel
subsets E of [0, c0). Put k(M, N) = inf C(M, N), where the infimum of an
empty set is assumed to be co. The following statements are evident:

(3.1) : k(T(@M, T(@N)=k(M,N) for ae(0, x); -
(3.2) k(M, N) < k(M, Q)k(Q, N)

whenever k(M, Q) and k(Q, N) are finite;

(3.3) k(M;+M,, N, +N,) <max(k(M,, N,), k(M,, N,)),
(34 k(M,oM,, NjoN,)< kM, N)k(M,, N,)

whenever k(M,, N,) and k{(M,, N,) are finite;
(3.5) lim k(M,, N,) > k(M, N)

n—*o0
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if M,-»M and N,— N;
(3.6) s(M) < s(N)
whenever k(M, N) is finite. | '

Throughout this paper K will stand for the set of all probability measures
A fulfilling the condition k(T(b)4, 4)) < oo for be(l, ).

LEMMA 3.1. The measures A from K are of the form 4 = pd,+ (1 —p)v, where
pe[0, 1] and the probability measure v is equivalent to the Lebesgue measure on
a half-line [u, o) with u > 0. '

Proof. By (3.6) we have the inclusion bs(1) = s(T(b)4) < s(4) for
be(1, oo), which shows that either s(4) = {0} or 5(4](0, o)) = [u, oo) for some
u = 0. Consequently, to prove our lemma it suffices to show that the measure
A|(0, o) is absolutely continuous with respect to the Lebesgue measure on
(0, o0). Taking an arbitrary Borel subset E of (0, co) of the Lebesgue measure
0 we have the equality

j' 1z(ax)a”2da=0 for all xe(0, o).
1/2
Consequently,
{ M@ *E)a~2da= | | 1g(ax)a”*dai(dx) =0
1/2 0o+ 1/2
which yields
(3.7 (T@A)E)=A(@'E)=0 for almost all ae(1/2, 1).
Using (3.1) we conclude that the measure A is absolute‘ly continuous with

respect to the measure T(a)A with ae(0, 1). Hence and from (3.7) we get the
equality A(E) =0, which completes the proof.

Let A be a subset of [0, c0). A mapping from 4 into [0, o0) is said to be
locally bounded if it is bounded on every compact subset of A.

LEMMA 3.2. For every A€ K the mapping (1, 00)3b — k(T (b)4, 4) is locally
bounded. '

Proof. The inequality k(T(b)4, 4) > 1 for be[1, o) is evident. Setting
 F(x)=logk(T(e*)4, 1) for xe[0, ),
by (3.1) and (3.2) we have
F(x+y) <10gk(T(e"+y) T(e")A)+1logk(T(e”)A, A) = F(x)+F(y)

for x, ye[0, o). Thus the function F is subadditive on [0, c0). Applying
Theorem 6.4.1 of [3] we infer that F is locally bounded on (0, o0), which y1e1ds
the assertion of the lemma.
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LeMMA 3.3. For every AeK and M e W, with s(M) < (1, oo) the inequality
k(MOA, 1) < 0 is true.

Proof. Since s(M) is a compact subset of (1, o0), we can find, by Lemma
2.3, a positive constant ¢ such that the inequality (T(b)4)(E) < cA(E) holds for
all Borel subsets E of [0, oo) and bes(M) Integrating both sides of the above
inequality with respect to M(db) and using formula (1.9) we get the mequallty
k(M [JA, 4) < ¢, which completes the proof.

We say that a generalized convolution o is K-majorizable if there exists
a measure y€K such that

(38  k(MoN, (Mx,N)+(M#,N)O7) < 0
and .
39 k(T(9)n, MoN) <

for all M, Ne W, and some ge(0, oo) depending on M and N. The measure
n is called a majorizing measure.

Before taking up a more detailed study of K-majorizable convolutions we
establish a very convenient sufficient condition in terms of the expressions
6,09, with ae(0, 1] for a convolution to be K-majorizable.

PrOPOSITION 3.1. Suppose that for ac(0, 11 we have a representation
(3.10) 8, 00,(dx) = f(a)o,(dx)+ h(a, x)n(dx),

where neK, f and h are Borel functions defined on (0, 1] and (0, 1] x [0, o0),
respectively, the mapping

(3.11) 0, 112a — H(a) = my—esssup {h(a, x): xes(n)}
is locally bounded and for some ce(1, )
(3.12) G(a, ) = my—essinf {k(a, x): xecs(n)} > 0.

Then o is K-majorizable with n as a majorizing measure.

