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Abstract. Let {X,, n > 1} be a sequence of independent random
variables uniformly distributed on [0, 1]. Put

XE=inf(X,, X, ..., X,), m>1, and S,= Y X n>1L
m=1

In this paper the convergence rate for distributions of integral
type functionals for sums §,, n = 1, is obtained.

1. Introduction and results. Let {X,, n > 1} be a sequence of independent
random variables uniformly distributed on [0. 1].
Let us put

X&=inf(X,, X,, ..., X, ), m=1, § =5 X:n=l, §,=0
m=0 v
and define
(1) Su=E—Y i X m ) 1<k<n, §,=0

Let {S,(?), te<0, 1>} be a random function defined as follows:

o t—t ~ ~
@  5,0=S8+ _k (Snp+1— S for telty, tyq),  S,(0)=0,
k1 b
where ¢, = Zlei‘l(zz'njlm‘l)_l, 1<k<n, t;=0.

Let f(¢t,x) be a continuous function which has continuous partial
derivatives on the set {0, 1> x R, where R denotes the set of real numbers. We
assume that there exist positive constants ¢ and Q such that

(3) IDf(t, x)] < Q(1+x|") for (¢, x)e<0, 1> xR,

where D denotes either the identity operator I or partial derivative operators
0/0t and 0/0x.
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It is known from Corollary 1 (cf. [7]) that S,,g W as n— oo, where
W = {W(t), te0, 1>} is a Wiener process. Hence, if & is a continuous
functional defined on C,, ;,, where (C ;5. %) is the space of continuous
functions, then (cf. [1], p. 30)

“) @(S,) Bo(W) as n—o w.

The main purpose of this paper is to give the rate of convergence in (4) for
the functional

1
&) O(x) = [f(t, x@®)dt, x(")eCqo,5,
0

where f(t, x) is a function satisfying (3).
We can prove the following

THEOREM 1. Let {S, ,, 1 < k < n},n > 1, be a sequence given by (1). Assume
that @ is a functional defined by (5) and such that the distribution of the random
variable @ (W) satisfies the Lipschitz condition with a positive constant L, i.e.

1
Plx—38 <[ f(t, W))dt < x+8] <2LS
0

for any xeR and 6 > 0. If we define {Z,,n> 1} as

_ n—1 -
(6) Zn = Z f(tk’ Sn.k)(tk-l—l _tk)a
k=0
where S~',,‘k and t,, 0 < k < n, are given in (1) and (2), respectively, then
1 To
(7) sup|P[Z, < x]—-P[o(W)<x]|=0 (_o_gz_ng_s as n— o,
x (logn)*

where log, n = log(logn).

THEOREM 2. Suppose the assumptions of Theorem 1 hold. Then in (7) we can
put ®(S,) instead of Z,, where S, = {S,(t), te<0, 1>} is given by (2).

This type of theorems for independent random variables and for martin-
gales has been obtained in [2] and [14], respectively.

Let ¥, denote the Lévy—Prohorov distance, i.e., for any two measures P and
0 on (C, %)

(P, Q) <e iff PB<Q(G,(B)+e and Q(B) < P(G,(B))+e
for all Be B, where :
G, (B)={x:\/a(x, y) < ¢},

yeB

and @ is the uniform metric on C 15,
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We can prove the following

THEOREM 3. Let P, denote the distribution of S, = {S,(t), t€<0, 1>} in the
space (C, #). Then

@® %, (P,, W) = O((log, n)*/* (log n) =13
as n— oo, where W is the Wiener measure on Cp,1s-

Let us observe that in the case where {X,, n > 1} are ir.vs. uniformly
distributed on [0, 1], Theorem 3 gives the estimate on % (P,, W) stronger
than that in [7] where the relation %.(P,, W)= O((logn)™'/®) has been
obtained. :

2. Proof of the results. In the proofs of Theorems 1-3 we apply some
lemmas given by Dehéuvels ([3], [4], lemmes 3.1-3.3), Grenander ([5], Lem-
ma 3.4) and the Skorokhod representation theorem (see [16] and [17]) which
we state as a lemma in Section 3 for the sake of clarity.

