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Abstrut:t. Let {X,, n 3 I}  be a sequence of independent random 
variables uniformly distributed on [O, 11. Put 

X z = i n f ( ~ , , ~  ,,..., X , ) , m > l ,  and S , =  Z X ; , n > I .  
m =  1 

In this paper the convergenoc rate Tor distributions of integral 
type ~unctionals for sums S , ,  n 3 1, is obtained. 

1. Introduction and results. Let {X,, n $ 1) be a sequence of independent 
random variables uniformly distributed on r0. 11. 

Let us put 
n 

X $ = ~ ~ ( X , , X  ,,..., X,), m ~ 1 ,  S",= C XS, n Z 1 ,  % = O  
m = O  

and define 

Let (S,(t), t ~ ( 0 ,  1)) be a random function defmed as follows: 

k 
where tk = xi=l i-lai=l m - l ) - l ,  1 ,< k ,< n, to = 0. 

Let f ( t ,  x) be a continuous function which has continuous partial 
derivatives on the set <0, 1) x R, where R denotes the set of real numbers. We 
assume that there exist positive constants ol and 52 such that 

(3) lDf(t, x)] < fi(1+1x1")or (t, x)E(O,  1) x R ,  

where D denotes either the identity operator I or partial derivative operators 
d/at and a/&. 
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It is known from Corollary 1 (cf. [7J) that S, % W as n -+ m, where 
W = {W(t) ,  t ~ ( 0 ,  1 ) )  is a Wiener process. Hence, if @ is a continuous 
functional defined on C(,, ,) ,  where (C<,,,>, a,) is the space of continuous 
functions, then (cf. [ I ] ,  p. 30) 

The main purpose of this paper is to give the rate of convergence in (4) for 
the functional 

1 

(5 )  @(XI = f f ( t r  ~ ( t ) ) d t ,  x ( . ) ~ C < o , l ) ,  
0 

where f ( t ,  x) is a function satisfying (3). 
We can prove the following 

THEOREM 1. Let (S,,,, 1 G k < n ) ,  n 2 1, be a sequence given by (1). Assume 
that @ is a functional defined by (5)  and such that the distribution of the random 
uariuble @(W) satisfies the Lipschitz condition with a positive constant L, i.e. 

1 

P[x-6 < 1 f ( t ,  W(t))dt < x+S] < 2L6 
0 

for any x E R and d > 0. If we de$ne (Z,, n 3 1 )  as 

where fn,, and tk ,  0 Q k G n, are given in ( 1 )  and (2), respectively, then 

(7) ~ ~ ~ I P [ z , < x I - P [ ~ ( w ) G x ~ ~ = o  ("""4") as .+a, 
X (log n)2/5 

where log, n = log (log n). 

THEOREM 2. Suppose the assumptions of Theorem 1 hold. Then in (7) we can 
put @ (S,) instead of Z,, where S, = (S ,  ( t) ,  t E (0, 1 ) )  is given by (2). 

This type of theorems for independent random variables and for martin- 
gales has been obtained in [2] and [14], respectively. 

Let gC denote the Ldvy-Prohorov distance, i.e., for any two measures P and 
Q on (C, BC) 

= % ( ~ , Q ) < E  P(B)<Q(G,(B))+E and Q(B)<P(G,(B))+E 

for all BE&?, where 

and e is the uniform metric on C(o,l), 
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We can prove the following 

THEOKEM 3. Let P, denote the distribution of S,  = {S,(t), t E ( 0 ,  1)) in the 
space (C, BC-. Then 

(8) Yc(Pn, W) = O((log, n)lJ2 (lognl-'I3) 

as n + oo, where W  is the Wiener measure on Cco,l>. 

Let us observe that in the case where (X,, n 3 1) are i.r.vs. uniformly 
distributed on [0, 11, Theorem 3 gives the estimate on 9,-(P,, W )  stronger 
than that in [7] where the relation 9"(P,, w) = O((1og n)-li8) has been 
obtained. 

2. Froof of the resdts. In the proofs of Theorems 1-3 we apply some 
lemmas given by DehCuvels ([3], [4], lernmes 3.1-3.3)) Grenander ([5], Lem- 
ma 3,4) and the Skorokhod representation theorem (see [16] and [17)) which 
we state as a lemma in Section 3 for the sake of clarity. 

Proof  of Theorem 1. Let us write 
rr 

(91 cn = (2 C - 1)"' 

m = l  
and set 

and put 

where the random variables z,, n 2 1, are given in Section 3 by (3.1) 
(E (n) = n- l). 

