ON THE RATE OF CONVERGENCE FOR DISTRIBUTIONS OF INTEGRAL TYPE FUNCTIONALS FOR SUMS OF INFIMA OF INDEPENDENT RANDOM VARIABLES

BY
HALINA HEBDA-GRABOWSKA (LUBLIN)

Abstract. Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of independent random variables uniformly distributed on [0,1]. Put

$$
X_{m}^{*}=\inf \left(X_{1}, X_{2}, \ldots, X_{m}\right), m \geqslant 1, \quad \text { and } \quad S_{n}=\sum_{m=1}^{n} X_{m}^{*}, n \geqslant 1
$$

In this paper the convergence rate for distributions of integral type functionals for sums $S_{n}, n \geqslant 1$, is obtained.

1. Introduction and results. Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of independent random variables uniformly distributed on [0. 1].

Let us put

$$
X_{m}^{*}=\inf \left(X_{1}, X_{2}, \ldots, X_{m}\right), m \geqslant 1, \quad \tilde{S_{n}}=\sum_{m=0}^{n} X_{m}^{*}, n \geqslant 1, \quad \tilde{S}_{0}=0
$$

and define

$$
\begin{equation*}
\tilde{S}_{n, k}=\left(\tilde{S}_{k}-\sum_{i=1}^{k} i^{-1}\right)\left(2 \sum_{m=1}^{n} m^{-1}\right)^{-1 / 2}, 1 \leqslant k \leqslant n, \quad \tilde{S}_{n, 0}=0 . \tag{1}
\end{equation*}
$$

Let $\left\{S_{n}(t), t \in\langle 0,1\rangle\right\}$ be a random function defined as follows:

$$
\begin{equation*}
S_{n}(t)=\tilde{S}_{n, k}+\frac{t-t_{k}}{t_{k+1}-t_{k}}\left(\tilde{S}_{n, k+1}-\tilde{S}_{n, k}\right) \text { for } t \in\left\langle t_{k}, t_{k+1}\right), \quad S_{n}(0)=0 \tag{2}
\end{equation*}
$$

where $t_{k}=\sum_{i=1}^{k} i^{-1}\left(\sum_{m=1}^{n} m^{-1}\right)^{-1}, 1 \leqslant k \leqslant n, t_{0}=0$.
Let $f(t, x)$ be a continuous function which has continuous partial derivatives on the set $\langle 0,1\rangle \times \boldsymbol{R}$, where \boldsymbol{R} denotes the set of real numbers. We assume that there exist positive constants α and Ω such that

$$
\begin{equation*}
|D f(t, x)| \leqslant \Omega\left(1+|x|^{\alpha}\right) \quad \text { for }(t, x) \in\langle 0,1\rangle \times \boldsymbol{R} \tag{3}
\end{equation*}
$$

where D denotes either the identity operator I or partial derivative operators $\partial / \partial t$ and $\partial / \partial x$.

It is known from Corollary 1 (cf. [7]) that $S_{n} \xrightarrow{D} W$ as $n \rightarrow \infty$, where $W=\{W(t), t \in\langle 0,1\rangle\}$ is a Wiener process. Hence, if Φ is a continuous functional defined on $C_{\langle 0,1\rangle}$, where $\left(C_{\langle 0,1\rangle}, \mathscr{B}_{C}\right)$ is the space of continuous functions, then (cf. [1], p. 30)

$$
\begin{equation*}
\Phi\left(S_{n}\right) \xrightarrow{\mathrm{D}} \phi(W) \quad \text { as } n \rightarrow \infty . \tag{4}
\end{equation*}
$$

The main purpose of this paper is to give the rate of convergence in (4) for the functional

$$
\begin{equation*}
\Phi(x)=\int_{0}^{1} f(t, x(t)) d t, \quad x(\cdot) \in C_{\langle 0,1\rangle}, \tag{5}
\end{equation*}
$$

where $f(t, x)$ is a function satisfying (3).
We can prove the following
Theorem 1. Let $\left\{S_{n, k}, 1 \leqslant k \leqslant n\right\}, n \geqslant 1$, be a sequence given by (1). Assume that Φ is a functional defined by (5) and such that the distribution of the random variable $\Phi(W)$ satisfies the Lipschitz condition with a positive constant L, i.e.

$$
P\left[x-\delta \leqslant \int_{0}^{1} f(t, W(t)) d t \leqslant x+\delta\right] \leqslant 2 L \delta
$$

for any $x \in \boldsymbol{R}$ and $\delta>0$. If we define $\left\{Z_{n}, n \geqslant 1\right\}$ as

$$
\begin{equation*}
Z_{n}=\sum_{k=0}^{n-1} f\left(t_{k}, \tilde{S}_{n, k}\right)\left(t_{k+1}-t_{k}\right) \tag{6}
\end{equation*}
$$

where $\tilde{S}_{n, k}$ and $t_{k}, 0 \leqslant k \leqslant n$, are given in (1) and (2), respectively, then

$$
\begin{equation*}
\sup _{x}\left|P\left[Z_{n} \leqslant x\right]-P[\Phi(W) \leqslant x]\right|=O\left(\frac{\left(\log _{2} n\right)^{7 \alpha}}{(\log n)^{2 / 5}}\right) \quad \text { as } n \rightarrow \infty, \tag{7}
\end{equation*}
$$

where $\log _{2} n=\log (\log n)$.
Theorem 2. Suppose the assumptions of Theorem 1 hold. Then in (7) we can put $\Phi\left(S_{n}\right)$ instead of Z_{n}, where $S_{n}=\left\{S_{n}(t), t \in\langle 0,1\rangle\right\}$ is given by (2).

This type of theorems for independent random variables and for martingales has been obtained in [2] and [14], respectively.

Let \mathscr{L}_{C} denote the Lévy-Prohorov distance, i.e., for any two measures P and Q on $\left(C, \mathscr{B}_{C}\right)$

$$
\mathscr{L}_{C}(P, Q)<\varepsilon \quad \text { iff } \quad P(B) \leqslant Q\left(G_{\varepsilon}(B)\right)+\varepsilon \text { and } Q(B) \leqslant P\left(G_{\varepsilon}(B)\right)+\varepsilon
$$

for all $B \in \mathscr{B}$, where

$$
G_{\varepsilon}(B)=\left\{x: \bigvee_{y \in B} \varrho(x, y)<\varepsilon\right\},
$$

and ϱ is the uniform metric on $C_{\langle 0,1\rangle}$.