Proof of Theorem 1. Let us write

) =23 mY)"

and set "

(10 Voi = [tes1— 1= E(ny, —tl/ke,,  1<k<n,
Vo=0, nxl1,

and put

k
Un,k= Z Vn.k’ ISkén,
m=1

where the random variables 7,,n>1, are given in Section 3 by (3.1)

(e(n) =n"1).
Observe that V,,, 1 <k < n, are independent random variables (Lem-
ma 3.2) and

(11) EV,,=0, o*V,, =2/ke, *U, =4, o°U,,=1

Let us write
L= Y BVl s>2.
k=1
By Lemma 3.2 we can see that
(12) LY = 0(s!(logn)™2**1) for s> 2,

and putting s = 6, we get
(12) L9 = 0(6!(logn)~32).
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Let us define
m—1

(13) VASES Z St Un,k)(tk+1_tk)x
k=0

where t,, 0 <k < n, are given in (2).

It is easy to notice that by (11) and (12') the sequence {V, ., 1 <k <n},
n 2 1, satisfies the conditions of Theorem 1 (cf. [2]). Applying this theorem to
the sequence of random variables {V,1» 1 <k <n} we have

(14) sup|P[ZP < x]—P[®(W) < x]| = O((log (L&)~ 1) 7 (L®)y14)

= O((log, m)** V2 (log n) = *12),

Now, by the Skorokhod representation result applied to the sequence
Vo=1{Vo1; V2> ..., ¥, ,}, there is a standard Wiener process {W(), te|0, 1)}
together with a sequence of nonnegative independent random variables
2y, Z3, ..., Z, O a new probability space such that

A5)  {Up1, Upss oo, Uy} Z2{W(T), W(Ty), ., W(T)), n1,

k D . . ..
where T, =Zm=1zm, 1<k<n and = means the equivalence in joint
distribution. Moreover,

(16) Ez, = EV}2,

and, for each real number r > 1,

17) Elz'< CE(V, ), 1<k<n,
where

C,=2@/m I (r+1),
and
(18) Vi = W(T)—W(T;_)).

Let us define ZP, n > 1, as follows:

n—1
Z§IZ] = Z f(tk’ Sn,tk)(tk+1 "tk)a n 2 1!
k=0

where
k

S = (-=Zk1 XF— Y i Ye,.

i=1
Write
k
Se=2 X' and U,=Y (5, ,~7,)m L
i=1 m=1 .
Let us estimate
P[ max '§n,tk_ Un,k' = 5,,]:

1<k<n
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where {,, n > 1} is a sequence of positive real numbers decreasing to zero
such that J,c, > o0 as n— 0.
By (3.8) in Lemma 3.2 and simple evaluations, we get

(19) P[ max |Sn e n,k' = 611] = P[ max lgrk_ Ukl n n]
1<€k<n 1€k<n
< P[ max max (S, 2—S, +U,— Uy = §,c¢,]
1€k<n
<P[U,-U,+226,c]1<P[IU,—U,—EU,—U)| = ,c,—3]
. 1 7y4
<E[U,, U,—EU,— U] < C’
(8,¢,—3)* o cn
where C is a positive constant independent of n, and U, is given in (3.4).
If we put 8, = (logn)~%/>, we also have

(20) P[ max |8, —U,. > (logn)~%5] = O((log n)~2%)

1€k<n

T1?

because ¢, ~ (2logn)'/2

Now, observe that from the construction of z;, i > 1, relations (11), (12),
(16), (17) and Kolmogorov’s type inequality, (3. 2) and (3.7) we obtain
(1) P[ max |G| > g(n)] = P[ max |T,—ET) > g(n)]

