PROBABILITY AND MATHEMATICAL STATISTICS Vol. 14, Fasc. 2 (1993), pp. 327–345

DOMAINS OF ATTRACTION OF STABLE MEASURES ON THE HEISENBERG GROUP

BY

HANS-PETER SCHEFFLER (DORTMUND)

Abstract. Let H_d be the (2d+1)-dimensional Heisenberg group and $(\mu_t)_{t\geq 0}$ be a continuous convolution semigroup of probability measures on H_d . Let moreover μ_1 be full. A probability measure v is said to belong to the domain of attraction of μ_1 if there exists a sequence $(\sigma_n)_n$ of automorphisms of H_d such that $\sigma_n v^n \xrightarrow[n \to \infty]{} \mu_1$ weakly. We prove some simple necessary and sufficient conditions on v for the existence of such automorphisms if $(\mu_t)_{t\geq 0}$ has no Gaussian component. Furthermore, the domain of normal attraction of a Gaussian measure on H_d is considered.

1. Introduction. Let H_d be the (2d+1)-dimensional Heisenberg group. Suppose that μ and ν are probability distributions on H_d and that μ is full, i.e., not concentrated on a proper closed connected subgroup of H_d . We say that ν belongs to the domain of attraction of μ if there exists a sequence of automorphisms $(\sigma_n)_n \subset \operatorname{Aut}(H_d)$ such that

(*)

$$\sigma_n v^n \longrightarrow \mu,$$

where v^n denotes the *n*-th convolution power of v and the convergence is the weak convergence. We say that μ is *stable* if there exists a continuous convolution semigroup $(\mu_t)_{t\geq 0}$ of probability measures on H_d with $\mu_1 = \mu$ and a continuous one-parameter group $(\tau_t)_{t\geq 0} \subset \operatorname{Aut}(H_d)$ such that $\tau_s \mu_t = \mu_{st}$ for all s, t > 0. It is a result of [20] that μ is stable if and only if μ has a non-empty domain of attraction.

We are interested therefore in obtaining necessary and sufficient conditions for v to belong to the domain of attraction of a full measure μ . In [26] we have investigated the case of \mathcal{D} -domains of attraction where the norming automorphisms τ_n are only allowed to belong to the group $\mathcal{D} \subset \operatorname{Aut}(G)$ of dilations and G is an arbitrary stratified Lie group. This is due to the fact that we do not know enough about the structure of the automorphisms of an arbitrary stratified Lie group. If $G = H_d$, the structure of an automorphism $\tau \in \operatorname{Aut}(H_d)$ and also of a one-parameter group $(\tau_t)_{t>0} \subset \operatorname{Aut}(H_d)$ is well known

(see [1]). Roughly speaking, every automorphism τ of H_d is the composition of a kind of *block-diagonal* automorphism $\psi_{F,s}$ with an inner automorphism of H_d , where

$$\psi_{F,s} = \begin{pmatrix} 0 \\ sF & \vdots \\ 0 \\ 0 \dots 0 & \pm s^2 \end{pmatrix},$$

s > 0 and F is a symplectic mapping of \mathbb{R}^{2d} . We define \mathscr{B} as the closed subgroup of Aut(H_d) of automorphisms without an inner part and consider only \mathscr{B} -stable continuous convolution semigroups and \mathscr{B} -domains of attraction, where the one-parameter group $(\tau_t)_{t>0}$ and the norming automorphisms σ_n are only allowed to belong to \mathscr{B} .

In the classical situation on \mathbf{R} or \mathbf{R}^d , several descriptions of domains of attraction are known; see, e.g., [2], [13]–[16], [18], [9], [10], [7], and [24]. Especially, Meerschaert [15] proved on \mathbf{R}^d necessary and sufficient conditions on a measure ν belonging to the domain of attraction of a full nonnormal measure μ , and Jurek [9] has described the domain of normal attraction of such a measure. If μ is a full Gaussian measure on \mathbf{R}^d , Jurek has shown that ν belongs to the domain of normal attraction of μ if and only if ν has a finite second moment and the same covariance matrix as μ .

This paper is organised as follows: In Section 2 we introduce the structure of the Heisenberg group H_d and repeat some important notions about semigroups. In Section 3 we recall the definition of fullness of a measure and of various domains of attraction. In view of the convergence criteria for discrete semigroups in Section 3 of [26] (see also [22]) we need to pass over from (*) to a functional limit, i.e., the convergence of the discrete semigroups $(\sigma_n v^{[nt]})_{t\geq 0}$ to a continuous convolution semigroup $(\mu_t)_{t\geq 0}$ with $\mu_1 = \mu$. Due to a result of Nobel ([20], Theorem 6) for full measures the limit convolution semigroup is stable, and therefore uniquely determined by μ_1 ; hence such a transition is possible.

In Section 4 we will investigate the automorphisms and one-parameter groups of automorphisms of H_d . We define a pseudo-inner product on H_d and an automorphism norm for automorphisms in \mathscr{B} which behave like the usual inner product and the operator norm on \mathbb{R}^d . Furthermore, we show that there are some very important connections between stable convolution semigroups on H_d and on $\mathbb{R}^{2d} \cong H_d/[H_d, H_d]$, resp. $\mathbb{R} \cong [H_d, H_d]$.

In Section 5 we will state and prove the main results of this paper: A description of the domain of (normal) attraction of a full measure μ without Gaussian component. The domain of normal attraction of a full Gaussian measure is also concerned. With the use of our pseudo-inner product we will give a necessary condition on v belonging to the domain of normal attraction of such a measure. Unfortunately, this condition is only sufficient if we make

the further assumption of the existence of the second homogeneous moment of v. In contrast to the above-mentioned vector space case on \mathbb{R}^d , the existence of the second homogeneous moment of v is not necessary on H_d as shown in an explicit example. We think this example is very surprising.

2. Notation and preliminaries. Let $\psi(p, q)$ denote the usual Euclidean inner product on \mathbb{R}^d and let

$$\sigma((p, q), (p', q')) \stackrel{\text{def}}{=} \psi(p, q') - \psi(q, p')$$

be the usual symplectic form on \mathbb{R}^{2d} . Let

$$\mathfrak{h}_d \stackrel{\mathrm{def}}{=} \mathbf{R}^d \times \mathbf{R}^d \times \mathbf{R},$$

furnished with the bracket product

$$[(p, q, t), (p', q', t')] \stackrel{\text{def}}{=} (0, 0, \sigma((p, q), (p', q'))),$$

be a realisation of the Heisenberg Lie algebra. Then $(\mathfrak{h}_d, [\cdot, \cdot])$ is a step 2 stratified Lie algebra. Using the Campbell-Hausdorff formula, we define on \mathbb{R}^{2d+1} the multiplication

(1)
$$x \circ y \stackrel{\text{def}}{=} x + y + \frac{1}{2} [x, y], \quad x, y \in \mathbb{R}^{2d+1}.$$

Then $(\mathbb{R}^{2d+1}, \circ)$ is called the (2d+1)-dimensional Heisenberg group, denoted by H_d , which is a stratified Lie group of step 2. We set

$$\boldsymbol{H}_{d}^{\times} \stackrel{\text{def}}{=} \boldsymbol{H}_{d} \setminus \{\boldsymbol{e}\},$$

where e denotes the neutral element of H_d . With this definition, the exponential mapping exp: $\mathfrak{h}_d \to H_d$ is just the identity. Let

$$\{X_i \stackrel{\text{def}}{=} e_i: i = 1, \dots, 2d+1\}$$

be the natural basis of h_d . Then the functions

$$\xi_i: H_d \to \mathbf{R}, \quad \xi_i(x) \stackrel{\text{def}}{=} x_i$$

define a system of global coordinates on H_d with $\xi_i(\exp X_j) = \delta_{i,j}$, where $\delta_{i,j}$ is the Kronecker symbol.