. Proof. Observe that, by Lemma 3.1, the measure n is absolutely
continuous with respect to the measure m,. Obviously, f(a)e[0, 1], which
yields the inequality

k(6,06,, 6,+n) < max(l H(a)) for ae(0,1].

Setting d = d(a, b) = min (a, b)/max (a, b) for a, be(0, ), by (3.1) we have
(3.13) k(0,0 68,, Smaxtairy + T(max (a, b))n) < max (1, H(a)).

Given M, N e W, we conclude, by the local boundedness of H, that H(d(a, b))
"<r for some r>1 and all aes(M) and bes(N). Consequently, by (3.13),

6,08y < r(Omaxapy+ T(max(a, b))n) for all aes(M) and bes(N).
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Integrating both sides of the above inequality with respect to M (da) N (db) we
get, by virtue of (1.9), the inequality

MON < r{(M* o N)+(M#,N)n),

which proves (3.8). Further, taking a number ¢ fulfilling the condition
g > cmax(a, b) for aes(M) and bes(N) we have, by (3.1), the inequality

(3.14) I(a, b) = k(T(g)n, T(cmax(a, b))n) < co.

Moreover, by (3.5), the function I(a, b) is Borel measurable on the product
s(M) x s(N). Since cs(y) = s(T(c)n) and v = k(T(c)y, ) < 0, we have

n(Encs(n) = v~ (TOn)(E)

for all Borel subsets E of [0, oo). Hence taking into account (3.10) and (3.12) we
get : :

8,08, =2GWd, v T(c)n for all de(0, 1].

'Substifuting d = min (a,'b)/max (d, b) for aes(M) and be S(N) and setting
u(a, b) = G(d, cjv~'17!(a, b), from (3.14) and the last inequality we get

3.15) 8,08, = T(max(a, b))(6,08,) > G(d, Jv~ ' T(cmax (a, b))y

= u(a, b)T(g)n

for all aes(M) and bes(N). It is clear that the function u(a, b) is Borel
measurable on the product s(M) x s(N) and maps this product into the interval
(0, 1]. Integrating both.sides of (3.15) with respect to M(da)N(db) and
introducing the notation

= }0 ]?u(a, b)M (da)N (db)
o

we get the inequalities u, >0 and u, T(q)n MoN whlch imply (3.9).
Proposition 3.1 is thus proved. s

We shall apply Proposition 3.1 to generalized convolutions discussed in
Examples 2.1-2.4. In what follows by the Pareto measure with parameter
Be(0, ) we mean the measure fx~'7P1j oy (x)dx. We associate with
(1, 1/2)-convolution a majorizing measure

n(dx) = (1+2log x)x 3 1p4,)(x)dx.

In all the remaining cases as a majorizing measure n we take the Pareto
measure with the following parameter f: f =n+1 for Kendall convolutions
with parameter n, f = min(2, 1/(1—p)) for (1, p)-convolutions with p # 1/2,
p =2 for (2, p)convolutions with pe(2, ov), and f=2p for Kucharczak
convolutions with pe(0, 1). Here we have s(y) = [1, o). Starting from re-
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presentation (2.7) and determining the function k by the formula
h(a, x)n(dx) = g(a, 1, x)dx for ae(0, 1]

we conclude, by standard calculations, that conditions (3.11) and (3.12) with
¢ = 2 are fulfilled. Thus as an 1mmed1ate consequence of Proposmon 3.1 we get
the following statement:

CoroOLLARY 3.1. The Kendall convolutions with n=1,2,..., (1, p)-con- -
volutions with pe(0, 1), (2, p)-convolutions with pe(2, o), and the Kucharczak
convolutions with pe(0, 1) are K-majorizable.

Now we proceed to the study of K-majorizable convolutions.
LEMMA 34. Majorizing measures of a K-majorizable convolution are
equivalent to the Lebesgue measure on a half-line [u, o) for some u > 0.

Proof. Let # and y be a majorizing measure and a characteristic measure
of a K-majorizable convolution, respectively. Since, by Lemma 2.2 in [10],
(3.16) O¢at(y), .
we can find an interval 4 such that y|Ae W, . Setting M = y| A4, by (1.2) and
(1.3) we have MoM < yoy = T(c)y, where ¢ = r(x, 1, 1) > 0. On the other
hand, by (3.9) we obtain k(T(g)n, MoM) < oo, which, by (3.2), yields
k(T(g)n, T(c)y) < 0. Consequently, at(y) < at(T(cq”')y) and, by (3.16),
O¢at(n). Now our assertion is an immediate consequence of Lemma 3.1.