Observe that T/,,k, 1 Q k d n, are independent random variables (Lem- 
ma 3.2) and 

Let us write 

By Lemma 3.2 we can see that 

(12) , $ ) = ~ ( s ! ( l o ~ n ) - ~ l ~ + ~ )  for s 2 2 ,  

and putting s = 6, we get 

(12') a6) = 0 (6! (log n)-2). 



Let us define 

where t,, 0 d k < n, are given in (2). 
It is easy to notice that by (11) and (12') the sequence {K,,, 1 < k G n), 
1, satisfies the conditions of Theorem 1 (cf. C21). Applying this theorem to 

the =quence of random variables {Kc, 1 < k < n)  we have 

(14) sup IP [z:'~ b x] - P [@ (W)  6 x]l = 0 ((log (a6!)-')'"' '"' ( L : ~ ) ) ' J ~ )  
X 

= O ((log, n)" ' ')I2 (log n) - 

Now, by the Skorokhod representation result applied to the sequence 
V,  = (V,,, , V,,,, . . . , V,,J, there is a standard Wiener process { W(t), t E (0, I)] 
together with a sequence of nonnegative independent random variables 
zl,  z2, . .. , z, on a new probability space such that 

(15) {un,l, Urz,2> - - .  5 Unsn] ' {W(Tl), W(T2), . - ., W ( T ) } ,  2 1 ,  
D where T, = z:=l z,,,, 1 < k d n, and = means the equivalence in joint 

distribution. Moreover, 

(16) Ez, = E 

and, for each real number r 2 1, 

(17) E lzklr d C, E (K,,)", 1 < k < n, 
where 

c, = 2 (8/n2y-l r (P + 11, 
and 

Let us define Zf),  n 2 1, as follows: 

where 

* Tk k 

'n,r, = ( z X? - C i-')/c,. 

Write 
i =  1 i = l  

rk k 

% =  Ex? and U k =  ( T ~ + ~ - ~ J ~ - I .  
i=  1 m =  1 

Let us estimate 
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where (d , ,  n 2 1 )  is a sequence of positive real numbers decreasing to zero 
such that 6,c,+ GO as n +  oa. 

By (3.8) in Lemma 3.2 and simple evaluations, we get 

where C is a positive constant independent of n, and Uk is given in (3.4). 
If we put 5, = (10gpa)-~/~, we also have 

P [ max IR,,~ - Un,k( 2 (log n)- 215] = 0 (flog n) - 2 / 5 )  
l < k 4 n  

because c, - (2 log n)i12. 
Now, observe that from the construction of zi, i 2 1, relations (ll), (121, 

(16), (17) and Kolmogorov's type inequality, (3.2) and (3.7) we obtain 

n n  

d [ C E (2, - + 2 ( C E (z, - ~z, ) ' )~] /g~  (n) 
m = l  m= 1  

C[23 C (EK:m+(a2 V.,A4)+2( z ~ & ) ~ ] / g ~  (n) 
m = l  m =  1 

= 0 ((g4 (n) log3 TI)-'), 

where g(n)+O as n-toO,'so that g 4 ( n ) l o g 3 n - , ~  as n + m .  
Putting g (n) = (10gn)-~/~, we get 

P [ max IT, - tkI 2 (log = 0 ((log n)-3i5), 
l < k < n  

Now, we shall estimate P [1Zi2) - Z k l ) I  > 6 , ] .  
Let us set 

(22) 3;'' = [ sup I W(0l < an, IT. - 11 < g (n), max  IS,,^^ - ~ ~ , ~ l  < 6.1 , 
O < t < l + g [ n )  l S k < n  

11 - PAMS 14.2 
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where 

a, = (log, n)l/,, g (n) + 0, 6, -+ 0 as n + co 

in such a way that 

It is easy to see that 

(23) P [IZi2' - ZA1)I > 6,] < P [IZL2' - Zil'I > S , ,  Bkl'] 

It is well known that 

= 0 (((log, n)'" log n) - l ) .  

On the other hand, by the mean value theorem, (3) and (19) one can note 
that on the set 3:') we get 

co;: 
max IS",,=, - U,,,] > 

l S k 6 n  8;fcf ' 

where 0 < Bk < 1, Qo is a positive constant depending only on the function f, 
and C > 0 is independent of n. 

Hence, using (19H2lr), (23), (24) and putting 6, = ( 1 0 g n ) - ~ ~ ~  and 
g (n) = (log n)-315, we obtain 

(25) P [IzL~)-Z$~)I  > (log n)-'i5] = 0 ((log, n)2a (log n)-'I5). 