Let

(2)
$$P_1: H_d \to \mathbb{R}^{2d}, \quad P_1(p, q, t) \stackrel{\text{def}}{=} (p, q)$$
$$P_2: H_d \to \mathbb{R}, \quad P_2(p, q, t) \stackrel{\text{def}}{=} t,$$

denote the *projections* on the steps of \mathfrak{h}_d . Thereby P_1 is a group homomorphism from H_d onto (the vector space) \mathbb{R}^{2d} , whereas in general we have $P_2(x \circ y) \neq P_2(x) + P_2(y)$. In the following we use the notation $x = (\bar{x}, x') \in H_d$, where $P_1(x) = \bar{x}$ and $P_2(x) = x'$. For t > 0 we denote by δ_t : $H_d \to H_d$ the dilation given by

$$\delta_t x \stackrel{\text{def}}{=} \delta_t(\bar{x}, x') \stackrel{\text{def}}{=} (t\bar{x}, t^2 x'),$$

and for $x \in H_d$ we define

$$|x| \stackrel{\text{def}}{=} (\|\bar{x}\|_2^2 + |x'|)^{1/2}.$$

Then $|\cdot|$: $H_d \to R_+$ is a homogeneous norm on H_d , i.e., a continuous mapping with $|\delta_t x| = t |x|, |x^{-1}| = |x|$ and $|x| = 0 \Leftrightarrow x = e$. It is well known that any two homogeneous norms $|\cdot|_1, |\cdot|_2$ on H_d are equivalent, that is there exist constants $C_1, C_2 > 0$ such that

$$C_1 |x|_1 \leq |x|_2 \leq C_2 |x|_1 \quad \text{for all } x \in H_d.$$

By $C^b(H_d)$ we denote the space of bounded continuous complex-valued functions on H_d equipped with the supremum norm $\|\cdot\|_{\infty}$. Let $M^b_+(H_d)$ be the set of bounded positive Radon measures on H_d , and $M^1(H_d)$ the set of probability measures on H_d which, furnished with the convolution product and the weak topology $\sigma(M^1(H_d), C^b(H_d))$, is a topological semigroup. The point measure in $x \in H_d$ is denoted by ε_x . We use the notation

$$\langle \mu, f \rangle \stackrel{\text{def}}{=} \int_{H_d} f d\mu \quad \text{for } \mu \in M^b_+(H_d) \text{ and } f \in C^b(H_d).$$

Denote by $\mathscr{M}(H_d^{\times})$ the class of all σ -finite Radon measures on H_d^{\times} which are finite on sets bounded away from the neutral element *e*. Let ∂B denote the topological boundary of a set $B \subset H_d$. For $v_n, v \in \mathscr{M}(H_d^{\times})$ we will write $v_n \xrightarrow[n \to \infty]{} v$ if and only if $v_n(B) \xrightarrow[n \to \infty]{} v(B)$ for all Borel sets *B* bounded away from the neutral element such that $v(\partial B) = 0$. We will call this convergence the *convergence in* $\mathscr{M}(H_d^{\times})$.

Let $\mathscr{D}(H_d)$ be the space of all C^{∞} -functions with compact support on H_d , and let supp f denote the support of a function f. In our situation $\mathscr{E}(H_d)$, the space of *regular functions* on H_d , is the space of all bounded C^{∞} -functions on H_d . We regard every element $X \in \mathfrak{h}_d$ as a (left invariant) differential operator on H_d : for $f \in \mathscr{D}(H_d)$ we define

$$(Xf)(x) \stackrel{\text{def}}{=} \lim_{t \to 0} \frac{1}{t} \left(f(x \exp(tX)) - f(x) \right).$$

A family $(\mu_t)_{t \ge 0} \subset M^1(H_d)$ is said to be a continuous convolution semigroup (abbreviated by c.c.s.) if

$$\mu_s * \mu_t = \mu_{s+t}$$
 for all $s, t \ge 0$ and $\lim_{t \ge 0} \mu_t = \varepsilon_e$.

Its generating distribution A is defined by

$$\langle A, f \rangle \stackrel{\text{def}}{=} \frac{d^+}{dt} \bigg|_{t=0} \langle \mu_t, f \rangle = \lim_{t \downarrow 0} \frac{1}{t} (\langle \mu_t, f \rangle - f(e))$$

for all $f \in D(A) \stackrel{\text{def}}{=} \{ f \in C^b(H_d) | \langle A, f \rangle \text{ exists} \}$. We have $\mathscr{E}(H_d) \subset D(A)$ and A admits on $\mathscr{E}(H_d)$ the unique decomposition (the Lévy-Khinchin formula)

Domains of attraction on Heisenberg groups

(3)
$$\langle A, f \rangle = \sum_{i=1}^{2d+1} p_i(X_i f)(e) + \sum_{i,j=1}^{2d+1} a_{i,j}(X_i X_j f)(e) + \int_{H_d^{\times}} \left[f(x) - f(e) - \sum_{i=1}^{2d+1} \zeta_i(x)(X_i f)(e) \right] d\eta(x),$$

where p_1, \ldots, p_{2d+1} are real numbers, $(a_{i,j})_{1 \le i,j \le 2d+1}$ is a real symmetric positive semidefinite matrix, η is a Lévy measure on H_d , i.e., a positive σ -finite Radon measure on H_d^{\times} , with

$$\int_{\mathbf{H}_{d}^{\times}}\min\left(1,\sum_{i=1}^{2d+1}x_{i}^{2}\right)d\eta(x)<\infty,$$

and $\{\zeta_1, \ldots, \zeta_{2d+1}\}$ is a system of local coordinates of the first kind in $\mathcal{D}(H_d)$ adapted to the basis $\{X_1, \ldots, X_{2d+1}\}$. It follows from 4.1.9 Lemma in [5] that we can suppose without loss of generality that $\zeta_i(x) = x_i$ for all $x \in \{x \in H_d: |x| \leq 1\}$ and $i = 1, \ldots, 2d+1$. Since every c.c.s. $(\mu_i)_{i\geq 0}$ on H_d is uniquely determined by the restriction of its generating distribution A on $\mathscr{E}(H_d)$, we shall write $A = [(p_i), (a_{i,j}), \eta]$. It is well known that a c.c.s. whose generating distribution takes the form $A = [(p_i), (a_{i,j}), 0]$ is called a *Gaussian semigroup*. We will call a c.c.s. with generating distribution $A = [(p_i), 0, \eta]$ a c.c.s. without *Gaussian component*.

3. Full measures and \mathscr{B} -domains of attraction. In view of the characterization theorems of [26], Section 3, we have to require a weak form of a functional limit theorem, i.e., the convergence of the discrete convolution semigroups $\sigma_n v^{[m]} \xrightarrow{n \to \infty} \mu_t$ (for all t > 0), to obtain necessary conditions on v and the sequence $(\sigma_n)_n \text{ in } \sigma_n v^n \xrightarrow{n \to \infty} \mu_1$. As in [26], Section 4, we need the notion of fullness of a measure and a convergence of types theorem to pass from $\sigma_n v^n \xrightarrow{n \to \infty} \mu_1$ to a functional limit. Due to [1], [19] and [4] we have

DEFINITION 3.1. A measure $\mu \in M^1(H_d)$ is called *full* if $P_1(\mu)$ is not concentrated on a proper subspace of \mathbb{R}^{2d} .

With this definition the following convergence of types theorem holds:

PROPOSITION 3.2 ([1], [4]). Let $\mu_n, \mu, \lambda \in M^1(H_d)$ and $\sigma_n \in \operatorname{Aut}(H_d)$ be a sequence of automorphisms. Suppose that $\mu_n \xrightarrow[n \to \infty]{} \mu$ and $\sigma_n \mu_n \xrightarrow[n \to \infty]{} \lambda$. If μ and λ are full, then the set $\{\sigma_n | n \in \mathbb{N}\}$ is relatively compact in $\operatorname{Aut}(H_d)$ and for every accumulation point σ we have $\sigma \mu = \lambda$.

Let now $\mathscr{B} \subset \operatorname{Aut}(H_d)$ be a closed subgroup of automorphisms and $(\tau_t)_{t>0} \subset \mathscr{B}$ be a continuous one-parameter group of automorphisms. We will specify \mathscr{B} in Section 4. Now we recall some specializations of known definitions on domains of attraction and stability of c.c.s. on H_d .

DEFINITION 3.3. A c.c.s. $(\mu_t)_{t\geq 0} \subset M^1(H_d)$ is called \mathscr{B} -stable if there exists a continuous one-parameter group $(\tau_t)_{t\geq 0} \subset \mathscr{B}$ such that $\tau_s \mu_t = \mu_{st}$ for all s, t > 0.

DEFINITION 3.4. Let μ , $v \in M^1(H_d)$. Then v is said to belong to the \mathscr{B} -domain of attraction of μ , denoted by $v \in DOA_{\mathscr{B}}(\mu)$, if there exists a sequence $(\sigma_n)_n \subset \mathscr{B}$ such that

$$\sigma_n v^n \xrightarrow[n \to \infty]{} \mu.$$

If μ is embeddable in a $(\tau_t)_{t>0}$ -stable c.c.s. $(\mu_t)_{t\geq 0} \subset M^1(G)$ (i.e., $\mu_1 = \mu$), we say that ν belongs to the domain of normal attraction of $\mu = \mu_1$, and write $\nu \in \text{DONA}(\mu, (\tau_t)_{t>0})$, if

holds.