We can prove the following
Theorem 3. Let P_{n} denote the distribution of $S_{n}=\left\{S_{n}(t), t \in\langle 0,1\rangle\right\}$ in the space (C, \mathscr{B}_{C}). Then

$$
\begin{equation*}
\mathscr{L}_{C}\left(P_{n}, W\right)=O\left(\left(\log _{2} n\right)^{1 / 2}(\log n)^{-1 / 3}\right) \tag{8}
\end{equation*}
$$

as $n \rightarrow \infty$, where W is the Wiener measure on $C_{\langle 0,1\rangle}$.
Let us observe that in the case where $\left\{X_{n}, n \geqslant 1\right\}$ are i.r.vs. uniformly distributed on $[0,1]$, Theorem 3 gives the estimate on $\mathscr{L}_{C}\left(P_{n}, W\right)$ stronger than that in [7] where the relation $\mathscr{L}_{\mathbf{C}}\left(P_{n}, W\right)=O\left((\log n)^{-1 / 8}\right)$ has been obtained.
2. Proof of the results. In the proofs of Theorems 1-3 we apply some lemmas given by Dehéuvels ([3], [4], lemmes 3.1-3.3), Grenander ([5], Lemma 3.4) and the Skorokhod representation theorem (see [16] and [17]) which we state as a lemma in Section 3 for the sake of clarity.

Proof of Theorem 1. Let us write

$$
\begin{equation*}
c_{n}=\left(2 \sum_{m=1}^{n} m^{-1}\right)^{1 / 2} \tag{9}
\end{equation*}
$$

and set

$$
\begin{array}{ll}
V_{n, k}=\left[\tau_{k+1}-\tau_{k}-\mathrm{E}\left(\tau_{k+1}-\tau_{k}\right)\right] / k c_{n}, & 1 \leqslant k \leqslant n, \tag{10}\\
V_{n, 0}=0, & n \geqslant 1,
\end{array}
$$

and put

$$
U_{n, k}=\sum_{m=1}^{k} V_{n, k}, \quad 1 \leqslant k \leqslant n,
$$

where the random variables $\tau_{n}, n \geqslant 1$, are given in Section 3 by (3.1) $\left(\varepsilon(n)=n^{-1}\right)$.

Observe that $V_{n, k}, 1 \leqslant k \leqslant n$, are independent random variables (Lemma 3.2) and

$$
\begin{equation*}
\mathrm{E} V_{n, k}=0, \quad \sigma^{2} V_{n, k}=2 / k c_{n}^{2}, \quad \sigma^{2} U_{n, k}=t_{k}, \quad \sigma^{2} U_{n, n}=1 \tag{11}
\end{equation*}
$$

Let us write

$$
L_{n}^{(s)}=\sum_{k=1}^{n} \mathrm{E}\left|V_{n, k}\right|^{s}, \quad s \geqslant 2
$$

By Lemma 3.2 we can see that

$$
\begin{equation*}
L_{n}^{(s)}=O\left(s!(\log n)^{-s / 2+1}\right) \quad \text { for } s \geqslant 2, \tag{12}
\end{equation*}
$$

and putting $s=6$, we get

$$
\begin{equation*}
L_{n}^{(6)}=O\left(6!(\log n)^{-2}\right) . \tag{12'}
\end{equation*}
$$

Let us define

$$
\begin{equation*}
Z_{n}^{(1)}=\sum_{k=0}^{m-1} f\left(t_{k}, U_{n, k}\right)\left(t_{k+1}-t_{k}\right) \tag{13}
\end{equation*}
$$

where $t_{k}, 0 \leqslant k \leqslant n$, are given in (2).
It is easy to notice that by (11) and (12') the sequence $\left\{V_{n, k}, 1 \leqslant k \leqslant n\right\}$, $n \geqslant 1$, satisfies the conditions of Theorem 1 (cf. [2]). Applying this theorem to the sequence of random variables $\left\{V_{n, k}, 1 \leqslant k \leqslant n\right\}$ we have

$$
\begin{align*}
\sup _{x}\left|P\left[Z_{n}^{(1)} \leqslant x\right]-P[\Phi(W) \leqslant x]\right| & =O\left(\left(\log \left(L_{n}^{(6)}\right)^{-1}\right)^{(\alpha+1) / 2}\left(L_{n}^{(6)}\right)^{1 / 4}\right) \tag{14}\\
& =O\left(\left(\log _{2} n\right)^{(\alpha+1) / 2}(\log n)^{-1 / 2}\right)
\end{align*}
$$

Now, by the Skorokhod representation result applied to the sequence $V_{n}=\left\{V_{n, 1}, V_{n, 2}, \ldots, V_{n, n}\right\}$, there is a standard Wiener process $\{W(t), t \in\langle 0,1\rangle\}$ together with a sequence of nonnegative independent random variables $z_{1}, z_{2}, \ldots, z_{n}$ on a new probability space such that
(15) $\left\{U_{n, 1}, U_{n, 2}, \ldots, U_{n, n}\right\} \stackrel{\mathrm{D}}{=}\left\{W\left(T_{1}\right), W\left(T_{2}\right), \ldots, W\left(T_{n}\right)\right\}, \quad n \geqslant 1$, where $T_{k}=\sum_{m=1}^{k} z_{m}, 1 \leqslant k \leqslant n$, and $\stackrel{\mathrm{D}}{=}$ means the equivalence in joint distribution. Moreover,

$$
\begin{equation*}
\mathrm{E} z_{k}=\mathrm{E} V_{n, k}^{2}, \tag{16}
\end{equation*}
$$

and, for each real number $r \geqslant 1$,

$$
\begin{equation*}
\mathrm{E}\left|z_{k}\right|^{r} \leqslant C_{r} \mathrm{E}\left(V_{n, k}\right)^{2 r}, \quad 1 \leqslant k \leqslant n \tag{17}
\end{equation*}
$$

where

$$
C_{r}=2\left(8 / \pi^{2}\right)^{r-1} \Gamma(r+1)
$$

and

$$
\begin{equation*}
V_{n, k} \stackrel{\mathrm{D}}{=} W\left(T_{k}\right)-W\left(T_{k-1}\right) \tag{18}
\end{equation*}
$$

Let us define $Z_{n}^{(2)}, n \geqslant 1$, as follows:

$$
Z_{n}^{(2)}=\sum_{k=0}^{n-1} f\left(t_{k}, \tilde{S}_{n, \tau_{k}}\right)\left(t_{k+1}-t_{k}\right), \quad n \geqslant 1
$$

where

$$
\tilde{S}_{n, \tau_{k}}=\left(\sum_{i=1}^{\tau_{k}} X_{i}^{*}-\sum_{i=1}^{k} i^{-1}\right) / c_{n}
$$

Write

$$
\tilde{S}_{\tau_{k}}=\sum_{i=1}^{\tau_{k}} X_{i}^{*} \quad \text { and } \quad U_{k}=\sum_{m=1}^{k}\left(\tau_{m+1}-\tau_{m}\right) m^{-1}
$$

Let us estimate

$$
P\left[\max _{1 \leqslant k \leqslant n}\left|\tilde{S}_{n, \tau_{k}}-U_{n, k}\right| \geqslant \delta_{n}\right],
$$

where $\left\{\delta_{n}, n \geqslant 1\right\}$ is a sequence of positive real numbers decreasing to zero such that $\delta_{n} c_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