1<k<n 1<k<n

< [B(T,—ET)*V/g* () = [E( 3. (2,—Ez,)*1/g* ()
m=1
<[ 3 Blea—Ea)*+2( Y Eeu—F2)) Yo" ()
m=1 m=1

<[ Y (Bebor B2 +2( 5 )T 0

m=1

n

<CD* T (EVt @ L) +2( 3 Vi Vo'

m=1

= 0((g*(m)log*n) ™),

where g(n) >0 as n— oo, so that g*(n)log®n — 0 as n— co.
Putting g(n) = (logn)™3/>, we get

(VAN P[ max |T,—t,| = (logn)™%%] = O((log n)'3’5).
1<k<n .
Now, we shall estimate P[|Z®—Z{| > §,].
Let us set ,
() BP=[ sup WO <a,|T,—1l <g(n), max IS, —U,l<3,],
0<1<1+g(n) 1<k<n

11 — PAMS 142
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where
a,= (log,m)?, gm-0, 46,0 asn—->ow®
in such a way that
g*(mlog*n— o0, &,c,~> 0 as n— oo,
It is easy to see that
@3 PNZP-ZP| >4, < PZP-ZP| > 5, BP]

+P[ sup W) = a,]+P[T,—1 > g(n)]

0Ll +g(n)

+P[ max |S,, —U,,|>4,].

1<k<n

It is well known that

24 P[ sup WO Za,]< 4P|:|W(1)|>

0=t<1+yg(n)

a
1 (n)}
8 14+g(n) —a? _ 2 1
S\/z—na—"exp[l_i_g(n)}— 0(((log, m)*"*1ogn) ).

On the other hand, by the mean value theorem, (3) and (19) one can note
that on the set B{" we get

PNZP-Z{ > 6,, BV]

< P["f 7

K=10x

tys Upp+ 0, (Smk nk))( e~ Und (G 1— 1)

i)

n—1 :
P[Q (a )a max ISn T n,kl Z (tk+1_tk) > 571]
k=0

1<€k<n

5 CO%(a)*
= P| max |§ > el -,
I:1<k$n| nioc™ Unal Q(a )a] d7 ¢y

where 0 < 8, < 1, Q, is a positive constant dependlng only on the function f,
and C>0 is 1ndependent of n. :
Hence, using (199421), (23), (24) and putting J, = (logn)~ %> and

g(n) = (logn)~ 35, we obtain
(25) P[|1ZP—Z{P| > (logn)~*°] = O((log, n)**(log n)~*/3).
Now, we are going to estimate P[|Z,—Z?)| > §,], where {Z,, n> 1} is
given by (6).
Observe that
(26) P[ max IS, ,—S,.] > 9d,] = P[ max |S,—S.| > d,c,]-

1€k<n 1<k<n
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Notice that for k > 7,, by definition (3.1), we have
inf(X,, X,,..., X, )<ek)y=1/k forix1,

and in this case

k
IS;—S. )= Y X:i<ke(k)=1 for k>1.

m=t+1
So, we can get

27) P[ max |§,—8,|>6,c,] <P[max Y X%>,c,]
1€k<n 1<kin m=k+1
T >

n

SP[max ) Xki>d,c]< P[ZX*>5,, Cp> Ty > 1]
1il;inm=k+1

because 7, < 74, for k> 1.
Moreover, by Lemmas 3.4 and 3.5, we obtain

P[Z X% >0,¢,1,>n] = Z P[ZX"‘>5,, Cps Ty = K]

m= k=n+1 m=

- P[EX*>5 e,lt, = K] P[t, = k] !

k=n+1 m=

E [("Z‘ X5 e, = k]

< 1 Plr,=k
k=n+1 (0,¢,)F Lo = k]

z (logk)P[t, = k]