LeEMMA 3.5. The max-convolution is not K-majorizable.

Proof. Suppose the contrary and denote by 5 a majorizing measure for
*,,. Since 6, € W, and d,*,6; = d;, by (3.9) we have k(T(g)n, 6,) < oo for
some ge(0, o). Thus T(q)n = §,, which contradicts Lemma 3.4.

As a consequence of our Lemma 3.5 and Lemma 2.1 in [10] we get the
following statement:

COROLLARY 3.2. The characteristic exponent of K-majorizable convolutions
is f nite.

"LEMMA 3.6. Let o be a K-majorlzable convolution. Then the inclusion
at(M o N) < at(M)uwat(N)

Proof Observe that the measures M and N from V can be written in the
form

M = ad +ZMk, N =bé +ZNk,
where a, be[0, ) and M,, N, eW (k=1,2,..). Starting from the formula

MoN = abdy+a Z N,+b Z M, + Z M;oN,

=1 k=1 k=1
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we get the inclusion

(3.17) at(MoN) c at(M)uat(N)u |J at(M;oN,).

Jk=1
By Lemma 3.4 the measures (M;*,N,)[n are absolutely continuous with
respect to the Lebesgue measure on the half-line [0, co). Consequently, by (3.8),

at(M;oN)) c at(M;*,N,) < at(M)uat(N,) c at(M)uat(N),
which together with (3.17) yields the assertion of the lemma.

LeMMA 3.7. The characteristic measure y of a K—majorizablé convolution has
no atom.

Proof. We argue indirectly. Suppose that at(y) # &. Recall that, by
Corollary 3.2, the characteristic exponent x of the convolution in question is
finite. Moreover, by Lemma 2.2 in [10], O¢at(y). Since the set at(y) is at mbst
denumerable, we can find a pair p, g€ (0, oo0) such that the numbers p*, g* are
linearly independent over the field generated by the numbers c* with ceat ().
‘By (1.2) and (1 3) we have the formula

T(p)yo T(@y = T(r(x, p, @)y
which, by Lemma 3.6, yields the inclusion

r(x, p, g)at (v) < pat(y)uqat(y).

Consequently, for any aeat(y) there exists beat(y) such that either ( p*+4q“)a"
= p*b* or (p*+q*)a* = ¢*b*, which contradicts the linear independence of p*
and ¢*. The lemma is thus proved.

LemMA 3.8. For every K-majorizable convolution there exists a version of the
kernel of the weak characteristic function which is continuous on the set
[0, wyu(w, ©) for some we(0, oo].

Proof. Given pe(0, x) we denote by ¢ a o-stable probablhty measure of
index p ([10], Section 2). By Corollary 4.5 in {10] the measure ¢ is equivalent
to the Lebesgue measure on [0, co) and, by Theorem 4.2 in [10], we may
assume that )

(3.18) - | 6(t) = exp(—t’)

mo-almost everywhere

Notice that, by Lemma 3.4, the majorizing measure # of the convolutlon in
question is absolutely continuous with respect to ¢. Since, by Lemma 2.2 in
[10], O¢at(s), we have a representation

M8

(3.19) ¢ =

J

M,

J

1
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where M;eW, (j=1,2,..) and s(M,) < (1, c0). Observe that
0, M, =M,, 51*00Mj <é,+0, (O* ,M)OIn<n+ocllny
(i=1,2,..) Setting
Ay =(01%o M) +(8,%, M)y

we infer that the measure A, is absolutely continuous with respect to g, and the
remaining measures 4; (j = 2, 3, ...) are absolutely continuous with respect to
0+ 0. Since, by (3.8), k(6,0 M;, ) < oo for j = 1, 2, ..., we conclude that the
measure 4, 0 M, is absolutely continuous with respect to ¢ and the measures
0,0M; (j=2,3,...) are absolutely continuous with respect to 6, +¢. Hence
and from (3.19) it follows that 4, o ¢ # J, and the measure J, o ¢ is absolutely
continuous with respect to J, +o¢. In other words, we have the equality

§,00 =08, +(1—c)o, .

where ce[0, 1) and the probability measure ¢ is absolutely continuous with
respect to the Lebesgue measure on [0, ). By the definition of the weak
characteristic function ([10], p. 82), 4(t) is continuous. By (3.18) the last equality
can be written in terms of the weak characteristic functions as follows:

Qt)exp(—1t?) = cQ(t)+(1—c)d ()

my-almost everywhere. Denoting by we(0, o] the only solution of the
equation exp(—t?) = ¢ we have the formula

Q1) = (1—0)4()(exp(— 7)) —c) ™

my-almost everywhere on [0, w)u(w, c0). Obviously, the right-hand side of the
above formula is continuous on [0, w)u(w, c0) and can be taken as a required
version of the kernel Q, which completes the proof.