By (3.8) in Lemma 3.2 and simple evaluations, we get

$$
\begin{align*}
& P\left[\max _{1 \leqslant k \leqslant n}\left|\tilde{S_{n, \tau_{k}}}-U_{n, k}\right| \geqslant \delta_{n}\right]=P\left[\max _{1 \leqslant k \leqslant n}\left|\tilde{S}_{\tau_{k}}-U_{k}\right| \geqslant \delta_{n} c_{n}\right] \tag{19}\\
& \quad \leqslant P\left[\max _{1 \leqslant k \leqslant n} \max \left(\tilde{S}_{\tau_{1}}, 2-\tilde{S}_{\tau_{1}}+U_{k}-U_{k}^{\prime}\right) \geqslant \delta_{n} c_{n}\right] \\
& \quad \leqslant P\left[U_{n}-U_{n}^{\prime}+2 \geqslant \delta_{n} c_{n}\right] \leqslant P\left[\left|U_{n}-U_{n}^{\prime}-\mathrm{E}\left(U_{n}-U_{n}^{\prime}\right)\right| \geqslant \delta_{n} c_{n}-3\right] \\
& \quad \leqslant \frac{\mathrm{E}\left[U_{n}-U_{n}^{\prime}-\mathrm{E}\left(U_{n}-U_{n}^{\prime}\right)\right]^{4}}{\left(\delta_{n} c_{n}-3\right)^{4}} \leqslant \frac{C}{\delta_{n}^{4} c_{n}^{4}},
\end{align*}
$$

where C is a positive constant independent of n, and U_{n}^{\prime} is given in (3.4).
If we put $\delta_{n}=(\log n)^{-2 / 5}$, we also have

$$
\begin{equation*}
P\left[\max _{1 \leqslant k \leqslant n}\left|\tilde{S}_{n, c_{k}}-U_{n, k}\right| \geqslant(\log n)^{-2 / 5}\right]=O\left((\log n)^{-2 / 5}\right) \tag{20}
\end{equation*}
$$

because $c_{n} \sim(2 \log n)^{1 / 2}$.
Now, observe that from the construction of $z_{i}, i \geqslant 1$, relations (11), (12),
(16), (17) and Kolmogorov's type inequality, (3.2) and (3.7) we obtain

$$
\begin{align*}
P\left[\max _{1 \leqslant k \leqslant n}\left|T_{k}-t_{k}\right|\right. & \geqslant g(n)]=P\left[\max _{1 \leqslant k \leqslant n}\left|T_{k}-\mathrm{E} T_{k}\right| \geqslant g(n)\right] \tag{21}\\
& \leqslant\left[\mathrm{E}\left(T_{n}-\mathrm{E} T_{n}\right)^{4}\right] / g^{4}(n)=\left[\mathrm{E}\left(\sum_{m=1}^{n}\left(z_{m}-\mathrm{E} z_{m}\right)\right)^{4}\right] / g^{4}(n) \\
& \leqslant\left[\sum_{m=1}^{n} \mathrm{E}\left(z_{m}-\mathrm{E} z_{m}\right)^{4}+2\left(\sum_{m=1}^{n} \mathrm{E}\left(z_{m}-\mathrm{E} z_{m}\right)^{2}\right)^{2}\right] / g^{4}(n) \\
& \leqslant\left[2^{3} \sum_{m=1}^{n}\left(\mathrm{E} z_{m}^{4}+\left(\mathrm{E} z_{m}\right)^{4}\right)+2\left(\sum_{m=1}^{n} \mathrm{E} z_{m}^{2}\right)^{2}\right] / g^{4}(n) \\
& \leqslant C\left[2^{3} \sum_{m=1}^{n}\left(\mathrm{E} V_{n, m}^{8}+\left(\sigma^{2} V_{n, m}\right)^{4}\right)+2\left(\sum_{m=1}^{n} V_{n, m}^{4}\right)^{2}\right] / g^{4}(n) \\
& =O\left(\left(g^{4}(n) \log ^{3} n\right)^{-1}\right),
\end{align*}
$$

where $g(n) \rightarrow 0$ as $n \rightarrow \infty$, so that $g^{4}(n) \log ^{3} n \rightarrow \infty$ as $n \rightarrow \infty$.
Putting $g(n)=(\log n)^{-3 / 5}$, we get

$$
P\left[\max _{1 \leqslant k \leqslant n}\left|T_{k}-t_{k}\right| \geqslant(\log n)^{-3 / 5}\right]=O\left((\log n)^{-3 / 5}\right)
$$

Now, we shall estimate $P\left[\left|Z_{n}^{(2)}-Z_{n}^{(1)}\right|>\delta_{n}\right]$.
Let us set
(22) $B_{n}^{(1)}=\left[\sup _{0 \leqslant t \leqslant 1+g(n)}|W(t)|<a_{n},\left|T_{n}-1\right|<g(n), \max _{1 \leqslant k \leqslant n}\left|\tilde{S}_{n, \tau_{n}}-U_{n, k}\right|<\delta_{n}\right]$,
where

$$
a_{n}=\left(\log _{2} n\right)^{1 / 2}, \quad g(n) \rightarrow 0, \quad \delta_{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

in such a way that

$$
g^{4}(n) \log ^{3} n \rightarrow \infty, \quad \delta_{n} c_{n} \rightarrow \infty \quad \text { as } n \rightarrow \infty
$$

It is easy to see that

$$
\begin{align*}
P\left[\left|Z_{n}^{(2)}-Z_{n}^{(1)}\right|>\delta_{n}\right] \leqslant & P\left[\left|Z_{n}^{(2)}-Z_{n}^{(1)}\right|>\delta_{n}, B_{n}^{(1)}\right] \tag{23}\\
& +P\left[\sup _{0 \leqslant t \leqslant 1+g(n)}|W(t)| \geqslant a_{n}\right]+P\left[\left|T_{n}-1\right| \geqslant g(n)\right] \\
& +P\left[\max _{1 \leqslant k \leqslant n}\left|\widetilde{S}_{n, \tau_{n}}-U_{n, k}\right| \geqslant \delta_{n}\right] .
\end{align*}
$$

It is well known that

$$
\begin{align*}
& P\left[\sup _{0 \leqslant t \leqslant 1+g(n)}|W(t)| \geqslant a_{n}\right] \leqslant 4 P\left[|W(1)|>\frac{a_{n}}{\sqrt{1+g(n)}}\right] \tag{24}\\
& \quad \leqslant \frac{8}{\sqrt{2 \pi}} \frac{\sqrt{1+g(n)}}{a_{n}} \exp \left[\frac{-a_{n}^{2}}{1+g(n)}\right]=O\left(\left(\left(\log _{2} n\right)^{1 / 2} \log n\right)^{-1}\right)
\end{align*}
$$