(5n n k n+1

1
ot >0 =012,

<
AL

where C is a positive constant independent of n.
Hence, by (26) and (27) we get

& logn
(28) P[ max |[S, ,,,kl > 9 0( ),
[1 <ken = (6 c)?
and putting J, = (logn)~%* and p = 14 we obtain
29) P[ max ]§",k—§n‘rk| > (log n)“2/5] = 0((10g n)—Z/S)_

1<k<n
Let us write

B? = BY [ max [5,,—$§

1<k<n

Sl < 3,1

n,tx
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Observe that on the set B, by (3), (28) and (29), we get
(30) P [lzn_zsl2)l > 5n: BSIZ)]

n=—1 a
<P[Z %(tlﬂ nk+(Sntk

k=1

D+0,.8, .S, )

X (Sn,k Sn rk) tk+ 1 tk)

U,
< P max [5,,-8,.,] > 6,/ (@] = 0 (2@, (ogn)5,c.))

= 0(@b* (log, n)"*/(log n)?'*)

if we put p = 14, a, = (log, n)*/?, and §, = (logn)~2/>.
By (20)22), (24) and (29), (30), we obtain

(31) P[1Z,—Z{?)| > (logn)~**] = O((log, n)"*(logn)~*%).

Hence, by (14), (25) and (31) we get (7), and the proof of Theorem 1 is
completed.

Proof of Theorem 2. Observe that
(32) sup|P[2(S,) <x]— P[‘P(W) x]l < sup |PLP(S,) <x]-P[Z,<x]|
+sup|P[Z x]-P[o(W)< x]|=1,+1,.
The estimation of I, gives Theorem 1.

Moreover, we can write
(33). SUP [P[2(S,) < x]-P[Z,<x]|<P[|2(S,)—-Z,] = 4,]

+supP[x 8, < Z,<x+8]<P[PES)—Z,|=6,]+2I,+25,L

because P[P (W) < x] satisfies the Lipschitz condition with a positive
constant L.

Hence, taking into account the proof of Theorem 1, we see that the proof
of Theorem 2 will be completed if we show that
(34) P[2(S)—Z,| = 6,1 = O((logn)™?).

Now, observe that on the set B = {supo<,<1 S, (t)| < a,}, where {a,} is
as in (22), we have

19(S,)—Z,| I(B) = [ f(¢, S, (1)) dt~ i [ty S5 (v s — 1| 1 (BY)
[¢] k=0

n—1 tr+1

=¥ | (f(& 5.0)—f &, 8,0)de| I(BS)
k=0 1t
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n—1 fp+1 b+ 1 .
<Qoar Y (| (s—t)ds+ | IS, (t)— S, .l dt)
k=0 ik Ix
n—l(t —t )2 1 1 n—1
<Q,a Tht1 K X*, o tooo—1) ) -
0@ (kgo 5 +Cn 112:1:,. 1T kgo( k+1— L)

1 1 Qqaz( 3
<QOag"(z max (tk+1—tk)+"_(X=1k+1)) < 0 n (—+X1>

1<k<n Cn s \2C,

by the definitions of t, and ¢, (cf. (2) and (9)).
Hence

0,6, 3
@ —'Z ; , 513) g X 2 n™n = =
(35) Pll®(S)—-Z, > 4,, B)I < P [ N 2(;} 0

for sufficiently large n such that

O,¢, 3 (logn)'/t°
Qoay 2, Qy(logyny ™
Moreover, for sufficiently large n we can get
PBP)=P[ max sup IS,0)>a,]
Osk<n—1 te(tytic+1)

< P[ max (lgn,kl"‘IX;fH _(k+1)_ll/cn) = an]

1<k<n

< P[ max S, > a,/2]+P[X,+1 > (a,c,)/2]

1<€k<n

< P[ max IUn,kl + lUn,k_gn,rkI +I§n,rk_§n,k| = (1,,/2]

1<k<n
< P[ max |U,,| > a,/2—26,]+P [ max |U,,—8§,.|> 6]
1$k<n_ 1<k<n
+P[ max |S,, 8§, ,1>0,]
1<k<n

< P[ max |W(T)| = a,/2—25,]+2¢c (logn) =5

O<k<n

<P[ sup W) >a,/2-25,]

0<t<1 +g(n)
+P[ max |T,—t] > g(m)]+2c(logn)~5 = O ((log n)~%%)
O0<k<n
by (15), (19)21'), (24) and (29). Hence, using (35), we get (34). Combining this
with (7), (32) and (33) we complete the proof of Theorem 2.