Taking into consideration that in general we do not know if a c.c.s. $(\mu_i)_{i \ge 0}$ on H_d is uniquely determined by $\mu = \mu_1$, we have to distinguish between attraction to a semigroup and attraction to a single measure. Therefore we have

DEFINITION 3.5. Let $(\mu_t)_{t\geq 0} \subset M^1(H_d)$ be a c.c.s. Then $v \in M^1(H_d)$ is said to belong to the \mathscr{B} -domain of attraction of $(\mu_t)_{t\geq 0}$, denoted by $v \in DOA_{\mathscr{B}}((\mu_t)_{t\geq 0})$, if there exists a sequence $(\sigma_n)_n \subset \mathscr{B}$ such that

$$\sigma_n v^{[nt]} \xrightarrow{n \to \infty} \mu_t$$
 for all $t > 0$.

If additionally the c.c.s. $(\mu_t)_{t\geq 0}$ is $(\tau_t)_{t\geq 0}$ -stable, we say that $v \in M^1(H_d)$ is in the domain of normal attraction of $(\mu_t)_{t\geq 0}$, and write $v \in \text{DONA}((\mu_t)_{t\geq 0}, (\tau_t)_{t>0})$, if

$$t_{1/n} v^{[nt]} \xrightarrow{} \mu_t \quad \text{for all } t > 0.$$

Clearly, we have

$$\mathrm{DOA}_{\mathscr{B}}((\mu_t)_{t \ge 0}) \subset \mathrm{DOA}_{\mathscr{B}}(\mu_1)$$

and

DONA
$$((\mu_t)_{t\geq 0}, (\tau_t)_{t>0}) \subset \text{DONA}(\mu_1, (\tau_t)_{t>0}).$$

To prove necessary conditions about measures v in the domain of attraction of μ_1 we need (in view of the characterization theorems of [26], Section 3) the opposite inclusions, i.e., the passage from $\sigma_n v^n \xrightarrow[n \to \infty]{} \mu_1$ to a functional limit $\sigma_n v^{[nt]} \xrightarrow[n \to \infty]{} \mu_t$ for all t > 0. In fact, we have:

PROPOSITION 3.6 (see [20], Theorem 6). Let $(\mu_t)_{t \ge 0}$ be a c.c.s. If μ_1 is full, we have

$$\text{DOA}_{\mathcal{R}}(\mu_1) = \text{DOA}_{\mathcal{R}}((\mu_t)_{t \ge 0}).$$

In the case of normal attraction we have without further assumptions:

PROPOSITION 3.7 (see [12], Proposition 4). Let $(\tau_t)_{t>0} \subset \operatorname{Aut}(H_d)$ and $(\mu_t)_{t\geq 0}$ be a $(\tau_t)_{t\geq 0}$ -stable c.c.s. Then we have

DONA
$$(\mu_1, (\tau_t)_{t>0}) = DONA((\mu_t)_{t\ge0}, (\tau_t)_{t>0}).$$

$$\tau_{1/n} \nu^n \xrightarrow[n \to \infty]{} \mu$$

4. Automorphisms of the Heisenberg group. In this section we define a special subgroup $\mathscr{B} \subset \operatorname{Aut}(H_d)$ of automorphisms of H_d and obtain some very useful relations between stable c.c.s. on H_d and their images under the projections P_1 and P_2 on \mathbb{R}^{2d} , resp. \mathbb{R} .

Furthermore, we introduce the notion of a pseudo-inner product on H_d and an automorphism norm for automorphisms in \mathcal{B} which behave like the usual inner product and the operator norm on \mathbb{R}^d . Recall from (2) the definition of the projections P_1 and P_2 .

DEFINITION 4.1. For x, $y \in H_d$ let us define by

(4) $\langle x, y \rangle \stackrel{\text{def}}{=} \psi(\bar{x}, \bar{y}) + \sqrt{|x'y'|}$

the pseudo-inner product on H_d , where $\psi(\bar{x}, \bar{y}) = \sum_{i=1}^{2d} x_i y_i$ is the usual inner product on \mathbb{R}^{2d} .

The notion of pseudo-inner product is justified by

LEMMA 4.2. We have $\langle x, x \rangle = |x|^2$, $\langle \delta_t x, y \rangle = \langle x, \delta_t y \rangle = t \langle x, y \rangle$, $|\langle x, y \rangle| \leq |x| \cdot |y|$ for all $x, y \in H_d$ and t > 0.

Proof. The first two assertions are obvious. One needs to show the last assertion only for |x| = |y| = 1. We have

$$\begin{aligned} |\langle x, y \rangle| &\leq \sum_{i=1}^{2d} \sqrt{x_i^2 y_i^2} + \sqrt{|x' y'|} \leq \frac{1}{2} \left(\sum_{i=1}^{2d} (x_i^2 + y_i^2) + |x'| + |y'| \right) \\ &= \frac{1}{2} (|x|^2 + |y|^2) = 1. \quad \blacksquare \end{aligned}$$

Following [1], (1.2) Proposition, every automorphism $\tau \in \operatorname{Aut}(H_d)$ has the unique decomposition

(5)
$$\tau = \operatorname{inn}(v) \circ \alpha_F \circ \delta_s,$$

where inn (v) denotes for $v \in \mathbb{R}^{2d}$ the inner automorphism

$$\lim_{x \to \infty} (v) (x) \stackrel{\text{der}}{=} (\bar{x}, x' + \sigma(v, \bar{x})) = (v, 0) \circ x \circ (v, 0)^{-1}.$$

Let Sp (\mathbf{R}^{2d}) be the set of all symplectic mappings on \mathbf{R}^{2d} (with respect to the symplectic form σ), and $\widetilde{Sp}(\mathbf{R}^{2d})$ be the set of all skew-symplectic mappings. We set

$$\mathbf{S}(\mathbf{R}^{2d}) \stackrel{\text{def}}{=} \operatorname{Sp}(\mathbf{R}^{2d}) \cup \widetilde{\operatorname{Sp}}(\mathbf{R}^{2d})$$

and for $F \in S(\mathbb{R}^{2d})$ we define

$$\alpha_F(x) = \begin{cases} (F\bar{x}, x') & \text{if } F \in \operatorname{Sp}(\mathbb{R}^{2d}), \\ (F\bar{x}, -x') & \text{if } F \in \widetilde{\operatorname{Sp}}(\mathbb{R}^{2d}) \end{cases}$$

for $x \in H_d$. In the following we will only use automorphisms τ without an inner part, i.e., v = 0 in (5). We use the abbreviated notation

$$\psi_{F,s} \stackrel{\mathrm{def}}{=} \alpha_F \circ \delta_s$$

12 - PAMS 14.2

and define

(6)
$$\mathscr{B} \stackrel{\text{def}}{=} \{ \psi_{F,s} | F \in \mathbf{S}(\mathbb{R}^{2d}), s > 0 \}$$

to be the closed subgroup of admissible automorphisms. From the definition we get

(7)
$$\delta_t \circ \psi_{F,s} = \psi_{F,s} \circ \delta_t$$

for all $\psi_{F,s} \in \mathscr{B}$ and t > 0; hence the automorphisms in \mathscr{B} commute with dilations. Let sp (\mathbb{R}^{2d}) denote the Lie algebra of Sp (\mathbb{R}^{2d}) and for $M \in \text{sp}(\mathbb{R}^{2d})$ let spec (M) be the set of all complex eigenvalues of M counted by multiplicity. It follows from [1], (2.6) Corollary, that the contracting one-parameter subgroups in \mathscr{B} are given by

(8)
$$\sigma_{M,m}(t) \stackrel{\text{def}}{=} \psi_{t^M,t^m},$$

where m > 0 and $M \in \operatorname{sp}(\mathbb{R}^{2d})$ with $\operatorname{Re} \lambda > -m$ for all $\lambda \in \operatorname{spec}(M)$. The pair (M, m) will be called the *exponent of the one-parameter group* $(\sigma_{M,m}(t))_{t>0}$. From the definition of the projections P_1 and P_2 and the automorphisms in \mathscr{B} we obtain the following very useful identities:

(9)
$$P_1 \circ \psi_{F,s} = (sF) \circ P_1, \quad P_2 \circ \psi_{F,s} = \pm s^2 P_2.$$

Remark 4.3. An easy computation shows that in general the identities (9) are not valid if one replaces $\psi_{F,s}$ by an arbitrary automorphism with inner part.