From now on it will be tacitly assumed that the kernel Q corresponding to
a K-majorizable convolution has at most one discontinuity point. We shall see
that K-majorizable convolutions have many properties similar to those for
regular ones. In particular, from the basic theorem on weak convergence ([1],
Theorem 25.7) we get the following statement: ‘

LemMA 3.9. For every K-majorizable convolution and u,, ue P with at(y)
< {0} the weak convergence p,— p yields the convergence fi, — ji uniform on
every compact subset of [0, co).

Applying the above lemma to relation (1.1) and using (1.8) and Lemma 3.7
we get the following '

COROLLARY 3.3. For K-majorizable convolutions the relation T(c,)87" — 7
for some norming constants c,€(0, o) yields Q(c,t)" — exp(—t*) uniformly on
every compact subset of [0, o).
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LEMMA 3.10. For every K-majorizable convolution there exists a number
ve(0, o) such that Q(t) <1 for te(0, v).

Proof. Contrary to this let us suppose that Q(b,) =1 for a sequence
b,€(0, o) tending to 0. Let c, be a sequence of norming constants in (1.1). By
Lemmas 2.6 and 2.7 in [10] we may assume without loss of generality that the
sequence c, is monotone non-increasing, ¢, > b, and c¢,4,/c,— 1 as n— oo.
Consequently, for any n there exists an index k, such that ¢, ., <b, <c,,.
Setting d, = b, /c, we have d, — 1 as n — co. Further, by Corollary 3.3, Q(c,?)"
— exp(—1t*) uniformly on every compact subset of [0, c0). Thus

1=Q@b) =, d)"—>el,
which gives a contradiction. This proves the lemma.

Starting from Corollamcs 3.2 and 3.3 and Lemma 3.10 and applying the
same arguments as used in [8], Theorem 7, for regular convolutions we get the
following statement:

CoROLLARY 3.4. For K-majorizable convolutions with the characteristic
exponent k the kernel Q fulfils the condition
. 1— Q(tx)
e

K

uniformly on every compact subset of [0, o).

LemMMmA 3.11. Let o be a K-majorizable convblution. Suppbse that u, u,
eP,(), p=p" n=1,2,..) and nu,—0 on every half-line [b, ) with
be(0, ). Then peGauss (o).

Proof. Using the same arguments as in the proving of Lemma 1.3 we get

(3:20) lim k,(1— i, (1) = —log A(t)

for a subsequence k, < k, < ... my-almost everywhere. If fi(t) =1 my-almost
everywhere, then y = J, and, consequently, 4 € Gauss (0). In the remaining case
there exists a number t,e(0, o) such that equality (3.20) holds for ¢t = to and

c= —to“logi(ty)e(0, o). Setting
_ 1-Q0x) . '
u(t, b) = sup {’——I—Q(x) t: xe(0, b)}

we have, by Corollary 3.4,

lim u(, b) =

b—0
Moreover, for every be(0, )
leal(1 = i, (0) — et < wletg *, bty Yo (1— i, (Eo)) + 21 + £ ™)y ([, 00)),
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which, by (3.20), yields fi(f) = exp(—ct*) m,-almost everywhere as n — oo and
b —0. Thus u = T(c'/)y, which completes the proof.

For regular convolutions the following statement is an immediate con-
sequence of the Lévy—Khinchin representation of P_ (o) given in [8], The-
orem 13. :

LeEMMA 3.12. Let o be a K-majorizable convolution. If pe P (o) and D(o, u)
NPoiss (0) = {J,}, then pe Gauss (o).

Proof. We argue indirectly. Suppose that ueP_(o)\Gauss (o) and
(3.21) D(o, p)nPoiss (o) = {d,}.

Put p = pu,", where p,eP_ (o) n=1,2,..). By Lemmas 1.1 and 3.11 we
conclude that there exist a number be(0, c0), a sequence k, <k, <... and
a measure M e U, which does not vamsh identically and k, l‘k,.l [b oo) - M.
Using the same arguments as in the proving of Lemma 1.3 we may assume that
formula (3.20) is true for the same subsequence k, < k, < ... Consequently,
setting

M, = k,m,|[b, ©0) and N, =k, |Q©,b),
we have n(M,) » n(M) # 6, and

(M, (On(N,) (1) = exp k, (i, (O)—1) - i(z)
mg-almost everywhere, which yields the relation

n(M,)on(N,) - .

