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Abstract. We elaborate on an interesting idea of Hugo Steinhaus 
from 1949 concerning the St. Petersburg paradox. 

1. Isltrod~etion. Peter tosses a fair coin until it first lands heads and pays 
Paul 2k ducats if this happens on the kfi toss, k = 1 ,  2, . . . What is the fair price 
for Paul to pay to Peter for the game? It is an infinite number of ducats but, as 
Nicolaus Bernoulli wrote, "... there ought not to exist any even halfway 
sensible man who would not sell his chance for forty ducats." This is the St. 
Petersburg paradox('). If X denotes Paul's gain in the game, then 

and the last 280 years have produced an amazingly large number of ideas for 
replacing E(X) = m by something more reasonable as the price of a single 
game. Among a number of recent reviews of the rich history of the problem we 
mention Jorland [8] and Dutka [4]. Further historical details will be discussed 
in the introduction and a partially annotated bibliography of our forthcoming 
(mathematical) monograph [3]. 

(I) A variant of the problem, the same reward system for obtaining the first six on a fair die, 
was f i s t  proposed by the same Nicolaus Bernoulli (1687-1759), nephew of both the famous 
brothers Jacob (1654-1705) and Johannes (166772748) Bernoulli, in a letter of September 9, 1713, 
to de Montmort, and was published on pp. 401-402 in [9]. The above formulation, with the names 
of the people involved but with Paul receiving 2k-1 ducats with probability 2-k  instead of 2k 
ducats, k = 1, 2,.  .., was born in a correspondence between Nicolaus Bernoulli and Gabriel 
Cramer (1704-1752) in the 1720's. This latter form was used by Daniel Bernoulli (170&1782), son 
of Johanna, whose discussion in [l] made the problem widely known. It was christened the St. 
Petersburg problem by d'Alembert (1717-1783) in 1768. Following W. Feller (1906-1970), we have 
doubled Paul's gain and have taken the associated liberty of doubling all the corresponding figures 
in all the citations here and below; for instance, Nicolaus originally caid "twenty" and not "forty". 
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Feller [S] considers a sequence of independent St. Petersburg games, in 
which the random variables X,, X,, . . . denote Paul's gains in the first, second, 
.. . plays, each distributed as X as shown in (1.11, and proves that 

where S ,  : = X ,  + . . . + X, denotes Paul's total gain in n games, n E N ,  Log 
denotes logarithm to the base 2, here and in what follows, and 5 denotes 
convergence in probability. The price of n Log n ducats for n games, or Log n 
ducats per game if n games are played, is '"fair" in the sense of the law of large 
numbers in (1.2). The result found its way into Feller's classical book [6] and 
its later editions, where he declares that ". . . the modern student will hardly 
understand the mysterious discussions of this 'paradox'." 

Of course, Feller [ S ] ,  [6] himself was well aware of "unfair 'fair' games", 
and there is more to the story. A complete asymptotic distributional theory, 
non-standard in nature, will be presented in [3]. Having compiIed most of 
a partially annotated historical bibliography for this monograph, presently 
containing more than 340 entries, one of us came across some old Math- 
ematical Reviews material on a compact disk and, as a fmal check, ran 
a search. This turned up Feller's review [7], from 1951, of a small note of 
Steinhaus [lo]. Help by friends Jan Mielniczuk and Jacek Koronacki then 
produced a copy of the note directly from Poland, and it was easy to realize 
that chance (or providence) has presented us with a small, but true pearl. 
Steinhaus' note is difficult to find, it is not included in his Selected Papers 
published in 1985 in Warsaw. The later editions of Feller [6] do not refer to it 
even though he reviewed the note himself. The aim of the present paper is to 
pay tribute to the memory of a prominent mathematician, one of the leading 
figures of the Lwow school of mathematics and the founder of the Wroclaw 
school of probability, by elaborating on an interesting idea of his, the content 
of his short note. 