For linear mappings T on a normed vector space the operator norm ||T|| is very useful. We will now define an analogous quantity for automorphisms in \mathcal{B} and we will show that some of the usual estimates are valid for our automorphism norm. Since the set

$$\Sigma \stackrel{\text{def}}{=} \{ x \in \boldsymbol{H}_d : |x| = 1 \}$$

is compact and $|\tau \circ \delta_t x| = t |\tau x|$ for all $\tau \in \mathcal{B}$, t > 0 and $x \in H_d$, the definition

(10) $|\tau| \stackrel{\text{def}}{=} \sup_{x \neq 0} \frac{|\tau x|}{|x|} = \sup_{x \in \Sigma} |\tau x|$

makes sense for all $\tau \in \mathscr{B}$. We will call $|\tau|^r$ the *automorphism norm* of $\tau \in \mathscr{B}$. This notion is justified by

LEMMA 4.4. For $\tau_1, \tau_2, \tau \in \mathcal{B}$, $x \in H_d$ and r > 0 we have:

(a) $|\tau x| \leq |\tau| \cdot |x|, \ |\tau_1 \tau_2| \leq |\tau_1| \cdot |\tau_2|, \ |\delta_r \tau| = |\tau \delta_r| = r |\tau|, \ |\delta_r| = r.$

(b) Let $(\tau_n)_n \subset \mathscr{B}$ be a sequence of automorphisms. Then the following assertions are equivalent:

(1) $\tau_n x \xrightarrow[n \to \infty]{} e \text{ for all } x \in H_d$, i.e. $(\tau_n)_n$ is contracting;

(2) $|\tau_n| \xrightarrow[n \to \infty]{n \to \infty} 0.$

Proof. (a) follows directly from the definition.

(b) (1) \Rightarrow (2). Since every τ_n is continuous, for an arbitrary $x_0 \in \Sigma$ there

exists an open neighbourhood $B_{x_0} \subset \Sigma$ such that $\tau_n x \xrightarrow[n \to \infty]{} e$ uniformly for all $x \in B_{x_0}$. Using the compactness of Σ we conclude that $\tau_n x \xrightarrow[n \to \infty]{} e$ uniformly on Σ , and hence $|\tau_n| \xrightarrow[n \to \infty]{} 0$.

 $(2) \Rightarrow (1)$. This follows from Lemma 4.4 (a).

Recall from Definition 3.1 that we call a measure $\mu \in M^1(H_d)$ full if $P_1(\mu)$ is not concentrated on a proper subspace of \mathbb{R}^{2d} . We will now prove some useful relations between c.c.s. on H_d and their projections under P_1 and P_2 on $P_1(H_d) = \mathbb{R}^{2d}$ and on $P_2(H_d) = \mathbb{R}$.

PROPOSITON 4.5. Let $(\mu_t)_{t\geq 0} \subset M^1(H_d)$ be a c.c.s. and $(\sigma_{M,m}(t))_{t\geq 0} \subset \mathscr{B}$ be a continuous one-parameter group of automorphisms. We have:

(i) If μ_t is full, then $P_1(\mu_t)$ is full on \mathbb{R}^{2d} , i.e., not concentrated on a proper subspace of \mathbb{R}^{2d} .

(ii) $(\mu_t)_{t\geq 0}$ is $(\sigma_{M,m}(t))_{t>0}$ -stable, then $(P_1(\mu_t))_{t\geq 0}$ is $(t^{m+M})_{t>0}$ -stable.

(iii) Let $(\mu_t)_{t\geq 0}$ be a $(\sigma_{M,m}(t))_{t\geq 0}$ -stable c.c.s. without Gaussian component and generating distribution $A = [(a_i), 0, \eta]$. Then:

(a) The generating distribution $P_1(A)$, defined by $\langle P_1(A), f \rangle \stackrel{\text{def}}{=} \langle A, f \circ P_1 \rangle$ for $f \in \mathcal{D}(\mathbb{R}^{2d})$, generates the $(t^{m+M})_{t>0}$ -stable c.c.s. $(P_1(\mu_t))_{t\geq 0}$ on \mathbb{R}^{2d} without Gaussian component. The Lévy measure of $(P_1(\mu_t))_{t\geq 0}$ is given by

$$f \mapsto \int_{\mathbf{H}_d^{\times}} f \circ P_1 \, d\eta$$

for $f \in \mathcal{D}(\mathbf{R}^{2d})$ with $0 \notin \text{supp } f$. We denote this Lévy measure by $P_1(\eta)$.

(b) The generating distribution $P_2(A)$, defined by $\langle P_2(A), f \rangle = \langle A, f \circ P_2 \rangle$ for $f \in \mathcal{D}(\mathbf{R})$, generates a $(t^{2m})_{t>0}$ -stable c.c.s. $(\lambda_t)_{t\geq 0}$ on \mathbf{R} without Gaussian component. The Lévy measure of $(\lambda_t)_{t\geq 0}$ is given by

$$f \mapsto \int_{\mathbf{H}_d^{\times}} f \circ P_2 \, d\eta$$

for $f \in \mathcal{D}(\mathbf{R})$ with $0 \notin \text{supp } f$. We denote this Lévy measure by $P_2(\eta)$.

(iv) Let $(\mu_t)_{t\geq 0}$ be a $(\sigma_{M,m}(t))_{t\geq 0}$ -stable Gaussian semigroup with generating distribution A. Then

(a) $(P_1(\mu_t))_{t\geq 0}$ is a $(t^{m+M})_{t>0}$ -stable Gaussian semigroup on \mathbb{R}^{2d} with generating distribution $P_1(A)$.

(b) $P_2(A)$ is the generating distribution of a $(t^{2m})_{t>0}$ -stable Gaussian semigroup $(\lambda_t)_{t\geq 0}$ on **R**.

Proof. (i) is Definition 3.1. (ii) follows from (8) and (9).

(iii) (a) Using (8), (9) and $\sigma_{M,m}(t)(A) = tA$ for all t > 0 we conclude that $P_1(A)$ is the generating distribution of a $(t^{m+M})_{t>0}$ -stable c.c.s. without Gaussian component. For all regular functions $f \in \mathscr{E}(\mathbb{R}^{2d})$ we have

$$\langle P_1(A), f \rangle = \langle A, f \circ P_1 \rangle = \lim_{t \downarrow 0} \frac{1}{t} \langle \mu_t - \varepsilon_e, f \circ P_1 \rangle = \lim_{t \downarrow 0} \frac{1}{t} \langle P_1(\mu_t) - \varepsilon_0, f \rangle,$$

and hence $P_1(A)$ is the generating distribution of $(P_1(\mu_t))_{t\geq 0}$. The Lévy measure of $(P_1(\mu_t))_{t\geq 0}$ is given by

$$\lim_{t\downarrow 0} \frac{1}{t} \langle P_1(\mu_t), f \rangle = \lim_{t\downarrow 0} \frac{1}{t} \langle \mu_t, f \circ P_1 \rangle = \langle \eta, f \circ P_1 \rangle$$

for $f \in C^b(\mathbb{R}^{2d})$ with $0 \notin \operatorname{supp} f$.

(b) The proof of (b) and (iv) is similar.

Remark 4.6. (a) Note that in Proposition 4.5 (iii), (iv) the equality $P_1(A) = 0$ or $P_2(A) = 0$ is possible.

(b) It follows from the definition of the group law of H_d that in general

$$P_{2}(\mu_{t}) * P_{2}(\mu_{s}) \neq P_{2}(\mu_{t} * \mu_{s}),$$

i.e., $(P_2(\mu_t))_{t\geq 0}$ is not a convolution semigroup. Hence one cannot speak of the Lévy measure of the family $(P_2(\mu_t))_{t\geq 0}$. Note that for $f \in \mathscr{E}(\mathbf{R})$ we have

$$\frac{d^+}{dt} \langle P_2(\mu_t), f \rangle|_{t=0} = \frac{d^+}{dt} \langle \lambda_t, f \rangle|_{t=0}.$$

5. *B*-domains of attraction. In this section we will obtain necessary and sufficient conditions for attraction to a *B*-stable c.c.s. Our results extend those of Meerschaert [15] and Jurek [9] on \mathbb{R}^d , who characterize the domains of attraction in terms of convergence towards the Lévy measure of the c.c.s. In contrast to [26] we will not prove the assertion directly on H_d , but we will use Proposition 4.5 and the known results on \mathbb{R}^{2d} , resp. \mathbb{R} , in our proof. Therefore we will call our method of proof the *projection method*. Furthermore, we use the convergence criteria for discrete semigroups stated and proved in [26].