Proof of Theorem 3. Let us define a random function {U, (),
te{0, 1>} as follows:
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t—t
(36) U,0=U,,+—=

7 (Upp+1—U,p)  for telty, tyyy),
k+17 bk

U,0=0 0<k<n—1,n>1,

where U, , and t, are as in the proof of Theorem 1. Let P(V be the distribution
of {U,(@®)} in (C, %.). At first, we show that

(37) o (P, W) = 0((log, n)*/* (log n) ™~ 73).
Let us observe that by (15) and a simple evaluation we obtain
P[ sup |U,0)—-W()>4,]

ESES]

< P[ max sup U, — WO+ max [V, 4] >9,]

0<k€n—1 telti,ti+1) O<ksn—-1
< P[ max |W(T)— W(t)| > 6,/3]
o<k<n

+P[ max sup |W()—W(t)l = 6./3]

0<kEn—1 teltustic+1)
+P[ max |V, ;.4 = 6,/3].
0<ksn
Putting
B, = { max |T—t] < g(n)},
0<k<n’
where g (n) — 0, n — o0, so that g*(n)log® n — oo, by the invariance property of
the Wiener process and the form of {t,, 0 < k < n} we obtain
P[ max |W(7;c)_ W(tk)l = 6n/3> Bn]

0<€k<n

< P[ max sup [W(t)— Wit = 6,/3]

O<k<n tix—gn)St<te+gn)

<P[max ( sup [W(t—0-W@l+ sup [W(t+0— W) > 5,/3]

0<k<n 0<t<g(n) ost<g(n)

<P[2 max |W() > 6,/3] <AP[[W(L)| > 6,/6+/g(m)]
0<t<g(n)
L 86V4(m) [ 5 ]

S 6, P T364(m)

n

where g(n) and §, are such that 5,,/\/;](_71)—> cO as n— .
Moreover, we can get
P[ max sup [WO)-W(t)l > 6,3]

0Sk<n—1 teltiti+1)

=P[ max sup  |W(t,+6)—W(t) > 6,/3]

0€k<sn—1 te{Oyti+1— k)
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<P[ sup |W(@)|>4,/3] <4P[IW(L)| > (5,¢,)/3]

10, 1/c2)

/9],

8 3
< —
\/27[ 5n Cn
where 3, is taken so that d,c, » o0 as n— co.
We can see that, by our Lemma 3.2 and Theorem 10 in [11] (p. 247),

P[ max [Vl >8,3] = P[ max [t —w—1/k] > (,c)/3]

o0gksn—1 1<k<n

(1=P 70— = 1+ kS, c,)/3])

1 1 (kdncn)/3
(-mi(m1) )

n 1 1 (kéncn)/3 n 1 1 (kdncn)/3
~1— — (- ~Y — [(1——
1 e"p[ §k ( k+1) } k§1k+1< k+1)

logn
exp[(6,¢,)/3] _
Hence, using (21) and Lemma 1.2 of [13], we get

.,?C(P,},W):O( max ( 48 x/g(n)exp[_ o ] logn

" Jm 9 36g(n) | exp [(3, c,)/3T

8 3 . 1
ﬁ sc exp [(62 ¢2)/9], g (n), mg;))-

Putting 6, = (log, n)*/>(logn)~*/* and g(n) = (logn)~ %3, we obtain (37).
Using (19) and (28), we get (8).
3. Lemmas. In this section we give some lemmas we needed in the proofs

of Theorems 1-3.
Let {¢(n), n > 1} be a sequence of positive numbers strictly decreasing to

=1
-1

zero. _ .
By {t, = t(e(n)), n > 1} we denote the sequence of random variables such

that

(3.1 1, = inf {m: inf(X, X,, ..., X,) <e(n)},

where {X,, n > 1} is a sequence of ir.vs. ud. on [0, 1].