The heart of the St. Petersburg paradox is the non-existence of a fixed 
number, such as a finite expectation, which represents the fair "entrance fee" for 
a single St. Petersburg game. Steinhaus [lo], clearly motivated by Feller [5], 
attempts to "resolve" this paradox, for a sequence of games, by showing that it 
is possible to "fairly" approximate the sequence of Paul's potential winnings 
X,, X,, . . . by a suitable sequence of deterministic entrance fees x,, x,, . . . The 
latter is what we call the Steinhaus sequence in the next section. The idea is 
distinctly different from Feller's. The "Steinhaus sums" s (n) = x, + . . . + x, are 
then the deterministic analogues of Paul's winnings S ,  = X, + . . . + X,, n E N,  
in a sequence of independent St. Petersburg games. These sums are investigated 
in Section 3. The resulting "Steinhaus games" are compared to the original St. 
Petersburg games in Section 4. Some exact calculations are presented in the 
last section, where we also delineate the place of the Sreinhaus resolution in our 
asymptotic theory. 
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2. The Steinhaus sequence. After describing the game, Steinhaus 1101 notes 
that the classical rule, which determines the fair entrance fee as E (XI, becomes 
illusory for this game since E(X) = co. Then, referring to Feller 151, he 
continues as follows ('1: 

Feller has analyzed this paradox by going back to the principle 
which justifies the rule in ordinary games, where E(X) is finite. The 
"fair" fee has the property of balancing gains and losses if the game is 
repeated indefinitely. To speak more exactly, the net gain of a partner 
after n games has to be small in comparison with n, and the probability 
of its being so has to approach 1 as n increases indefinitely. This 
principle can be satisfied by a constant fec, equal to E(X), in most 
popular games. If, however, E [ X )  is infinite, as in the Petersburg game, 
it can be stltisficd only by a variable fee c, for the nth repetition of the 
game. The determination of c, according to the principle quoted is an 
application of a sort of weak law of large numbers. 

Thus, to solve the paradox, we must consider not an individual 
game but a sequence of games. This point of view once being adopted, 
we can find another solution, based on a sort of strong law of large 
numbers. 

While the c, here refers to Feller's average price c, = Log n per game, Steinhaus 
generates bis deterministic sequence x,, x,, .. . of entrance fees as follows: 
Begin with an alternating sequence of twos(3) and blank spaces, 

Fill in every second blank space with a four, 

then every remaining second blank with an eight, 

and so on. As Steinhaus notes, the resulting sequence 

has 2's with frequency 1/2, has 4's with frequency 1/4, and in general has 2k's 
with frequency 2-k for every  EN. 

More precisely, we note that 

[') Here and in other citations in the sequel, we have also taken the liberty of smoothing the 
English a bit; the original uses the phrases weak and strong law of great numbers, for example. Also, 
we adapted his text to the classical language that we use: Steinhaus (1887- 1972) has B = Banker 
for our Peter and A for Paul the gambler, has a, for c,, and he uses pennies instead of ducats. 

(3) The numbers in Steinhaus' sequence are also doubled here to conform to Feller's practice 
of doubling the payoffs in the classical formulation of the St. Petersburg game. 
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since the value x j  = 2k occurs when j = 2k-1  + 12k, I = 0,1, . . . , and hence the 
number of j's in question is the number of 1's for which 

3 + I < n/zk  
or, what is the same, 

1 + 1  6 r1/2~++, 1 = 0 ,  1, ... 

Here and in what follows, 

LyJ= m a x ( m ~ 2 :  m < y), ry1= m i n { m ~ ~ :  m 2 y ) ,  

where Z = (.. . , -2, - 1, 0, 1 ,  2, ...). Thus, for the constants 

the proportion 

which clearly converges to 2Lk as n 4 coy for every  EN. 
Feller's weak law in (1.2) does not hold strongly or with probability 1. This 

was later noticed by Chow and Robbins [2]. Hence Steinhaus' mention of 
a strong law might appear strange at a first reading. While he might have 
anticipated Chow and Robbins' observation, for which there is no evidence, it 
was not the strong form of Feller's law that he had in mind. Rather, it was an 
analogue of the Glivenko-Cantelli strong law for sample distribution functions. 
Indeed, setting 

for the nth "empirical distribution function" of Steinhaus' sequence, the 
equation in (2.2) implies that, for x 2 2, 