Now, we are going to estimate P [lZn- Zi2)1 > 6, ] ,  where { Z , ,  n 2 1) is 
given by (6). 

Observe that 

(26) P [  max ~f, ,~-q,~~l > 6,] = P [  max ]&-&,I > dncn] .  
l S k G n  1 b k S n  
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Notice that for k 3 T,, by definition (3.1), we have 

inf(X,,X ,,..., X , , + , ) < ~ ( k ) = l / k  for iB1, 

and in this case 
k 

I~",-s,,I= X:<b(k) -1  for k 3 1 .  
m = z k + l  

So, we can get 

(27) P [ max l f k -  szkl > d. en] G P [ max X: > 6, cn] 
i d k s n  l < k < n  m = k + i  

rk>k 

because T,  < T, + , for k 2 1. 
Moreover, by Lemmas 3.4 and 3.5, we obtain 

c. <- 1 (log k)  P C.r, = kl 
('n 'n)'k=n+ 1 

where C is a positive constant independent of n. 
Hence, by (26) and (27) we get 

P [ rnax IS",,, - S",,zk~ > 6,] = 0 
i S k S n  

and putting 6, = (log n)-2!5 and p = 14 we obtain 

P [ max I S , , ,  -S,n,z,I > (log n)-2'5] = 0 ((log n)-2!5) .  
1 d k < n  

Let us write 
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Observe that on the set I?:,', by (3), (28) and (29), we get 

(30) P [Iz, - Zk2)I > a,, Biz)] 

< P [ max IS",,, - s".,,kl > 6,/Q0 (a,)"] = 0 (99 (a,)Pa (log n)/(dn cJP) 
l S k $ n  

= 0 (Qa4 (log, n)7a/(log n)'j5) 

if we put p = 14, an = (log, n)lt2, and 6, = (log n ) - 2 / 5  
By (20)-(22), (24) and (29), (30), we obtain 

(31) P [IZ,-Z~~)I  > (log n)-u5 1 = O ((log2 t~)'~(log n ) - 2 / 5 ) .  ' 

Hence, by (14), (25) and (31) we get (71, and the proof of Theorem 1 is 
completed. 

Proof of Theorem 2. Observe that 

The estimation of I, gives Theorem 1. 
Moreover, we can write 

because P [ @ ( W )  d x] satisfies the Lipschitz condition with a positive 
constant L. 

Hence, taking into account the proof of Theorem 1, we see that the proof 
of Theorem 2 will be completed if we show that 

(34) P [ I @  (S,) -ZnI $ 6,] = 0 ((log n)-2/5) .  

Now, observe that on the set Bi3) = {sup, ,,, IS, (t)l < a,), where {a,) is 
as in (22), we have 

n - l  t k f l  

= I C S (f ('3 Sn (t))-f (tkr S",,k)) dtl I (BL3)) 
k = O  tk 
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1 max (t,,, --t,)+-(xf + 1) 
cn 

by the definitions of t, and c, (cf. (2) and (9)). 
Hence 

for sufficiently large n such that 

6, c, 3 (log n)lJIO 
ly 3 1. 

f i O 4  2cn Qo(log, n)" 

Moreover, for sufficiently large n we can get 

4 C IUn,rl 2 -26.1 + P [ max I u.,~ - S',,,] 2 6.1 
l d k 4 n  I d k < n  

Q P 1 max 1 W(T,)I 2 an/2 - 26,] + 2c (log n)- 2 / 5  
O d k d n  

G P [  sup IW(t)12an/2-2dn] 
O C t d l + g ( n )  

+ P C  max IT,--t,l 2 g(n)]+2c(l0gn)-~~~ = 0((10~n)- ' /~)  
O S k d n  

by (15), (19H21f), (24) and (29). Hence, using (35), we get (34). Combining this 
with (7), (32) and (33) we complete the proof of Theorem 2. 

Proof of Theorem 3. Let us define a random function {Un(t), 
t E (0, 1)) as follows: 
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where U,,, and tk are as in the proof of Theorem 1. Let Pi1' be the distribution 
of (U , ( t ) )  in (C, BJ. At first, we show that 

(37) Zc (Pr),  W )  = 0 ((log, n)liz (log n)-'I3). 