On the other hand, by the mean value theorem, (3) and (19) one can note that on the set $B_{n}^{(1)}$ we get

$$
\begin{aligned}
& P\left[\left|Z_{n}^{(2)}-Z_{n}^{(1)}\right|>\delta_{n}, B_{n}^{(1)}\right] \\
& \leqslant P\left[\sum_{k=1}^{n-1}\left|\frac{\partial f}{\partial x}\left(t_{k}, U_{n, k}+\theta_{k}\left(\tilde{S}_{n, \tau_{k}}-U_{n, k}\right)\right)\left(\tilde{S}_{n, \tau_{k}}-U_{n, k}\right)\left(t_{k+1}-t_{k}\right)\right|>\delta_{n}, B_{n}^{(1)}\right] \\
& \leqslant P\left[\Omega_{0}\left(a_{n}\right)^{\alpha} \max _{1 \leqslant k \leqslant n}\left|\tilde{S}_{n, \tau_{k}}-U_{n, k}\right|_{k=0}^{n-1}\left(t_{k+1}-t_{k}\right)>\delta_{n}\right] \\
& =P\left[\max _{1 \leqslant k \leqslant n}\left|\tilde{S}_{n, \tau_{k}}-U_{n, k}\right|>\frac{\delta_{n}}{\Omega_{0}\left(a_{n}\right)^{\alpha}}\right] \leqslant \frac{C \Omega_{0}^{4}\left(a_{n}\right)^{4 \alpha}}{\delta_{n}^{4} c_{n}^{4}}
\end{aligned}
$$

where $0<\theta_{k}<1, \Omega_{0}$ is a positive constant depending only on the function f, and $C>0$ is independent of n.

Hence, using (19)-(21'), (23), (24) and putting $\delta_{n}=(\log n)^{-2 / 5}$ and $g(n)=(\log n)^{-3 / 5}$, we obtain

$$
\begin{equation*}
P\left[\left|Z_{n}^{(2)}-Z_{n}^{(1)}\right|>(\log n)^{-2 / 5}\right]=O\left(\left(\log _{2} n\right)^{2 \alpha}(\log n)^{-2 / 5}\right) \tag{25}
\end{equation*}
$$

Now, we are going to estimate $P\left[\left|Z_{n}-Z_{n}^{(2)}\right|>\delta_{n}\right]$, where $\left\{Z_{n}, n \geqslant 1\right\}$ is given by (6).

Observe that

$$
\begin{equation*}
P\left[\max _{1 \leqslant k \leqslant n}\left|\tilde{S}_{n, k}-\tilde{S_{n, \tau_{k}}}\right|>\delta_{n}\right]=P\left[\max _{1 \leqslant k \leqslant n}\left|\tilde{S_{k}}-\tilde{S_{\tau_{k}}}\right|>\delta_{n} c_{n}\right] . \tag{26}
\end{equation*}
$$

Notice that for $k \geqslant \tau_{k}$, by definition (3.1), we have

$$
\inf \left(X_{1}, X_{2}, \ldots, X_{\tau_{k}+i}\right) \leqslant \varepsilon(k)=1 / k \quad \text { for } i \geqslant 1,
$$

and in this case

$$
\left|\tilde{S}_{k}-S_{\tau_{k}}\right|=\sum_{m=\tau_{k}+1}^{k} X_{m}^{*} \leqslant k \varepsilon(k)=1 \quad \text { for } k \geqslant 1 .
$$

So, we can get

$$
\begin{align*}
& P\left[\max _{1 \leqslant k \leqslant n}\left|\tilde{S}_{k}-\tilde{S}_{\tau_{k}}\right|>\delta_{n} c_{n}\right] \leqslant P\left[\max _{\substack{1 \leqslant k \leqslant n \\
\tau_{k}>k}} \sum_{m=k+1}^{\tau_{k}} X_{m}^{*}>\delta_{n} c_{n}\right] \tag{27}\\
& \quad \leqslant P\left[\max _{\substack{1 \leqslant k \leqslant k \leqslant k \\
\tau_{k}>k}} \sum_{m=k+1}^{\tau_{n}} X_{m}^{*}>\delta_{n} c_{n}\right] \leqslant P\left[\sum_{m=1}^{\tau_{n}} X_{m}^{*}>\delta_{n} c_{n}, \tau_{n}>n\right]
\end{align*}
$$

because $\tau_{k} \leqslant \tau_{k+1}$ for $k \geqslant 1$.
Moreover, by Lemmas 3.4 and 3.5, we obtain

$$
\begin{aligned}
P\left[\sum_{m=1}^{\tau_{n}} X_{m}^{*}>\delta_{n} c_{n}, \tau_{n}>n\right] & =\sum_{k=n+1}^{\infty} P\left[\sum_{m=1}^{\tau_{n}} X_{m}^{*}>\delta_{n} c_{n}, \tau_{n}=k\right] \\
& =\sum_{k=n+1}^{\infty} P\left[\sum_{m=1}^{k} X_{m}^{*}>\delta_{n} c_{n} \mid \tau_{n}=k\right] P\left[\tau_{n}=k\right] \\
& \leqslant \sum_{k=n+1}^{\infty} \frac{\mathrm{E}\left[\left(\sum_{m=1}^{k} X_{m}^{*}\right)^{p} \mid \tau_{n}=k\right]}{\left(\delta_{n} c_{n}\right)^{p}} P\left[\tau_{n}=k\right] \\
& \leqslant \frac{C}{\left(\delta_{n} c_{n}\right)^{p}} \sum_{k=n+1}^{\infty}(\log k) P\left[\tau_{n}=k\right] \\
& =\frac{C}{\left(\delta_{n} c_{n}\right)^{p}} \mathrm{E}\left(\left(\log \tau_{n}\right) I\left[\tau_{n}>n\right]\right)=O\left(\frac{\log n}{\left(\delta_{n} c_{n}\right)^{p}}\right),
\end{aligned}
$$

where C is a positive constant independent of n.
Hence, by (26) and (27) we get

$$
\begin{equation*}
P\left[\max _{1 \leqslant k \leqslant n}\left|\tilde{S}_{n, k}-\tilde{S}_{n, z_{k}}\right|>\delta_{n}\right]=O\left(\frac{\log n}{\left(\delta_{n} c_{n}\right)^{p}}\right), \tag{28}
\end{equation*}
$$

and putting $\delta_{n}=(\log n)^{-2 / 5}$ and $p=14$ we obtain

$$
\begin{equation*}
P\left[\max _{1 \leqslant k \leqslant n}\left|\tilde{S}_{n, k}-\tilde{S}_{n, v_{k}}\right|>(\log n)^{-2 / 5}\right]=O\left((\log n)^{-2 / 5}\right) . \tag{29}
\end{equation*}
$$

Let us write

$$
B_{n}^{(2)}=B_{n}^{(1)} \cap\left[\max _{1 \leqslant k \leqslant n}\left|\tilde{S}_{n, k}-\tilde{S}_{n, v_{k}}\right|<\delta_{n}\right] .
$$