- U o a x J l l n  U o g x J l  ll-(f)U.ogxJ 
IimF,(x)= lim - -+- = C - = -  

1 
= 1 - ----- 

n - r m  k = f  n 2k 2 k = I  2k 2 1-1 2 2 LCogxJ ' 
n+ m 

In other words, setting 

for the distribution function for a single game, the formula itself coming easily 
from (1.1), it actually folIows that 
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This is what Steinhaus informally describes. His interpretation (somewhat 
adjusted) is: 

... fixing x, as the entrance fee for the nth repetition of the 
Petersburg game, we can predict with probability 1 that the amounts 
X,, paid by Peter to Paul will yield a sequence with (elements having) 
the same distribution function as the (limiting empirical distribution 
function of the) sequence {x,}f of fees paid in advance by Paul to 
Peter. Such an equality justifies calling the game fair in a new sense of 
the word. 

This is the content of Hugo Steinhaus' small note, consisting of sixty-six 
short lines, which he concludes by the following paragraph: 

When asked to estimate the constant fee he would like to pay for 
the Petersburg game, the average nlan names in most cases an amount 
less than 20 ducats. The reason is his taking into account only 20 t m s  
of the series E (X) = I,"=, 2' (1/25 = 1 + 1 + . . . - co at most, as the 
probability of the game extending beyond the 2OCh trial is less than 
1/1000000; his disbelief in such extraordinary occurrences is scarcely 
influenced by the rich reward promised by Peter if such a case wouId 
really happen. The same man would probably not hesitate to repeat 
the game indefiitely, his fees being determined by the sequence 
{ X ~ ) ? = ~ ,  because he would realize that he pays large fees very rarely, as 
rarely as he wins, in the long run, amounts that are equal to such fees. 

The aim of the present note is to elaborate further on the Steinhaus 
resolution. Among other tbings, we shall show that 

1/2n < sup (x) - F (x)l < l /n ,  n E N .  
XER 

First, however, the focus of attention will be on Steinhaus sums, the properties 
of which are even more interesting. 

3. The Steinhaus sums. In view of Fellerls law of large numbers in (1.2), the 
first question that arises for the Steinhaus sums s(n) = x ,  + . .. +x,, n~ N, is 
whether they satisfy the "Feller property" 

s (4 lim ------ - - 1. .,, n Logn 

This turns out to be true and, moreover, the s(n) exhibit second order asymp- 
totics comparable to what is shown for S, in [3], mentioned in Section 5 below, 
but with greater precision: We shall explicitly describe a function g defined on 
[1/2, 11, with range (0, 21, such that s (n}/n = 5 (yJ +Log n for all n EN, where 

is an indicator of the position of n between two consecutive powers of 2, so that 
1/2 < y, < 1 for all  EN. 



162 S. Csorgo and G. Simons  

The equation s (n)/n- Log n = < (y,), proved in Theorem 3.3 below, ob- 
viously implies (3.1), and it shows that s (n)/n - Log n behaves periodically, with 
period length one, in the variable Log n, n E N. Before establishing this 
equation, we begin with a definition of the function <, and describe its 
properties. Define 

where the E~'s, zeros and ones, are the binary digits of y in the dyadic expansion 

A graph of t(-)  appears in Figure 1. 