Observing that, by Corollary 2;3 in [13], the sequence n(N,,) is conditionally
compact and denoting by A its cluster point we get the equality n(M)o 1 = .
Consequently, n(M)eD(o, p), which contradicts (3.21). The lemma is thus
proved.

‘LEMMA 3.13. For K-majorizable convolut:ons the equality I(o)nPoiss (o)
= {d,} is true.

"Proof. Suppoée the contrary. Then we can find a measure Me W, such
that n(M) e I(o). Let n be a majorizing measure for the convolution in question.
By (3.9) there exists a positive number g fulfilling the condition

(3.22) k(T(g)n, M°?) < oo.

Since, by Lemma 3.4, the measure # is equivalent to the Lebesgue measure on
a half-line [u, oo) with u = 0, we can find an interval 4 = [a, b] fulfilling the
conditions a > 1, ga > maxs(M) and n|AeW,. Setting N = T(q)(nlA) we
have NeW_,

(3.23) s(M)ns(N) = @
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and
(3.29) Mx_N =N.

Note that, by (3.1), k(N, T(q)n) = k(n|4, n) <1, which, by (3.2) and (3.22)
yields

(3.25) k(N, M°2) < .

Since s(y|A) < A = (1, ), we have, by (3.1) and Lemma 3.3,
| k(NOmn, T(g)n) = k(1 4)0n, n) < o,

which, by (3.22), yields

(3:26) k(NCn, M°?) < oo.

Further, by (3.24),

(M# N)+(M=_N)Jn=N+N[On
and
(N#*, N} +(Nx,, N)Eln 2(N+N[n),

which, by (3.2), (3.8), (3.25) and (3.26), yield the inequalities

(3.27) k(MoN, M°%) < oo
and
(3.28) ' k(N°3, M°?) < 0.

From (3.4) and (3.27) we get
(3.29) k(M°?0N, M°?) < .

Similarly, by (3.4) and (3.28), k(N°3, M°?0 N) < co, which together with (3.2)
and (3.29) yields
(3.30) , K(N°3, M°%) < 0.

It is cleaf by (3.23), (3.25), (3.27), (3.29) and (3.30), that setting Q = &N,
where ¢ is a sufficiently small positive number we get a measure belonging to
W, and fulfilling the conditions

(3.31) s(M)ns(Q) =
(3.32) - 2MoQ+2Q0 < M*?
and '

(3.33) 3M°?20Q+0Q°3 < M°3.
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Put R = M —Q. We shall prove the inequality R°* > 0 for all k > 2. First
observe that, by (3.32) and (3.33),
R?2=M?-2Mo0Q+Q°2>0

and .
R°3 = M**—-3M°20Q+3Mo0Q°%2—-0Q°3 > 0.

For the remaining exponents our assertion is an immediate consequence of the
equalities R°2" = (R°2)°" and R°®"*3) = (R°%)°*"o0R°3 (n = 1, 2, ...). Further, by
(3.32),

R+271R2 = M—Q+2"'M°2—MoQ+2710°% > 0.

Hence the formula

Rok
v—e"(é +R+2R°2+Z )

with r = R([O, oo)) deﬁnes a probability measure. Moreover, it is easy to check
the equality 7(Q)ov = n(M). Consequently, n(Q)eD(o, n(M)). Since, by (2.4)
and Theorem 2.1, D(o, n(M)) = P (o), we conclude, by Lemma 2.2, that the
inclusion s(Q) < s(M) holds. But this contradicts (3.31). The lemma is thus
proved.

We are now in a pdsition to prove the main results of this section. The
following statements are an immediate consequence of (2.4) and Lemmas 3.12
and 3.13.

THEOREM 3.1. For K-majorizable convolutions the inclusion I(o) € Gauss (0)
is true.

THEOREM 3.2. Suppose that a K-majorizable convolution does not have the
Cramér property. Then 1(0) = {J,}.

Since the convolutions discussed in Examples 2.1-2.4 and Corollary 3.1
fulfil the conditions of Theorem 3.2, we have the following result:

COROLLARY 3.5. For Kendall convolutions with n=1,2,..., (1, p)-con-
volutions with pe (0, 1), (2, p)-convolutions with pe(2, c0) and- Kucharczak
convolutions with pe(0, 1), d, is the only anti-irreducible measure.
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