Our first result is the description of the \mathcal{B} -domain of attraction of a \mathcal{B} -stable full c.c.s. without Gaussian component.

THEOREM 5.1. Let $(\mu_t)_{t\geq 0} \subset M^1(H_d)$ be a full $(\sigma_{M,m}(t))_{t>0}$ -stable c.c.s. without Gaussian component and generating distribution $A = [(a_i), 0, \eta]$. For $v \in M^1(H_d)$ the condition

(i) $v \in DOA_{\mathscr{B}}(\mu_1)$

implies

(ii) there exists a sequence $(\tau_n)_n \subset \mathscr{B}$ with $|\tau_n| \xrightarrow{\longrightarrow} 0$ and

$$n(\tau_n v) \xrightarrow{} \eta \quad in \ \mathcal{M}(\mathbf{H}_d^{\times}).$$

If additionally v and μ_1 are symmetric, we have (ii) \Rightarrow (i).

Proof. In view of Proposition 3.6 we can apply Theorem 3.1 of [26]. (i) \Rightarrow (ii). Because of Theorem 3.1 (2) (c) in [26] we have only to show that $|\tau_n| \xrightarrow[n \to \infty]{} 0$ holds. From Proposition 1 of [20] we conclude that $\tau_n v \xrightarrow[n \to \infty]{} \varepsilon_e$. Since μ_1 is full, v must be full, and hence $(\tau_n)_n$ is contracting; therefore Lemma 4.4 (b) yields the assertion.

(ii) \Rightarrow (i). Let μ_1 , ν be symmetric and $\tau_n = \psi_{F_n, s_n} \in \mathscr{B}$ with $|\tau_n| \underset{n \to \infty}{\longrightarrow} 0$. From the definition of $|\tau_n|$ we easily obtain

(11)
$$||s_n F_n|| \xrightarrow[n \to \infty]{} 0$$
 and $s_n \xrightarrow[n \to \infty]{} 0.$

Using (9) it follows from $n(\tau_n \nu) \xrightarrow{} \eta$ that

(12)
$$n((s_n F_n) \circ P_1(v)) \xrightarrow[n \to \infty]{} P_1(\eta) \quad \text{in } \mathcal{M}(\mathbb{R}^{2d} \setminus \{0\}).$$

An application of Proposition 4.5 yields that $P_1(A)$ is the generating distribution of a full $(t^{m+M})_{t>0}$ -stable symmetric c.c.s. $(P_1(\mu_t))_{t\geq 0}$ without Gaussian component and Lévy measure $P_1(\eta)$ on \mathbb{R}^{2d} . With the use of the Theorem of [15] it follows from (11) and (12) that

$$P_1(v) \in \mathrm{DOA}(P_1(\mu_1)),$$

even $(s_n F_n) P_1(v)^n \xrightarrow[n \to \infty]{} P_1(\mu_1)$, because $(\mu_t)_{t \ge 0}$ is symmetric. It is well known that this is equivalent to

$$(s_n F_n) (P_1(v))^{[nt]} \xrightarrow[n \to \infty]{} P_1(\mu_t) \quad \text{for all } t > 0.$$

Using Theorem 3.1 of [26] we conclude that

$$\lim_{\varepsilon \downarrow 0} \limsup_{n \to \infty} n \iint_{\|\bar{x}\|_{2} < \varepsilon} x_{i}^{2} d\left((s_{n} F_{n}) \circ P_{1}(v)\right)(\bar{x}) = 0$$

for i = 1, ..., 2d. Because of

$$\int_{|\mathbf{x}| < \varepsilon} \xi_i(\mathbf{x})^2 d(\tau_n \mathbf{v})(\mathbf{x}) \leq \int_{\|\bar{\mathbf{x}}\| < \varepsilon} x_i^2 d((s_n A_n) \circ P_1(\mathbf{v}))(\bar{\mathbf{x}})$$

we obtain

(13)
$$\lim_{\epsilon \downarrow 0} \limsup_{n \to \infty} n \int_{|x| < \epsilon} \xi_i(x)^2 d(\tau_n v)(x) = 0$$

for i = 1, ..., 2d. In view of Theorem 3.1 in [26] it remains to show (13) for i = 2d+1. For a > 0 let $\theta_a: \mathbb{R} \to \mathbb{R}, \ \theta_a(x) \stackrel{\text{def}}{=} ax$, denote the homothetical transformation on \mathbb{R} . From (9) and $n(\tau_n v) \xrightarrow{n \to \infty} \eta$ we obtain

(14)
$$n(\theta_{s_n^2} P_2(v)) \xrightarrow[n \to \infty]{} P_2(\eta) \quad \text{in } \mathcal{M}(\mathbb{R} \setminus \{0\}).$$

By Proposition 4.5 we see that $P_2(A)$ is the generating distribution of a $(t^{2m})_{t>0}$ -stable c.c.s. $(\lambda_t)_{t\geq0}$ without Gaussian component on R and Lévy measure $P_2(\eta)$. Since $(\mu_t)_{t\geq0}$ is symmetric, it follows that $(\lambda_t)_{t\geq0}$ is symmetric. Now the case that $(\lambda_t)_{t\geq0}$ is a point measure, i.e., $P_2(\eta) = 0$, is possible, so we need to consider two cases.

First case. $P_2(\eta) = 0$. Then we have $n(\theta_{s_n^2} P_2(\nu)) \xrightarrow[n \to \infty]{} 0$ in $\mathcal{M}(\mathbb{R} \setminus \{0\})$. Hence

(15)
$$\lim_{\varepsilon \downarrow 0} \limsup_{n \to \infty} n \int_{|x'| < \varepsilon} x'^2 d(\theta_{s_n^2} P_2(v))(x') = 0.$$

Second case. $P_2(\eta) \neq 0$. Then $(\lambda_t)_{t \geq 0}$ is a full c.c.s. on **R** without Gaussian component. With the use of Theorem 2 in [14] or the Theorem in [15] we infer from (14) that $P_2(v) \in \text{DOA}(\lambda_1)$, even $\theta_{s_n^2} P_2(v)^n \xrightarrow{\to} \lambda_1$, since $(\lambda_t)_{t \geq 0}$ and v are symmetric. Using Theorem 3.1 of [26] we conclude that (15) holds. Because of

$$n \int_{|x|<\varepsilon} x_{2d+1}^2 d(\tau_n \nu)(x) \leq n \int_{|x_{2d+1}|<\varepsilon^2} x_{2d+1}^2 d(\tau_n \nu)(x) \leq n \int_{|x'|<\varepsilon} x'^2 d(\theta_{s_n^2} P_2(\nu))(x'),$$

we get (13) for i = 2d+1 from (15). This completes the proof.

As in [26] we can prove as a corollary to Theorem 5.1 a description of the domain of normal attraction of a full $(\sigma_{M,m}(t))_{t>0}$ -stable c.c.s. $(\mu_t)_{t\geq0}$ without Gaussian component. Hence we need a desintegration formula of the Lévy measure of $(\mu_t)_{t\geq0}$ and, consequently, a compact cross-section $\Sigma \subset H_d^{\times}$ such that the mapping

$$\psi: \mathbf{R}^*_+ \times \Sigma \to \mathbf{H}^\times_d, \quad (t, u) \mapsto \sigma_{M, m}(t) u,$$

is a homeomorphism. In contrast to Lemma 5.6 of [26], in general we cannot realize Σ as the unit sphere with respect to the usual homogeneous norm $|\cdot|$, but only with respect to a special homogeneous norm $|\cdot|_i$ which will depend on the exponent (M, m).

First we need some information about the exponent (M, m) of the one-parameter group of a full $(\sigma_{M,m}(t))_{t>0}$ -stable c.c.s. without Gaussian component.

PROPOSITION 5.2. Let $(\mu_t)_{t\geq 0} \subset M^1(H_d)$ be a full $(\sigma_{M,m}(t))_{t>0}$ -stable c.c.s. without Gaussian component. Then necessarily $m > \frac{1}{2}$ and $\operatorname{Re} \lambda > -m + \frac{1}{2}$ for all $\lambda \in \operatorname{spec}(M)$.