Fig. 1. The graph of ((7), 1/2 < Y < 1 

To avoid ambiguity with dyadic rationals, affecting the value of c (y ) ,  we 
require an infinite number of the ELS to be zero, in which case (3.4) is said to be 
of standard form. Otherwise, it is said to be of non-standard form. Thus, 

(E,,,& )=(O, 1 , 1 , 0 , 0 , 0 , . . ' )  

and (0, 1, 0, 1, 1, 1, .. .) give rise to the standard and non-standard forms, 
respectively, for y = 3/4. Each dyadic rational 7 in (1/2, 11 has both forms, and, 
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consequently, contributes a point of discontinuity to <(y) ,  the only discon- 
tinuities. (There is no problem at y = 1/2 since all discontinuities occur from 
the left side.) For any 1/2 < y < 1,  we have E* = 0 and e ,  = 1,  and ( 1 ,  0 ,  0, . . .) 
is the standard-form representation of y = 1. 

THEOREM 3.1. The function ((-), de$ned in (3.3), 
(i) assumes the value 2 at y = 1/2 and y = 1; 

(ii) elsewhere, assumes the values 15 (7): 112 < y < 1) = (0, 2), so that { [ (y ) :  
1/2 < y < I} = (0,2]; 

(iii) is right-continuous; 
(iv) is left-continuous except for the dyadic rationals greater than 1/2; 
[v) has upward jumps only, for the dyadic rationals, of size 2 = 2/1 at y = 1, 

of size 2/3 at y = 3/4, of size 2/5 and 2/7 at y = 5/8 and 7/8, respectively, of sizes 
2/9,2/11, and 2/13, at y = 9/16, 11/16, and 13/16, respectively, etc. Thus ((-1 has 
unbounded uariations even locally. 

Both in the present and the next section, the proofs are deferred to the end 
of the section. 

We shall now describe two different formulae for the Steinhaus sums s (n). 
The first is a direct consequence of (2.1) and takes the form 

The second depends on the binary digits, zeros and ones, in the dyadic 
expansion of n itself, written as 

where, of course, a, = 0 for r > LLog nJ. 

THEOREM 3.2. In terms of the coeficients a, appearing in {3.6), 

A simple corollary to Theorem 3.2 is the "doubling reIationshipW: 

(3.7) s (2n)/2n - Log 2n = s (n)/n - Log n,  n E N .  

This is because, by setting bo = 0 and bj = a j - ,  , j E N, Theorem 3.2 gives 

so that 

s (2n) = 2s (n) + 2n for every n E N. 
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Another doubling relationship appears in (4.4) below. The present doubling 
relationship is at the heart of the main result in this section. 

THEOREM 3.3. For every  EN, 

where y, and 5(.f are defined in (3.2) and (3.3), respectively. 

Proof  of Theorem 3.1. (i) This can easily be shown by direct 
evaluations. Standard forms of the dyadic expansions must be used for y = 1/2 
and 1. 

(ii) Consider any y ~(1 /2 ,  1). Thus, E, = 0 and c, = 1 in (3.4) and 
Logy > - 1, so that 

and hence 

This means that ( ( y )  < 2 on (1/2, 1). 
To show { ( y )  > 0 on (1/2, I), it is enough to verify that 

since Logy < 0 for such y. To this end, it is convenient to introduce a new 
function u] (.) defined for all points ( E ~ ,  c3, . . .) E (0, 1) m, with c0 G 0 and E ,  = 1 : 

Observe that 

whenever (3.4) is of standard form. Also, note that Q (1, 1, . . .) = 2. Thus 
inequality (3.8) will be established if we show that the function ? ( a )  is 
non-decreasing in each of its components on its whole domain (0,  1)". To this 
end, let ( E , ,  c,, . . .) E (0, 1 J m  and (z,, T,, . . .) E (0, 1)" have common corn- 
ponents everywhere except for an index I > 2, where &, = 0 and r, = 1. It is 
enough to show that q (E,, E,, . . .) < q (T,, r,, . . .). By using the formula in (3.9), 
this holds if and only if 
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which holds if and only if 

which holds if and only if 

But 

for every 1 2 2. (Since this inequality is strict for 1 8 3, the function q ( 7 )  is 
strictly increasing in each of the lfh components whenever 1 2 3; and likewise 
for I = 2 except at (0, 1,  1, 1, . . .), curresponding to y = 3/4.) This completes 
the proof that c(y) > 0 on (1/2, 1). 