Observe that on the set $B_{n}^{(2)}$, by (3), (28) and (29), we get

$$
\begin{align*}
P\left[\mid Z_{n}-\right. & \left.Z_{n}^{(2)} \mid>\delta_{n}, B_{n}^{(2)}\right] \tag{30}\\
\leqslant & P\left[\sum_{k=1}^{n-1} \left\lvert\, \frac{\partial f}{\partial x}\left(t_{k}, U_{n, k}+\left(\tilde{S}_{n, \tau_{k}}-U_{n, k}\right)+\theta_{k}\left(\tilde{S_{n, k}}-\tilde{S}_{n, \tau_{k}}\right)\right)\right.\right. \\
& \left.\times\left(\tilde{S}_{n, k}-\tilde{S}_{n, \tau_{k}}\right)\left(t_{k+1}-t_{k}\right) \mid>\delta_{n}\right] \\
\leqslant & P\left[\max _{1 \leqslant k \leqslant n}\left|\tilde{S}_{n, k}-\tilde{S}_{n, \tau_{k}}\right|>\delta_{n} / \Omega_{0}\left(a_{n}\right)^{\alpha}\right]=O\left(\Omega_{0}^{p}\left(a_{n}\right)^{p \alpha}(\log n) /\left(\delta_{n} c_{n}\right)^{p}\right) \\
= & O\left(\Omega_{0}^{14}\left(\log _{2} n\right)^{7 \alpha} /(\log n)^{2 / 5}\right)
\end{align*}
$$

if we put $p=14, a_{n}=\left(\log _{2} n\right)^{1 / 2}$, and $\delta_{n}=(\log n)^{-2 / 5}$.
By (20)-(22), (24) and (29), (30), we obtain

$$
\begin{equation*}
P\left[\left|Z_{n}-Z_{n}^{(2)}\right|>(\log n)^{-2 / 5}\right]=O\left(\left(\log _{2} n\right)^{7 \alpha}(\log n)^{-2 / 5}\right) \tag{31}
\end{equation*}
$$

Hence, by (14), (25) and (31) we get (7), and the proof of Theorem 1 is completed.

Proof of Theorem 2. Observe that

$$
\begin{align*}
\sup _{x} \mid P\left[\Phi\left(S_{n}\right) \leqslant x\right]-P & {[\Phi(W) \leqslant x]\left|\leqslant \sup _{x}\right| P\left[\Phi\left(S_{n}\right) \leqslant x\right]-P\left[Z_{n} \leqslant x\right] \mid } \tag{32}\\
+ & \sup _{x}\left|P\left[Z_{n} \leqslant x\right]-P[\Phi(W) \leqslant x]\right|=I_{1}+I_{2}
\end{align*}
$$

The estimation of I_{2} gives Theorem 1.
Moreover, we can write

$$
\begin{align*}
& \sup _{x}\left|P\left[\Phi\left(S_{n}\right) \leqslant x\right]-P\left[Z_{n} \leqslant x\right]\right| \leqslant P\left[\left|\Phi\left(S_{n}\right)-Z_{n}\right| \geqslant \delta_{n}\right] \tag{33}\\
& \quad+\sup _{x} P\left[x-\delta_{n}<Z_{n} \leqslant x+\delta_{n}\right] \leqslant P\left[\left|\Phi\left(S_{n}\right)-Z_{n}\right| \geqslant \delta_{n}\right]+2 I_{2}+2 \delta_{n} L
\end{align*}
$$

because $P[\Phi(W) \leqslant x]$ satisfies the Lipschitz condition with a positive constant L.

Hence, taking into account the proof of Theorem 1, we see that the proof of Theorem 2 will be completed if we show that

$$
\begin{equation*}
P\left[\left|\Phi\left(S_{n}\right)-Z_{n}\right| \geqslant \delta_{n}\right]=O\left((\log n)^{-2 / 5}\right) . \tag{34}
\end{equation*}
$$

Now, observe that on the set $B_{n}^{(3)}=\left\{\sup _{0 \leqslant t \leqslant 1}\left|S_{n}(t)\right|<a_{n}\right\}$, where $\left\{a_{n}\right\}$ is as in (22), we have

$$
\begin{aligned}
\left|\Phi\left(S_{n}\right)-Z_{n}\right| I\left(B_{n}^{(3)}\right) & =\left|\int_{0}^{1} f\left(t, S_{n}(t)\right) d t-\sum_{k=0}^{n-1} f\left(t_{k}, \tilde{S}_{n, k}\right)\left(t_{k+1}-t_{k}\right)\right| I\left(B_{n}^{(3)}\right) \\
& =\left|\sum_{k=0}^{n-1} \int_{t_{k}}^{t_{k}+1}\left(f\left(t, S_{n}(t)\right)-f\left(t_{k}, \tilde{S}_{n, k}\right)\right) d t\right| I\left(B_{n}^{(3)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \Omega_{0} a_{n}^{\alpha} \sum_{k=0}^{n-1}\left(\int_{t_{k}}^{t_{k}+1}\left(s-t_{k}\right) d s+\int_{t_{k}}^{t_{k+1}}\left|S_{n}(t)-\tilde{S}_{n, k}\right| d t\right) \\
& \leqslant \Omega_{0} a_{n}^{\alpha}\left(\sum_{k=0}^{n-1} \frac{\left(t_{k+1}-t_{k}\right)^{2}}{2}+\frac{1}{c_{n}} \max _{1 \leqslant k \leqslant n}\left|X_{k+1}^{*}-\frac{1}{k+1}\right|_{k=0}^{n-1}\left(t_{k+1}-t_{k}\right)\right) . \\
& \leqslant \Omega_{0} a_{n}^{\alpha}\left(\frac{1}{2} \max _{1 \leqslant k \leqslant n}\left(t_{k+1}-t_{k}\right)+\frac{1}{c_{n}}\left(X_{1}^{*}+1\right)\right) \leqslant \frac{\Omega_{0} a_{n}^{2}}{c_{n}}\left(\frac{3}{2 c_{n}}+X_{1}\right)
\end{aligned}
$$

by the definitions of t_{k} and c_{n} (cf. (2) and (9)).
Hence

$$
\begin{equation*}
P\left[\left|\Phi\left(S_{n}\right)-Z_{n}\right| \geqslant \delta_{n}, B_{n}^{(3)}\right] \leqslant P\left[X_{1} \geqslant \frac{\delta_{n} c_{n}}{\Omega_{0} a_{n}^{\alpha}}-\frac{3}{2 c_{n}}\right]=0 \tag{35}
\end{equation*}
$$

for sufficiently large n such that

$$
\frac{\delta_{n} c_{n}}{\Omega_{0} a_{n}^{\alpha}}-\frac{3}{2 c_{n}} \sim \frac{(\log n)^{1 / 10}}{\Omega_{0}\left(\log _{2} n\right)^{\alpha}} \geqslant 1
$$