Proof. According to Theorem 1 of [1] we have $m \ge \frac{1}{2}$ and $\operatorname{Re} \lambda \ge -m + \frac{1}{2}$ for all $\lambda \in \operatorname{spec}(M)$ and $mI_{2d} + M \in \operatorname{GL}(\mathbb{R}^{2d})$, where I_{2d} denotes the identity in $\operatorname{GL}(\mathbb{R}^{2d})$. Let us first suppose that $m = \frac{1}{2}$. Because of $M \in \operatorname{sp}(\mathbb{R}^{2d})$ it follows that

trace
$$(M) \stackrel{\text{def}}{=} \sum_{\lambda \in \operatorname{spec}(M)} \lambda = 0.$$

Consequently, $\min_{\lambda \in \operatorname{spec}(M)} \operatorname{Re} \lambda \leq 0$ and $\max_{\lambda \in \operatorname{spec}(M)} \operatorname{Re} \lambda \geq 0$. As $m = \frac{1}{2}$, we get $\operatorname{Re} \lambda \geq 0$ for all $\lambda \in \operatorname{spec}(M)$, and hence $\operatorname{Re} \lambda = 0$ for all $\lambda \in \operatorname{spec}(M)$. In view of Proposition 4.5, $(P_1(\mu_t))_{t\geq 0}$ is a full $(t^{m+M})_{t\geq 0}$ -stable c.c.s. on \mathbb{R}^{2d} without Gaussian component, and then $m + \operatorname{Re} \lambda = \frac{1}{2}$ is a contradiction to [28]. Let us now suppose $m > \frac{1}{2}$ and $\operatorname{Re} \lambda = -m + \frac{1}{2}$ for some $\lambda \in \operatorname{spec}(M)$. This is again a contradiction to [28].

The desintegration formula is given by:

PROPOSITION 5.3. Let $(\mu_t)_{t\geq 0} \subset M^1(H_d)$ be a full $(\sigma_{M,m}(t))_{t\geq 0}$ -stable c.c.s. without Gaussian component and Lévy measure η . Then there exists a homogeneous norm $|\cdot|_i = |\cdot|_{i,(M,m)}$ on H_d and a finite Borel measure χ on

 $\Sigma \stackrel{\text{def}}{=} \{ x \in H_d; |x|_i = 1 \} \text{ such that:}$

(16)
$$\eta(B) = \int_{\Sigma} \int_{0}^{\infty} 1_{B} (\sigma_{M,m}(t) u) t^{-2} dt d\chi(u)$$

for all Borel subsets $B \subset H_d^{\times}$.

Proof. We use some of the ideas of Jurek [11]. For $x \in H_d$ we define

$$|x|_i \stackrel{\text{def}}{=} \int_0^1 |\sigma_{M,m}(t) x| \frac{dt}{t}.$$

It follows from Proposition 5.2 and [6], p. 136, that there exists a constant K > 0 such that $|\sigma_{M,m}(t)x| \leq K |x| t^{1/2}$ for all $x \in H_d$ and t > 0. Hence $|x|_i$ is well defined. An easy computation shows that $|\cdot|_i$ is a homogeneous norm on H_d , so it is equivalent to $|\cdot|$. Furthermore, the mapping

$$\psi: \mathbf{R}^*_+ \times \Sigma \to \mathbf{H}_d \setminus \{\mathbf{0}\}, \quad (t, u) \mapsto \sigma_{M, m}(t) u,$$

is one-to-one, onto and continuous. By an argument analogous to that in the proof of Corollary 2 in [11] it follows that ψ is a homeomorphism. Now one can derive (16) as in the proof of Lemma 5.6 in [26].

Remark 5.4. With the use of the desintegration formula (16) one easily gets:

$$\eta\left(\partial\left\{\sigma_{M,m}(t)\,u\,|\,u\in B,\,t\geqslant a\right\}\right)=0\Leftrightarrow\chi(\partial B)=0$$

for all Borel subsets $B \subset \Sigma$ and all a > 0.

As a corollary to Theorem 5.1, by using Proposition 5.3 now we can prove the following description of the domain of normal attraction.

COROLLARY 5.5. Let $(\mu_i)_{t\geq 0} \subset M^1(H_d)$ be a full $(\sigma_{M,m}(t))_{t\geq 0}$ -stable c.c.s. without Gaussian component and let its Lévy measure η be decomposed as in (16). For a measure $v \in M^1(H_d)$ the condition

(i) $v \in \text{DONA}(\mu_1, (\sigma_{M,m}(t))_{t>0})$ implies

(ii) $\lim_{t\to\infty} tv \{\sigma_{M,m}(s) | u \in B, s \ge t\} = \chi(B)$ for all Borel sets $B \subset \Sigma$ with $\chi(\partial B) = 0$.

If additionally v and μ_1 are symmetric, we also have (ii) \Rightarrow (i).

Proof. The proof is identical to the proof of Corollary 5.11 in [26] if one replaces the dilation δ_t by $\sigma_{M,m}(t)$. Observe also Remark 5.4.

Remark 5.6. Of course, the exponent (M, m) of a full $(\sigma_{M,m}(t))_{t>0}$ -stable c.c.s. $(\mu_t)_{t\geq 0}$ is not uniquely determined. But our definition of the domain of normal attraction does not depend on the choice of the exponent (M, m) as seen by the following general argument:

Let G be a simply-connected nilpotent Lie group, $(\tau_t)_{t>0} \subset \operatorname{Aut}(G)$ a continuous one-parameter group, and $(\mu_t)_{t\geq 0}$ be a full $(\tau_t)_{t>0}$ -stable c.c.s.

Suppose that there exists another one-parameter group $(\sigma_i)_{t>0} \subset \operatorname{Aut}(G)$ such that $(\mu_i)_{t\geq 0}$ is also $(\sigma_i)_{t>0}$ -stable. Then by a simple computation we infer that

$$\{\sigma_t \tau_{1/t}\}_{t>0} \subset \mathscr{I}_{\mathscr{B}}(\mu_1) \stackrel{\text{def}}{=} \{\tau \in \mathscr{B} | \tau \mu_1 = \mu_1\},\$$

where $\mathscr{I}(\mu_1)$ is the invariance group of μ_1 . Since μ_1 is full, it follows from [20], 2.3, that $\mathscr{I}(\mu_1)$ is compact. For $v \in \text{DONA}(\mu_1, (\tau_i)_{i>0})$ we conclude that

$$\sigma_{1/n} v^n = (\sigma_{1/n} \tau_n) \tau_{1/n} v^n \xrightarrow[n \to \infty]{} \mu_1$$

by the compactness of $\mathscr{I}(\mu_1)$. Hence $v \in \text{DONA}(\mu_1, (\sigma_t)_{t>0})$.

Now we will investigate the domain of normal attraction of a full $(\sigma_{M,m}(t))_{t>0}$ -stable Gaussian semigroup $(\mu_t)_{t\geq 0}$. First we show as in Proposition 5.2 that in this case the exponent (M, m) has a special structure and it will follow that only certain Gaussian semigroups on H_d are \mathscr{B} -stable.

PROPOSITION 5.7. Let $(\mu_i)_{t\geq 0} \subset M^1(H_d)$ be a full $(\sigma_{M,m}(t))_{t>0}$ -stable Gaussian semigroup. Then the exponent (M, m) necessarily satisfies $m = \frac{1}{2}$ and $\operatorname{Re} \lambda = 0$ for all $\lambda \in \operatorname{spec}(M)$.

Proof. As in the proof of Proposition 5.2 we have $m \ge \frac{1}{2}$ and $\operatorname{Re} \lambda \ge -m + \frac{1}{2}$ for all $\lambda \in \operatorname{spec}(M)$. From Proposition 4.5 we conclude that $(P_1(\mu_t))_{t>0}$ is a full $(t^{m+M})_{t>0}$ -stable Gaussian semigroup on \mathbb{R}^{2d} . Theorem 4 of [28] gives $\operatorname{Re} \lambda = -m + \frac{1}{2}$ for all $\lambda \in \operatorname{spec}(M)$. Since $\operatorname{trace}(M) = 0$, we get $m = \frac{1}{2}$, and hence $\operatorname{Re} \lambda = 0$ for all $\lambda \in \operatorname{spec}(M)$.