It remains to show that the range of t ( y )  on (1/2, 1) is the entire interval 
(0, 2). This requires some knowledge of parts (iii), (iv) and (v). Briefly, the 
function {(-) makes its way from the value 2 at y = 1/2 to O +  at y = 1 - 
interrupted by upward (never downward) jumping discontinuities at the dyadic 
rationals, which cause some values of the interval (0,2) to be visited more than 
once; no values in (0, 2) can be skipped. The details are omitted. 

(iii)-(v) The function q (-), defined in (3.9), is also relevant for the proofs of 
these parts. 

The issue of continuity is this: Let y be a fixed point in [1/2, 11 with 
standard dyadic expansion defined by (E,, E , ,  . . .), and suppose 6, with standard 
dyadic expansion defined by (z,, z,, .. .), approaches y within [1/2, 11. If the 
convergence to y is from the right, then z, eventually assumes the value of 
E ~ ,  k 2 2, so that q(zz, z ~ ,  . . .) converges to V ( E ~ ,  E ~ ,  . . .). From this it easily 
follows that (6) converges to 5 (y), thereby establishing the right-continuity 
asserted in part (iii). The same kind of reasoning applies to points 6 converging 
to y from the left when y is not a dyadic rational. This explains part (iv). 

But when S approaches a dyadic rational y from the left, the stan- 
dard-form binary digits zk approach the binary digits of y that are in the 
non-standard form, not in the standard one. For instance, when y = 3/4, and 
6 approaches y from the left, then 

This produces an upward jump at y = 3/4 of size 
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as asserted in part (v) of the theorem. 

To conclude: The proofs of (iii) and (iv), as described above, are 
straightforward. The proof of (v) has been indicated. While the remaining 
details for (v) are also straightforward and are similar in kind, they are 
somewhat tedious and will not be given. H 

Proof  of Theorem 3.2. From (3.6), 

where the first sum is an integer, and the bracketed quantity is a number in the 
interval [2-l, 1 -2pk] or in the interval [2-', 3.2-I  -2-k], according as 
a , - ,  = 0 or 1. Hence 

Thus (3.5) becomes 

as asserted. H 

Proof  of Theorem 3.3. The definition of the function 5 (.), given in (3.3), 
is described in terms of the binary digits E, of the dyadic expansion of y shown 
in (3.4). Naturally, the values these digits assume when y = y, depend on n. The 
dependence is linked to the values of the binary digits a, in the dyadic 
expansion of n appearing in (3.6). The precise relationship must be worked out: 
BY (3.21, 

(3.11) n = 2 b g n 1  yn and Log n = b o g  nl+ Log 7,. 

With (3.6), we have 

Thus, 

(3.12) 
a,o,,-k for k = O , l ,  ..., [Lognl, 

Ek ( 4  = 
for k > [Log nl. 
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Then, by (3.6) and Theorem 3.2, 
L w n l  b g n l  

s(n)-(mognl+2)n = C ( r -bogn l ) a ,Z  = - kumogn7-k2Logn1-k 
r = O  k - 0  

k = O  

Combined with (3.11), this yields 

3 ($ -- Logn = 2-- 
n k = O  

Log Y,, 

which is ( ( y , ) ,  in accordance with the definition given in (3.3). H 

4. Steinhaus games. Suppose that, instead of a St. Petersburg game, Paul 
were offered a chance to play a "Steinhaus game", a game with a payoff 
dictated by the empirical distribution function Fn7 appearing in (2.3), based 
upon the first n elements of the Steinhaus sequence. How attractive would this 
be to Paul? 