LemMa 3.1. The sequence {t,, n > 1} increases with probability one and
T,— 00 A.S. as N — 0. .

LemMMa 3.2. The random variables rnﬂ—r,,', n = 1, are independent, and if
| g(n)=n""1, then :
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(32) E(T"+1—T") = 1, GZ(T"+1—T,,) = 2”3 nz 1:
! 1 i r—1
: —t,)27]= Y » 2l
| (3.3) Pltppq—1,) =] n+1(1 n+1> Jor any r>0, n>1
Let us put
n—1 1 n—1 1
34 U, = kgl (Tk+1"tk)E5 U,= kgl (st —‘Ck)k-l—l'
A Then
; (3.5 EU,—logn=0(), EU,—logn=0(1),
(3.6) o*U,—2logn=0(1), ¢*U,—2logn = 0(1),
6D X Bl —wlK ~ % Bl —n) k17 ~ pllogn,
k=1 k=1
(3.8) E(U,~Uy=0(1), o*(U,—Us=0(1),

E(U,—U,—E(U,-U,)" = 0(1),
where b, = O(1) means that the sequence {b,,n > 1} is bounded as n— co.
LemMMmA 3.3. Let U,, U, be given by (3.4). Then
(3.9) -2+U,<8, -8, <U, as, nx=2,

| ~ et

j (3.10) S, ,<8,<8, for melt,_;,1,),

Tn

Tn—-1

where
=Y XF S, =Y X5 nxl, Xf=inf(X,,X,,..., X)), k> 1.
k=1 =1

LEMMA 3.4. If we put Sy, = ZkN=mX,’2‘, then for all p > 1
ES% .. = O(log N —logm).
LEMMA 3.5. If ¢(n) = 1/n, then
(3.11) E((logz,) Iz, > n]) = O (logn).
Proof. By definition (3.1), we have

=]

E(logt)I[t,>n])= Y (logk)P[t,=k]l=n"1 Y (1—n"Y) llogk.
k=n+1 k=n+1
Let us put g=1—n"1 and write A, =("  (logx)q" dx.
By a simple evaluation we get

oo}

q log(n+1) 1 J‘q""l
log(l/q) ~log(1/g) x

n+1 n+1

dx

A= ﬁmqud
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<q"l'og(n+1) J‘ . x_q"log(n+1) q
log(1/g) ~ (n+1)log(1/g) log(l/g) ~ (n+1)log*(1/gq)
nt+1

and so

T AN log(n+1) 1 B
;A,, - (1—n> l:nlog(l+1/(n-—1))+n(n_|_1)10g2(1+1/(n_ 1))] = O(logn)

because log(1/g) = log(1+1/n—1)) = 1/(n—1)+0(1/(n—1)).

Hence, using the integrable type criterion of series convergence, we have
(3.11).

Lemma 3.6 (the Skorokhod representation theorem [14]). Let
Y, Y,, ..., Y, be mutually independent random variables with zero means and
0 Y, =0}, 1 <i<n. Then there exists a sequence of nonnegative, mutually
independent random variables z,, z,, ..., z, with the following properties:

The joint distributions of the rus. Yy, Y,, ..., Y, are identical to the joint
distributions of the rwvs. W(z,), W(z,+z,)~Wl(z,),..., W(z;+ ... +z,)
Wz +...+2,), Bz;=0} and Elz)* < C,E(Y)*, k=1, where C,
=28/ 1r(k+1).
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