In view of the Lévy–Khinchin formula (3) the generating distribution A of an arbitrary Gaussian semigroup $(\mu_t)_{t\geq 0} \subset M^1(H_d)$ takes the form

$$A = \sum_{i=1}^{2d+1} p_i X_i + \sum_{i,j=1}^{2d+1} \tilde{a}_{i,j} X_i X_j,$$

where p_i (i = 1, ..., 2d + 1) are real numbers and $(\tilde{a}_{i,j})$ is a real symmetric positive semidefinite matrix. If $(\mu_t)_{t\geq 0}$ is full and $(\sigma_{M,m}(t))_{t\geq 0}$ -stable, we conclude from the equality $\sigma_{M,m}(t) A = tA$ for all t > 0 and Proposition 5.7 that

(17)
$$A = aX_{2d+1} + \sum_{i,j=1}^{2d} a_{i,j}X_iX_j,$$

where $a \in \mathbf{R}$ and $C \stackrel{\text{def}}{=} (a_{i,j})_{1 \leq i,j \leq 2d}$ is a real symmetric positive semidefinite matrix. It follows easily from Proposition 4.5 that C is the covariance matrix of the full $(t^{m+M})_{t>0}$ -stable Gaussian semigroup $(P_1(\mu_t))_{t\geq 0}$ on \mathbf{R}^{2d} . So we infer from Theorem 5.1 in [27] that CM = MC and C is positive definite. Therefore we have shown:

PROPOSITION 5.8. Let $(\mu_i)_{t\geq 0} \subset M^1(H_d)$ be a full $(\sigma_{M,m}(t))_{t>0}$ -stable Gaussian semigroup. Then its generating distribution A is of the form (17) with a real symmetric positive definite matrix $C = (a_{i,j})_{1 \leq i,j \leq 2d}$ which satisfies MC = CM. We will call C the covariance matrix of the c.c.s. $(\mu_i)_{t\geq 0}$.

We are now in a position to prove a particular nice description of the domain of normal attraction of a full \mathcal{B} -stable Gaussian measure on H_d . We will use our projection method, i.e., Proposition 4.5, and the pseudo-inner product (4) on H_d . Our result is in part analogous to a theorem of Jurek (see [10], Theorem 4.1) on \mathbb{R}^d .

THEOREM 5.9. Let $(\mu_t)_{t\geq 0} \subset M^1(H_d)$ be a full $(\sigma_{M,m}(t))_{t\geq 0}$ -stable Gaussian semigroup with covariance matrix C (cf. Proposition 5.8). Then for $v \in M^1(H_d)$ the condition

(i) $v \in \text{DONA}(\mu_1, (\sigma_{M,m}(t))_{t>0})$ implies

(ii) $\langle (C\bar{y}, 0), (\bar{y}, 0) \rangle = \int_{\mathbf{H}_d} \langle x, (\bar{y}, 0) \rangle^2 dv(x)$ for all $\bar{y} \in \mathbb{R}^{2d}$.

If moreover μ_1 and v are symmetric and additionally v has a finite second homogeneous moment, i.e., $\int_{\mathbf{H}_d} |x|^2 dv(x) < \infty$, we also have (ii) \Rightarrow (i).

Proof. (i) \Rightarrow (ii). According to Propositions 4.5 and 5.8 we have

$$P_1(v) \in \text{DONA}(P_1(\mu_1), (t^{m+M})_{t>0}),$$

and $P_1(\mu_1)$ is a full $(t^{m+M})_{t>0}$ -stable Gaussian measure on \mathbb{R}^{2d} with covariance matrix C. Hence from Theorem 4.1 of [10] it follows that

$$\psi(C\bar{y}, \bar{y}) = \int_{\mathbf{R}^{2d}} \psi(\bar{x}, \bar{y})^2 dP_1(v)(\bar{x}) \quad \text{for all } \bar{y} \in \mathbf{R}^{2d}.$$

Since $\int_{\mathbf{R}^{2d}} \psi(\bar{x}, \bar{y})^2 dP_1(v)(\bar{x}) = \int_{\mathbf{H}_d} \langle x, (\bar{y}, 0) \rangle^2 dv(x)$ for all $y \in \mathbf{R}^{2d}$, the definition (4) yields the assertion.

(ii) \Rightarrow (i). Let μ_1 and v be symmetric and $\int_{H_d} |x|^2 dv(x) < \infty$. Theorem 5.9 (ii) is equivalent to

$$\int_{\mathbf{H}_d} x_i x_j dv(x) = a_{i,j} \quad \text{for all } i, j = 1, \dots, 2d.$$

Hence the well-known central limit theorem on H_d (see [23], [21] and [26], Remark 3.5 (4)) implies

(18)
$$\delta_{1/\sqrt{n}} v^n \underset{n \to \infty}{\longrightarrow} \mu_1.$$

Since $(\mu_t)_{t\geq 0}$ is a full $(\sigma_{M,m}(t))_{t>0}$ -stable Gaussian semigroup on H_d , it follows from (17) that $(\mu_t)_{t\geq 0}$ is also $(\delta_{1/\sqrt{t}})_{t>0}$ -stable. Of course, we have

$$\mu_1 \in \text{DONA}\left(\mu_1, \left(\delta_{1/\sqrt{t}}\right)_{t>0}\right) \text{ and } \mu_1 \in \text{DONA}\left(\mu_1, \left(\sigma_{M,m}(t)\right)_{t>0}\right),$$

so

$$\delta_{1/\sqrt{n}} \mu_1^n \underset{n \to \infty}{\longrightarrow} \mu_1$$
 and $\sigma_{M,m}(1/n) \mu_1^n \underset{n \to \infty}{\longrightarrow} \mu_1$.

By the convergence of types theorem (Proposition 3.2) we see that $\{\sigma_{M,m}(1/n)\delta_{\sqrt{n}}|n \in N\}$ is relatively compact in Aut (H_d) , hence in \mathcal{B} , and all limit

points τ fulfil $\tau \mu_1 = \mu_1$, i.e., $\tau \in \mathscr{I}(\mu_1)$. Finally, (18) and

$$\sigma_{M,m}(1/n) v^n = \left(\sigma_{M,m}(1/n) \,\delta_{\sqrt{n}}\right) \delta_{1/\sqrt{n}} v^n$$

yield the assertion. This completes the proof.

Theorem 5.9 is weaker than the corresponding result of Jurek ([10], Theorem 4.1) on \mathbb{R}^d because we need to require the existence of the second homogeneous moment of v to obtain a sufficient condition. In contrast to the vector space case on \mathbb{R}^d , in general the existence of the second homogeneous moment for measures v in the domain of normal attraction of a full \mathcal{B} -stable Gaussian measure is not necessary. This is shown in the following example.

EXAMPLE 5.10. Let $(\mu_t)_{t\geq 0} \subset M^1(H_1)$ be the full Gaussian semigroup on H_1 with generating distribution $A = X_1^2 + X_2^2$. Then $(\mu_t)_{t\geq 0}$ is $(\delta_{1/\sqrt{t}})_{t>0}$ -stable. We will write the coordinates of H_1 in the form $x = (x_1, x_2, t) \in H_1$ with $P_1(x) = (x_1, x_2)$ and $P_2(x) = t$. Now let $v \in M^1(H_1)$ be the measure with density

(19)
$$(x_1, x_2, t) \mapsto \frac{e}{4\pi} \exp\left[-\frac{1}{2}(x_1^2 + x_2^2)\right] \frac{\log|t| + 1}{t^2 (\log|t|)^2} \mathbf{1}_{\{|t| \ge e\}}(t)$$

with respect to the Haar measure dx on H_1 . Then we have

$$v \in \text{DONA}\left(\mu_1, \left(\delta_{1/\sqrt{t}}\right)_{t>0}\right) \quad \text{but } \int_{H_1} |x|^2 dv(x) = \infty$$

i.e., v has no finite second homogeneous moment.

(a) Since μ_1 and v are symmetric, we can use Corollary 3.4 of [26]. Hence

$$\delta_{1/\sqrt{t}} v^n \mathop{\longrightarrow}\limits_{n \to \infty} \mu_1$$

is equivalent to

(i)
$$n \int_{|x| < \varepsilon} x_i^2 d(\delta_{1/\sqrt{n}} v)(x) \underset{n \to \infty}{\longrightarrow} 1 \quad \text{for } i = 1, 2,$$

(ii)
$$n \int_{|x| \le \varepsilon} x_i x_j d(\delta_{1/\sqrt{n}} v)(x) \underset{n \to \infty}{\longrightarrow} 0 \quad \text{for } i, j = 1, 2, i \ne j,$$

(iii)
$$n \int_{|x| < \varepsilon} x_i t d(\delta_{1/\sqrt{n}} v)(x) \underset{n \to \infty}{\longrightarrow} 0 \quad \text{for } i = 1, 2,$$

(iv)
$$n \int_{|x| < \varepsilon} t^2 d(\delta_{1/\sqrt{n}} v)(x) \underset{n \to \infty}{\longrightarrow} 0,$$

(v)
$$n(\delta_{1/\sqrt{n}}v)\{x: |x| \ge \varepsilon\} \underset{n \to \infty}{\longrightarrow} 0$$

for all $\varepsilon > 0$.