The previous section provides evidence of what Paul could expect to get 
from a single play of such a game, namely the amount s(n)/n, a little bit more 
than Log n. This competes with an infinite expectation and, therefore, appears 
to be less attractive than the St. Petersburg game. This is so. But this is not the 
only basis upon which Paul should prefer the St. Petersburg game: The 
amount X that Paul earns is stochastically larger under the St. Petersburg 
game, i.e. 

necessarily a strict inequality for some x, where Fn( . )  and F ( . )  are the 
distribution functions for X, described in (2.3) and (2.4), respectively, for the 
Steinhaus and St. Petersburg games, and p,, denotes "probability" for the 
Steinhaus game. This follows directly from 

THEOREM 4.1. FOP every k E N ,  

1 
P { X > 2 k j = -  and 

2k 
Thus 

From this, we obtain a formula for the Kolmogorov distance, justify the 
bounds described in (2.5), and obtain a "doubling relationship" parallel to (3.7). 

THEOREM 4.2. For every  EN, . 

(4.2) pa sup IF,, (x) - F (x) = max 
XER 
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Hence 

(4.3) 

and 

1 
3 G n sup lFn (x) - F ($1 < 1 

XER 

(4.4) ZnsupjF",,(x)-F(x)l = nsup lF,(x)-F (x)l .  
XER XER 

This last doubling relationship in (4.4) implies that the expression 
a sup (IF, ( x )  - F (x)] : x E R) is a function of y,. More specifically, we have the 
following analogue of Theorem 3.3: 

THWREM 4.3. Far every  EN, 

(4.5) 

where 

and where E ~ ,  E ~ ,  E ~ ,  . . . are the binary digits of y in the dyadic expansion shown 
in (3.4), and y, is defined in (3.2). 

A graph of ((.) appears in Figure 2. 

O 0.55 0.60 0.65 0.70 0.75 0.00 0.85 0.90 0.95 1.00 

Fig. 1. The graph 01 i(;'), l j 2  7 < 1 
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P roof  of Theorem 4.1. Clearly, by (1.1), 

while 

according to (2.1). In turn, with (3.10), the latter sum becomes 

So the formula stated for Pn{X > 2') also follows. Thus, by (3.6), 

and this gives (4.1). 

P roo f  of T h e  or  em 4.2. Equation (4.3 f~llows immediately from (4.1). 
A maximum is attainable on account of the fact that a, = 0 for r > LLog nj; 
cf. (3.6). This implies that the quantity within the brackets on the right side of 
(4.2) decreases as k increases, provided that k is large enough. 

In turn, (4.3) easily follows from (4.2): The middle term in (4.3) is bounded 
below by a,- ,/2 for every k E N, and hence bounded below by 1/2. (Some 
a,-, = 1, on account of (3.6).) This lower bound is attainable; equality holds 
when n is a power of 2. The inequality on the right side of (4.3) arises from the 
fact that 

The doubling relationship in (4.4) also follows from (4.2): As in the 
argument for (3.7), the left side of (4.4) is equal to 

which, by using (4.2) once more, is equal to the right side of (4.4). 

P roo f  of Theorem 4.3. To establish the claimed equation, it must be 
shown that the right sides of (4.2) and (4.5) are equa1. Let E,  (n), E, (n), ~ , ( n ) ,  . . . 
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denote the binary digits of y,. The key fact is (3.12), yielding 

which is the right side of (4.2). EI 

5. The Feller and the Steinhaus resolutions. The Feller and the Steinhaus 
resolutions require Paul to pay n Log n and s (a) = x, + . . . + x, ducats for his 
winnings S, = X ,  + . . . +X, in n games, respectively. How attractive are these 
to Peter? Since, by Theorem 3.3, s (n) = n [t (y,) + Log n] for each n EN, and 
((y) > 0 for all y ~ [1 /2 ,  11 by part (ii) of Theorem 3.1, he certainly prefers 
Steinhaus' price to the Feller premiums. However, the improvement, n( (y,), is 
slight when y, is near and on the left side of a dyadic rational that is itself close 
to unity. This occurs when n is slightly less than a power of 2. See Figure 1. The 
best improvement, from Peter's point of view, is in the case when n is a power 
of 2 or just passed a power of 2, in which case 5 (y,) = 2 or is very close to 2. 
Table 1 gives the prices that Paul pays, rounded down to integers for the Feller 
prices, and Peter's winning probabilities for n = 1, . . . , 32 under the two 
premium systems. The differences shown in the sixth column are, of course, the 
differences P (S, < s (n)) - P (Sn < n Log n) between the probabilities in the 
fifth and the fourth columns. Our program calculates the probabilities and the 
differences with precise fifth decimals; then we round off the numbers obtained. 
Since the number of vectors of integers to be checked grows very rapidly with 
n, it is difficult to get beyond n = 40. (Note added in proof: Meanwhile we were 
able to get beyond n = 4000. The pattern remains and the asymptotics, noted 
below, take over more closely.) 