Let us observe that by ( 1 5 )  and a simple evaluation we obtain 

< P [ max I W(T,)- W(tJ  3 6,/3] 
O d k 4 n  

+ P [ max sup I W(t) - W(t,)l 2 6,/3] 
O 6 k d n - 1  t ~ < t k , t k + l )  

+ P [  max lK.,+,l B 4/31, 
O S k d n  

Putting 

where g (n) -t 0, n + oo, so that g4(n) log3 n + oo, by the invariance property of 
the Wiener process and the form of it,, 0 < k < n) we obtain 

< P [ max ( sup I W(t, - t) - W(t,)l + sup I W(tk + t) - W(tk)l) 2 6,/3] 
0 6 k S n  O < t C g ( n )  O < t , < g ( n )  

< P [2 max I W(t)l r 6,/3] < 4P [IW(1)1 > 6 ~ 6  JgO] 
O S t S g ( n )  

where g (n) and 6 ,  are such that dn/Jg  (n) -+ oo as n + a. 
Moreover, we can get 

P [ max sup I W(t)  - W(tk)l 2 8,131 
O < k < n - 1  t € ( t k , t k + l )  

= P [ max sup I W(t,  + t) - W(tk)l > 6 J3] 
0 4 k G n - 1  t ~ < O , t k + l - t t )  
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where 6, is taken so that 6,cn + co as n + a. 
We can see that, by our Lemma 3.2 and Theorem 10 in [Ill (p. 247), 

log n 
N 

exp C@, c,,)/31' 

Hence, using (21) and Lemma 1.2 of [131, we get 

log n 
Y',(P;, W )  = 0 

Putting 6 ,  = (log, n)li2 (log n) - l i3  and g (n)  = (log n)-'I3, we obtain (37). 
Using (19) and (28), we get (8). 

3. Lemmas. In this section we give some lemmas we needed in the proofs 
of Theorems 1-3. 

Let ( E  (n) ,  n 2 1 )  be a sequence of positive numbers strictly decreasing to 
zero. 

By (2, = T ( E  (n)), n > 1 )  we denote the sequence of random variables such 
that 

(3.1) zn = inf {m: inf ( X I ,  X,, . . . , X,) 6 E (n))  , 

where (X,, n 2 1) is a sequence of i.r.vs. u.d, on [0, 11. 

LEMMA 3.1. The sequence IT,, n 2 1) increases with probability one and 
zn + co a.s. us n -t a. 

LEMMA 3.2. The random variables z,+, -zn, n 2 1, are independent, and if 
E (n)  = n - then 
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1 
(3.31 P C ( L +  1 - rn) 2 TI = - n+ 1 ('-A]-' f i r  any  r > O, n z I. 

Let us put 

Then 

n n 

(3.7) E (T, + - zk)'/kP E ( T ~  + I - q J P / ( k  + - p ! log n ,  
k l l  k - 1  

where b, = O(1) rneuns lhat the sequence {b , ,  n 3 1 )  is bounded as n + a. 

LEMMA 3.3. Let  U,, Ui be given by (3.4). Then 

(3.9) -2+U:, < $T"-,9", G un a s . ,  n 2 2,  
! (3.10) gTn- < grn < fT, for rn E (q- T,,)? 

where 

N LEMMA 3.4. If we put SN,rn = z,=m X,*, then for all p Z 1 

ESg,, = O (log N -log m). 

LEMMA 3.5. If ~ ( n )  = l / n ,  then 

Proof. By definition (3.1), we have 

30 Let us put q = 1-n-I and write A, = Jn+l(logx)qx-ldx. 
By a simple evaluation we get 

A, = - (log x) [qx-'1' d x  = 
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n + l  

and so 

log(n+ 1) + 1 1 = 0 (log n) 
n log( l+l / (n-1))  n(n+1)log2(1+I/(n-1))  

because log (l/q) = log (1 + 1 /(n - 1)) = 1 /(n - 1) + O (1 /(n - 1)). 
Hence, using the integrable type criterion of series convergence, we have 

(3.1 1). 
LEMMA 3.6 (the Skorokhod representation theorem [14]). Let 

Y,, Y2, . . . , be mutually independent random variables with zero means and 
a2 = a:, 1 < i < n. Then there exists a sequence of nonnegative, mutually 
independent random variables z,, z,, . . ., z, with the following properties: 

The joint distributions of the r.vs. Y, ,  Y2, . . . , Y, are identical to the joint 
distributions of the r.us. W(z,), W(z,  + z 2 ) -  W(zl), . . . , W(zl + . . . +z,) 
- W(z, + . . . +z,- ,), Ez, = a; and E lzilk < Ck E(x)2k, k 2 1, where C, 
= 2 (8/n3)" r (k + 1 ) .  
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