By an easy computation we obtain (i) and (ii). One takes into consideration that

$$\left(-\frac{1}{t\log t}\right)' = \frac{\log t + 1}{t^2 \left(\log t\right)^2}.$$

(iii) follows by a simple symmetry argument. Using the definition (19) of the density of v we get

$$n\int_{|x|<\varepsilon}t^2 d(\delta_{1/\sqrt{n}}v)(x) \leq \frac{e}{n}\int_{e}^{n\varepsilon^2}\frac{\log t+1}{(\log t)^2}dt.$$

After a substitution and integration by parts we obtain

$$\operatorname{li}(x) \stackrel{\text{def}}{=} \int_{e}^{x} \frac{dt}{\log t} = O\left(\frac{x}{\log x}\right) \quad \text{as } x \to \infty.$$

Another integration by parts gives

$$\int \frac{\log t + 1}{(\log t)^2} dt = -\frac{x}{\log x} + e - \ln(x) = O\left(\frac{x}{\log x}\right) \quad \text{as } x \to \infty;$$

therefore we obtain (iv).

From the relation

$$\left\{x \in \boldsymbol{H}_{1}; |x| \geq \sqrt{n\varepsilon}\right\} \subset \left\{x \in \boldsymbol{H}_{1}; \|(x_{1}, x_{2})\| \geq \frac{\sqrt{n\varepsilon}}{2}\right\} \cup \left\{x \in \boldsymbol{H}_{1}; |t| \geq \frac{n\varepsilon^{2}}{4}\right\}$$

it follows that

$$(20) \quad n(\delta_{1/\sqrt{n}}v)\{x; |x| \ge \varepsilon\} \le nv\left\{x; \|(x_1, x_2)\| \ge \frac{\sqrt{n\varepsilon}}{2}\right\} + nv\left\{x; |t| \ge \frac{n\varepsilon^2}{4}\right\}.$$

Using the well-known properties of Gaussian measures on \mathbb{R}^2 we conclude that the first term on the right-hand side of (20) converges against zero. For the second term we obtain

$$n\nu\left\{x; |t| \ge \frac{n\varepsilon^2}{4}\right\} = en \int_{n\varepsilon^2/4}^{\infty} \frac{\log t + 1}{t^2 (\log t)^2} dt = \frac{4e}{\varepsilon^2 \log (n\varepsilon^2/4)} \underset{n \to \infty}{\longrightarrow} 0,$$

and hence (v) is valid.

 (β) We have

$$\int_{H_1} |x|^2 \, dv(x) = \int_{H_1} \|(x_1, x_2)\|^2 \, dv(x) + \int_{H_1} |t| \, dv(x).$$

Trivially, the first term on the right-hand side is finite, but for the second term we compute

$$\int_{A_1} |t| \, dv(x) = e \int_e^\infty \frac{\log t + 1}{t \, (\log t)^2} \, dt = \infty,$$

i.e., v has no second homogeneous moment.

Concluding remarks. In [25] we have shown that a measure v in the domain of attraction of a full stable c.c.s. on H_d has certain moments. More precisely, let $(\mu_t)_{t\geq 0} \subset M^1(H_d)$ be a full $(\sigma_{M,m}(t))_{t\geq 0}$ -stable c.c.s. and define

$$\delta_0 \stackrel{\text{uniform}}{=} \max\left(\{m + \operatorname{Re} \lambda \mid \lambda \in \operatorname{spec}(M)\} \cup \{m\}\right).$$

Then a measure v in the \mathscr{B} -domain of attraction of μ_1 has all homogeneous moments of order less than $1/\delta_0$. This result is analogous to that of [8]. Details will appear elsewhere.

Acknowledgement. This paper was drawn from the author's thesis written at the University of Dortmund. I would like to thank Professor Dr. Wilfried Hazod for his interest during the preparation of this work.

REFERENCES

- T. Drisch and L. Gallardo, Stable laws on the Heisenberg groups, in: Probability Measures on Groups, Proceedings Oberwolfach (1983), Lecture Notes in Math. 1064 (1984), pp. 56-79.
- [2] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, Wiley, New York 1966.
- [3] G. B. Folland, *Harmonic analysis in phase space*, Ann. of Math. Stud. 122, Princeton University Press, Princeton, NJ, 1989.
- [4] W. Hazod and S. Nobel, Convergence-of-types theorem for simply connected nilpotent Lie groups, in: Probability Measures on Groups, Proceedings Oberwolfach (1988), Lecture Notes in Math. 1375 (1989), pp. 99-106.
- [5] H. Heyer, Probability measures on locally compact groups, Ergeb. Math., Springer, Berlin-Heidelberg-New York 1977.
- [6] M. Hirsch and S. Smale, Differential Equations, Dynamical Systems and Linear Algebra, Academic Press, New York 1971.
- [7] W. N. Hudson and J. D. Mason, Operator-stable laws, J. Multivariate Anal. 11 (1981), pp. 434-447.
- [8] W. N. Hudson, J. A. Veeh and D. C. Weiner, Moments of distributions attracted to operator-stable laws, ibidem 24 (1988), pp. 1-10.
- [9] Z. J. Jurek, Domains of normal attraction of operator-stable measures on Euclidean spaces, Bull. Polish Acad. Sci. Math. 28 (1980), pp. 397–409.
- [10] On stability of probability measures in Euclidean spaces, in: Probability Theory on Vector Spaces. II, Proceedings Błażejewko (1979), Lecture Notes in Math. 828 (1980), pp. 129–145.
- [11] Polar coordinates in Banach spaces, Bull. Polish Acad. Sci. Math. 32 (1984), pp. 61-66.
- [12] Y. S. Khokhlov, The domain of normal attraction of a stable probability measure on a nilpotent group, in: Probability Measures on Groups. X, Proceedings Oberwolfach (1990), Plenum Press, New York 1991, pp. 239-247.
- [13] M. M. Meerschaert, Multivariable Domains of Attraction and Regular Variation, Ph. D. Thesis, University of Michigan, 1984.
- [14] Regular variation and domains of attraction in \mathbb{R}^k , Statist. Probab. Lett. 4 (1986), pp. 43–45.
- [15] Domains of attraction of nonnormal operator-stable laws, J. Multivariate Anal. 19 (1986), pp. 342–347.
- [16] Regular variation and generalized domains of attraction in \mathbb{R}^k , 1986 (unpublished manuscript).

- [17] M. M. Meerschaert, Moments of random vectors which belong to some domain of normal attraction, Ann. Probab. 18 (1990), pp. 870-876.
- [18] Spectral decomposition for generalized domains of attraction, ibidem 19 (1991), pp. 875–892.
- [19] S. Nobel, Grenzwertsätze für Wahrscheinlichkeitsmaße auf einfach zusammenhängenden nilpotenten Lie-Gruppen, Dissertation, Institut Mathematik, Dortmund 1988.
- [20] Limit theorems for probability measures on simply connected nilpotent Lie groups, J. Theoret. Probab. 4 (1991), pp. 261-283.
- [21] G. Pap, A new proof of the central limit theorem on stratified Lie groups, in: Probability Measures on Groups. X, Plenum Press, New York 1991, pp. 329-336.
- [22] Central limit theorems on nilpotent Lie groups, preprint, 1992.
- [23] A. Raugi, Théorème de la limite centrale sur les groupes nilpotents, Z. Wahrscheinlichkeitstheorie verw. Gebiete 43 (1978), pp. 149-172.
- [24] E. L. Rvačeva, On domains of attraction of multidimensional distributions, Select. Transl. Math. Statist. Probab. 2 (1962), pp. 183-205.
- [25] H.-P. Scheffler, Anziehungsbereiche stabiler Wahrscheinlichkeitsmaße auf stratifizierbaren Lie-Gruppen, Dissertation, Institut Mathematik, Dortmund 1992.
- [26] D-domains of attraction of stable measures on stratified Lie groups, to appear in J. Theoret. Probab. (1994).
- [27] K. Schmidt, Stable probability measures on R^v, Z. Wahrscheinlichkeitstheorie verw. Gebiete 33 (1975), pp. 19-31.
- [28] M. Sharpe, Operator-stable probability distributions on vector groups, Trans. Amer. Math. Soc. 136 (1969), pp. 51-65.

Universität Dortmund 44221 Dortmund, Germany

Received on 15.2.1994

#