So, while his winning probabilities do indeed improve, Peter is unhappy 
even with the largest possible improvement under the Steinhaus plan: It always 
falls short of the "median resolution" when his winning probabilities would be 
about 1/2. 

The bad news that Table 1 conveys to Peter is not limited to small n: 
Based on an infinitely divisible "merging approximation" developed in [3], we 
can describe asymptotic Feller and Steinhaus "winning probabilities" piF) and 
pis), respectively, and a "median price" 

rn (n) : = n [m, (1/2) + Log n] , 
which satisfy 

IP(S, < nLogn)-pkl = O((Log2n)/n), 
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Table 1. Feller and Steinhaus prices and winning probabilities 

as n + CQ. While rn (n) comes close to giving Peter a valid median price, we find 
that for every n~ N 

0.2070 < pkF) < 0.2073, 0.2071 < pis) < 0.4421, 

and 

2.5844 < m,(1/2) <: 2.6050. 

For comparison with the latter, we remind the reader that s (n) = n [c (y,) t 
+Logn], so that 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
2 6 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

But Peter is not satisfied even with this median resolution (in spite of its 
superficially attractive feature: "Why, half the time I win, half the time you 

Ln Log n J 

0 
2 
4 
8 

11 
15 
19 
24 
28 
33 
38 
43 
48 
53 
58 
64 
69 
75 
80 
86 
92 
98 

104 
110 
f16 
122 
128 
134 
140 
147 
153 
160 

s (n) 

2 
6 
8 

16 
18 
22 
24 
40 
42 
46 
48 
56 
58 
62 
64 
96 
98 

102 
104 
112 
114 
118 
120 
136 
138 
142 
144 
152 
154 
158 
160 
224 

Diffcrcnce 

0.5000 
0.5000 
0.3125 
0.4102 
0.3223 
0.2559 
0.1 624 
0.3301 
0.2634 
0.2361 
0.1561 
0.1905 
0.1263 
0.1151 
0.0635 
0.2895 
0.2625 
0.2331 
0.1922 
0.1945 
0.1584 
0.1373 
0.1054 
0.1585 
0.1293 
0.1 129 
0.0870 
0.0940 
0.0705 
0.0582 
0.0374 
0.2676 

P { S ,  < n Log n) 

0.0000 
O.OD00 
0.0000 
0.0625 
0.0313 
0.0625 
0.0762 
0.2265 
0.1246 
0.1190 
0.1420 
0.1333 
0.1498 
0.1397 
0.1514 
0.1600 
0.1483 
0.1543 
0.1 592 
0.1632 
0.1664 
0.1689 
0.1709 
0.1723 
0.1732 
0.1736 
0.1736 
0.1733 
0.1727 
0.1719 
0.1710 
0.1789 

P {S,  < s (MI} 
0 5000 
0.5000 
0.3125 
0.4727 
0.3535 
0.3184 
0.2385 
0.4566 
0.3881 
0.3551 
0.2982 
0.3238 
0.2760 
0.2549 
0.21 50 
0.4494 
0.4108 
0.3874 
0.3514 
0.3577 
0.3248 
0.3063 
0.2763 
0.3308 
0.3025 
0.2865 
0.2606 
0.2672 
0.2432 
0.2301 
0.2084 
0.4465 
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win", Paul would argue), because he cannot win more than m(n) ducats if he 
does, while Paul's winnings may be huge. The details of all this and many 
further considerations will be in (31. 
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