Moreover, for sufficiently large n we can get

$$
\begin{aligned}
P\left(\overline{B_{n}^{(3)}}\right)= & P\left[\max _{0 \leqslant k \leqslant n-1} \sup _{t \in\left\langle t_{k}, t_{k}+1\right)}\left|S_{n}(t)\right| \geqslant a_{n}\right] \\
\leqslant & P\left[\max _{1 \leqslant k \leqslant n}\left(\left|\tilde{S}_{n, k}\right|+\left|X_{k+1}^{*}-(k+1)^{-1}\right| / c_{n}\right) \geqslant a_{n}\right] \\
\leqslant & P\left[\max _{1 \leqslant k \leqslant n}\left|\tilde{S}_{n, k}\right| \geqslant a_{n} / 2\right]+P\left[X_{1}+1 \geqslant\left(a_{n} c_{n}\right) / 2\right] \\
\leqslant & P\left[\max _{1 \leqslant k \leqslant n}\left|U_{n, k}\right|+\left|U_{n, k}-\tilde{S}_{n, z_{k}}\right|+\left|\tilde{S}_{n, \tau_{k}}-\tilde{S}_{n, k}\right| \geqslant a_{n} / 2\right] \\
\leqslant & P\left[\max _{1 \leqslant k \leqslant n}\left|U_{n, k}\right| \geqslant a_{n} / 2-2 \delta_{n}\right]+P\left[\max _{1 \leqslant k \leqslant n}\left|U_{n, k}-\tilde{S}_{n, \tau_{k}}\right| \geqslant \delta_{n}\right] \\
& +P\left[\max _{1 \leqslant k \leqslant n}\left|\tilde{S}_{n, \tau_{k}}-\tilde{S}_{n, k}\right| \geqslant \delta_{n}\right] \\
\leqslant & P\left[\max _{0 \leqslant k \leqslant n}\left|W\left(T_{k}\right)\right| \geqslant a_{n} / 2-2 \delta_{n}\right]+2 c(\log n)^{-2 / 5} \\
\leqslant & P\left[\sup _{0 \leqslant t \leqslant 1+g(n)}|W(t)| \geqslant a_{n} / 2-2 \delta_{n}\right] \\
& +P\left[\max _{0 \leqslant k \leqslant n}\left|T_{k}-t_{k}\right| \geqslant g(n)\right]+2 c(\log n)^{-2 / 5}=O\left((\log n)^{-2 / 5}\right)
\end{aligned}
$$

by (15), (19)-(21'), (24) and (29). Hence, using (35), we get (34). Combining this with (7), (32) and (33) we complete the proof of Theorem 2.

Proof of Theorem 3. Let us define a random function $\left\{U_{n}(t)\right.$, $t \in\langle 0,1\rangle\}$ as follows:

$$
\begin{align*}
& U_{n}(t)=U_{n, k}+\frac{t-t_{k}}{t_{k+1}-t_{k}}\left(U_{n, k+1}-U_{n, k}\right) \quad \text { for } t \in\left\langle t_{k}, t_{k+1}\right), \tag{36}\\
& U_{n}(0)=0, \quad 0 \leqslant k \leqslant n-1, n \geqslant 1
\end{align*}
$$

where $U_{n, k}$ and t_{k} are as in the proof of Theorem 1. Let $P_{n}^{(1)}$ be the distribution of $\left\{U_{n}(t)\right\}$ in $\left(C, \mathscr{B}_{C}\right)$. At first, we show that

$$
\begin{equation*}
\mathscr{L}_{C}\left(P_{n}^{(1)}, W\right)=O\left(\left(\log _{2} n\right)^{1 / 2}(\log n)^{-1 / 3}\right) \tag{37}
\end{equation*}
$$

Let us observe that by (15) and a simple evaluation we obtain

$$
\begin{aligned}
& P\left[\sup _{0 \leqslant t \leqslant 1}\left|U_{n}(t)-W(t)\right| \geqslant \delta_{n}\right] \\
& \leqslant P\left[\max _{0 \leqslant k \leqslant n-1} \sup _{t \in\left\langle t_{k}, t_{k+1}\right)}\left|U_{n, k}-W(t)\right|+\max _{0 \leqslant k \leqslant n-1}\left|V_{n, k+1}\right| \geqslant \delta_{n}\right] \\
& \leqslant P\left[\max _{0 \leqslant k \leqslant n}\left|W\left(T_{k}\right)-W\left(t_{k}\right)\right| \geqslant \delta_{n} / 3\right] \\
&+P\left[\max _{0 \leqslant k \leqslant n-1} \sup _{t \in\left\langle t_{k}, t_{k+1}\right)}\left|W(t)-W\left(t_{k}\right)\right| \geqslant \delta_{n} / 3\right] \\
&+P\left[\max _{0 \leqslant k \leqslant n}\left|V_{n, k+1}\right| \geqslant \delta_{n} / 3\right] .
\end{aligned}
$$

Putting

$$
B_{n}=\left\{\max _{0 \leqslant k \leqslant n}\left|T_{k}-t_{k}\right|<g(n)\right\}
$$

where $g(n) \rightarrow 0, n \rightarrow \infty$, so that $g^{4}(n) \log ^{3} n \rightarrow \infty$, by the invariance property of the Wiener process and the form of $\left\{t_{k}, 0 \leqslant k \leqslant n\right\}$ we obtain

$$
\begin{aligned}
& P\left[\max _{0 \leqslant k \leqslant n}\left|W\left(T_{k}\right)-W\left(t_{k}\right)\right| \geqslant \delta_{n} / 3, B_{n}\right] \\
& \quad \leqslant P\left[\max _{0 \leqslant k \leqslant n} \sup _{t_{k}-g(n) \leqslant t \leqslant t_{k}+g(n)}\left|W(t)-W\left(t_{k}\right)\right| \geqslant \delta_{n} / 3\right] \\
& \quad \leqslant P\left[\max _{0 \leqslant k \leqslant n}\left(\sup _{0 \leqslant t \leqslant g(n)}\left|W\left(t_{k}-t\right)-W\left(t_{k}\right)\right|+\sup _{0 \leqslant t \leqslant g(n)}\left|W\left(t_{k}+t\right)-W\left(t_{k}\right)\right|\right) \geqslant \delta_{n} / 3\right] \\
& \quad \leqslant P\left[2 \max _{0 \leqslant t \leqslant g(n)}|W(t)|>\delta_{n} / 3\right] \leqslant 4 P\left[|W(1)|>\delta_{n} / 6 \sqrt{g(n)}\right] \\
& \quad \leqslant \frac{8}{2 \pi} \frac{6 \sqrt{g(n)}}{\delta_{n}} \exp \left[-\frac{\delta_{n}^{2}}{36 g(n)}\right],
\end{aligned}
$$

where $g(n)$ and δ_{n} are such that $\delta_{n} / \sqrt{g(n)} \rightarrow \infty$ as $n \rightarrow \infty$.
Moreover, we can get

$$
\begin{aligned}
P\left[\max _{0 \leqslant k \leqslant n-1} \sup _{t \in\left(t_{k}, t_{k+1}\right)}\right. & \left.\left|W(t)-W\left(t_{k}\right)\right| \geqslant \delta_{n} / 3\right] \\
& =P\left[\max _{0 \leqslant k \leqslant n-1} \sup _{t \in\left\langle 0, t_{k+1}-t_{k}\right)}\left|W\left(t_{k}+t\right)-W\left(t_{k}\right)\right|>\delta_{n} / 3\right]
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant P\left[\sup _{t \in\left\langle 0,1 / c_{n}^{2}\right)}|W(t)|>\delta_{n} / 3\right] \leqslant 4 P\left[|W(1)|>\left(\delta_{n} c_{n}\right) / 3\right] \\
& \leqslant \frac{8}{\sqrt{2 \pi}} \frac{3}{\delta_{n} c_{n}} \exp \left[\left(\delta_{n}^{2} c_{n}^{2}\right) / 9\right]
\end{aligned}
$$

where δ_{n} is taken so that $\delta_{n} c_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
We can see that, by our Lemma 3.2 and Theorem 10 in [11] (p. 247),

$$
\begin{aligned}
P & {\left[\max _{0 \leqslant k \leqslant n-1}\left|V_{n, k+1}\right| \geqslant \delta_{n} / 3\right]=P\left[\max _{1 \leqslant k \leqslant n}\left[\left(\tau_{k+1}-\tau_{k}-1\right) / k\right] \geqslant\left(\delta_{n} c_{n}\right) / 3\right] } \\
& =1-\prod_{k=1}^{n}\left(1-P\left[\tau_{k+1}-\tau_{k} \geqslant 1+\left(k \delta_{n} c_{n}\right) / 3\right]\right) \\
& =1-\prod_{k=1}^{n}\left(1-\frac{1}{k+1}\left(1-\frac{1}{k+1}\right)^{\left(k \delta_{n} c_{n}\right) / 3}\right) \\
& \sim 1-\exp \left[-\sum_{k=1}^{n} \frac{1}{k+1}\left(1-\frac{1}{k+1}\right)^{\left(k \delta_{n} c_{n}\right) / 3}\right] \sim \sum_{k=1}^{n} \frac{1}{k+1}\left(1-\frac{1}{k+1}\right)^{\left(k \delta_{n} c_{n}\right) / 3} \\
& \sim \frac{\log n}{\exp \left[\left(\delta_{n} c_{n}\right) / 3\right]} .
\end{aligned}
$$

Hence, using (21) and Lemma 1.2 of [13], we get

$$
\begin{aligned}
\mathscr{L}_{C}\left(P_{n}^{1}, W\right)=O\left(\operatorname { m a x } \left(\delta_{n},\right.\right. & \frac{48}{\sqrt{2 \pi}} \frac{\sqrt{g(n)}}{\delta_{n}} \exp \left[-\frac{\delta_{n}^{2}}{36 g(n)}\right], \frac{\log n}{\exp \left[\left(\delta_{n} c_{n}\right) / 3\right]} \\
& \left.\left.\frac{8}{\sqrt{2 \pi}} \frac{3}{\delta_{n} c_{n}} \exp \left[\left(\delta_{n}^{2} c_{n}^{2}\right) / 9\right], g(n), \frac{1}{g^{4}(n) \log ^{3} n}\right)\right) .
\end{aligned}
$$

Putting $\delta_{n}=\left(\log _{2} n\right)^{1 / 2}(\log n)^{-1 / 3}$ and $g(n)=(\log n)^{-2 / 3}$, we obtain (37). Using (19) and (28), we get (8).
3. Lemmas. In this section we give some lemmas we needed in the proofs of Theorems 1-3.

Let $\{\varepsilon(n), n \geqslant 1\}$ be a sequence of positive numbers strictly decreasing to zero.

By $\left\{\tau_{n}=\tau(\varepsilon(n)), n \geqslant 1\right\}$ we denote the sequence of random variables such that

$$
\begin{equation*}
\tau_{n}=\inf \left\{m: \inf \left(X_{1}, X_{2}, \ldots, X_{m}\right) \leqslant \varepsilon(n)\right\}, \tag{3.1}
\end{equation*}
$$

where $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of i.r.vs. u.d. on $[0,1]$.
Lemma 3.1. The sequence $\left\{\tau_{n}, n \geqslant 1\right\}$ increases with probability one and $\tau_{n} \rightarrow \infty$ a.s. as $n \rightarrow \infty$.

Lemma 3.2. The random variables $\tau_{n+1}-\tau_{n}, n \geqslant 1$, are independent, and if $\varepsilon(n)=n^{-1}$, then

$$
\begin{equation*}
\mathrm{E}\left(\tau_{n+1}-\tau_{n}\right)=1, \quad \sigma^{2}\left(\tau_{n+1}-\tau_{n}\right)=2 n, \quad n \geqslant 1 \tag{3.2}
\end{equation*}
$$

(3.3) $P\left[\left(\tau_{n+1}-\tau_{n}\right) \geqslant r\right]=\frac{1}{n+1}\left(1-\frac{1}{n+1}\right)^{r-1} \quad$ for any $r>0, n \geqslant 1$.

Let us put

$$
\begin{equation*}
U_{n}=\sum_{k=1}^{n-1}\left(\tau_{k+1}-\tau_{k}\right) \frac{1}{k}, \quad U_{n}^{\prime}=\sum_{k=1}^{n-1}\left(\tau_{k+1}-\tau_{k}\right) \frac{1}{k+1} \tag{3.4}
\end{equation*}
$$

Then

$$
\begin{gather*}
\mathrm{E} U_{n}-\log n=O(1), \quad \mathrm{E} U_{n}^{\prime}-\log n=O(1), \tag{3.5}\\
\sigma^{2} U_{n}-2 \log n=O(1), \quad \sigma^{2} U_{n}^{\prime}-2 \log n=O(1), \tag{3.6}\\
\sum_{k=1}^{n} \mathrm{E}\left(\tau_{k+1}-\tau_{k}\right)^{p} / k^{p} \sim \sum_{k=1}^{n} \mathrm{E}\left(\tau_{k+1}-\tau_{k}\right)^{p} /(k+1)^{p} \sim p!\log n, \tag{3.7}\\
\mathrm{E}\left(U_{n}-U_{n}^{\prime}\right)=O(1), \quad \sigma^{2}\left(U_{n}-U_{n}^{\prime}\right)=O(1), \tag{3.8}\\
\mathrm{E}\left(U_{n}-U_{n}^{\prime}-\mathrm{E}\left(U_{n}-U_{n}^{\prime}\right)\right)^{4}=O(1),
\end{gather*}
$$

where $b_{n}=O(1)$ means that the sequence $\left\{b_{n}, n \geqslant 1\right\}$ is bounded as $n \rightarrow \infty$.
Lemma 3.3. Let U_{n}, U_{n}^{\prime} be given by (3.4). Then

$$
\begin{align*}
& -2+U_{n}^{\prime} \leqslant \tilde{S}_{\tau_{n}}-\tilde{S}_{\tau_{1}} \leqslant U_{n} \text { a.s., } \quad n \geqslant 2 \tag{3.9}\\
& \tilde{S}_{\tau_{n-1}} \leqslant \tilde{S}_{m} \leqslant \tilde{S}_{\tau_{m}} \quad \text { for } m \in\left\langle\tau_{n-1}, \tau_{n}\right) \tag{3.10}
\end{align*}
$$

where

$$
\tilde{S_{n}}=\sum_{k=1}^{n} X_{k}^{*}, \quad \tilde{S}_{\tau_{n}}=\sum_{m=1}^{\tau_{n}} X_{m}^{*}, \quad n \geqslant 1, X_{k}^{*}=\inf \left(X_{1}, X_{2}, \ldots, X_{k}\right), k \geqslant 1
$$

Lemma 3.4. If we put $S_{N, m}=\sum_{k=m}^{N} X_{k}^{*}$, then for all $p \geqslant 1$

$$
\mathrm{E} S_{N, m}^{p}=O(\log N-\log m)
$$

Lemma 3.5. If $\varepsilon(n)=1 / n$, then

$$
\begin{equation*}
\mathrm{E}\left(\left(\log \tau_{n}\right) I\left[\tau_{n}>n\right]\right)=O(\log n) \tag{3.11}
\end{equation*}
$$

Proof. By definition (3.1), we have
$\mathrm{E}\left(\left(\log \tau_{n}\right) I\left[\tau_{n}>n\right]\right)=\sum_{k=n+1}^{\infty}(\log k) P\left[\tau_{n}=k\right]=n^{-1} \sum_{k=n+1}^{\infty}\left(1-n^{-1}\right)^{k-1} \log k$.
Let us put $q=1-n^{-1}$ and write $A_{n}=\int_{n+1}^{\infty}(\log x) q^{x-1} d x$.
By a simple evaluation we get

$$
A_{n}=\frac{1}{\log q} \int_{n+1}^{\infty}(\log x)\left[q^{x-1}\right]^{\prime} d x=\frac{q^{n} \log (n+1)}{\log (1 / q)}+\frac{1}{\log (1 / q)} \int_{n+1}^{\infty} \frac{q^{x-1}}{x} d x
$$

$$
\leqslant \frac{q^{n} \log (n+1)}{\log (1 / q)}+\frac{1}{(n+1) \log (1 / q)} \int_{n+1}^{\infty} q^{x-1} d x=\frac{q^{n} \log (n+1)}{\log (1 / q)}+\frac{q^{n}}{(n+1) \log ^{2}(1 / q)}
$$

and so

$$
\frac{1}{n} A_{n}=\left(1-\frac{1}{n}\right)^{n}\left[\frac{\log (n+1)}{n \log (1+1 /(n-1))}+\frac{1}{n(n+1) \log ^{2}(1+1 /(n-1))}\right]=O(\log n)
$$

because $\log (1 / q)=\log (1+1 /(n-1))=1 /(n-1)+O(1 /(n-1))$.
Hence, using the integrable type criterion of series convergence, we have (3.11).

Lemma 3.6 (the Skorokhod representation theorem [14]). Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be mutually independent random variables with zero means and $\sigma^{2} Y_{i}=\sigma_{i}^{2}, 1 \leqslant i \leqslant n$. Then there exists a sequence of nonnegative, mutually independent random variables $z_{1}, z_{2}, \ldots, z_{n}$ with the following properties:

The joint distributions of the r.vs. $Y_{1}, Y_{2}, \ldots, Y_{n}$ are identical to the joint distributions of the r.vs. $W\left(z_{1}\right), W\left(z_{1}+z_{2}\right)-W\left(z_{1}\right), \ldots, W\left(z_{1}+\ldots+z_{n}\right)$ $-W\left(z_{1}+\ldots+z_{n-1}\right), \quad \mathrm{E} z_{i}=\sigma_{i}^{2}$ and $\mathrm{E}\left|z_{i}\right|^{k} \leqslant C_{k} \mathrm{E}\left(Y_{i}\right)^{2 k}, \quad k \geqslant 1$, where C_{k} $=2\left(8 / \pi^{2}\right)^{k-1} \Gamma(k+1)$.

REFERENCES

[1] P. Billingsley, Convergence of Probability Measures, Wiley, New York 1968.
[2] J. S. Borisov, On the rate of convergence for distributions of integral type functionals, Teor. Verojatnost. i Primenen. 21 (1976), pp. 293-308.
[3] P. Dehéuve1s, Sur la convergence de sommes de minima de variables aléatoires, C. R. Acad. Sci. Paris 276, A (1973), pp. 309-313.
[4] - Valeurs extrêmales d'échantillons croissants d'une variable aléatoire réelle, Ann. Inst. H. Poincaré, Sec. B, 10 (1974), pp. 89-114.
[5] U. Grenander, A limit theorem for sums of minima of stochastic variables, Ann. Math. Statist. 36 (1965), pp. 1041-1042.
[6] H. Hebda-Grabowska, Weak convergence of random sums of infima of independent random variables, Probab. Math. Statist. 8 (1987), pp. 41-47.
[7] - Weak convergence to the Brownian motion of the partial sums of infima of independent random variables, ibidem 10 (1989), pp. 119-135.
[8] - On the rate of convergence to Brownian motion of the partial sums of infima of independent random variables, ibidem 12 (1991), pp. 113-125.
[9] - and D. Szynal, On the rate of convergence in law for the partial sums of infima of random variables, Bull. Acad. Polon. Sci. 27.6 (1979), pp. 503-509.
[10] - An almost sure invariance principle for the partial sums of infima of independent random variables, Ann. Probab. 7.6 (1979), pp. 1036-1045.
[11] K. Knopp, Szeregi nieskończone, PWN, Warszawa 1956.
[12] K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York-London 1967.
[13] Yu. V. Prohorov, Convergence of random processes and probability limit theorems (in Russian), Teor. Verojatnost. i Primenen. 1 (1956), pp. 177-238.
[14]• Z. Rychlik and I. Szyszkowski, On the rate of convergence for distributions of integral type functionals, Probability Theory on Vector Spaces III, Lublin, August 1983, Springer's LNM, pp. 255-275.
[15] S. Saw yer, A uniform rate of convergence for the maximum absolute value of partial sums in probability, Comm. Pure Appl. Math. 20 (1967), pp. 647-659.
[16] A. V. Sk orokhod, Studies in Theory of Random Processes, Addison-Wesley, Massachusetts, 1965.
[17] V.Strassen, Almost sure behaviour of sums of independent random variables and martingales, Proc. of the 5th Berkeley Symp. of Math. Statist. and Probab. (1965), pp. 315-343.

Instytut Matematyki UMCS plac Marii Curie-Skłodowskiej 1 20-031 Lublin, Poland

Received on 29.6.1992;
revised version on 25.5.1993

