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Abstract. Let H, be the (2d+ 1)-dimensional Heisenberg group
and (u);>0 be a continuous convolution semigroup of probability
measures on H,. Let moreover u, be full. A probability measure v is
said to belong to the domain of attraction of u, if there exists a sequence
(0,), of automorphisms of H, such that ¢,v" — p, weakly. We prove

-t

some simple necessary and sufficient conditions on v for the existence
of such automorphisms if (i,),»0 has no Gaussian component. Fur-
thermore, the domain of normal attraction of a Gaussian measure on
H, is considered.

1. Introduction. Let H, be the (2d+ 1)-dimensional Heisenberg group.
Suppose that y and v are probability distributions on H, and that y is full, i.e.,
not concentrated on a proper closed connected subgroup of H,. We say that
v belongs to the domain of attraction of u if there exists a sequence of
automorphisms (o,), < Aut(H,) such that
(*) o,V 2 1,
where v" denotes the n-th convolution power of v and the convergence is the
weak convergence. We say that p is stable if there exists a continuous
convolution semigroup (,),»o of probability measures on H, with x4, = y and
a continuous one-parameter group (t,),>o = Aut (H,) such that ¢ u, = u, for all
5,t> 0. It is a result of [20] thd.'[ u is stable if and only if u has a non-empty
domain of attraction. :

We are interested therefore in obtaining necessary and sufficient con-
ditions for v to belong to the domain of attraction of a full measure u. In [26]
we have investigated the case of 2-domains of attraction where the norming
automorphisms , are only allowed to belong to the group 2 < Aut(G) of
dilations and G is an arbitrary stratified Lie group. This is due to the fact that
we do not know enough about the structure of the automorphisms of an
arbitrary stratified Lie group. If G = H,, the structure of an automorphism
te Aut (H,) and also of a one-parameter group (z,),>, = Aut(H,) is well known
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“(see [1]). Roughly speaking, every automorphism 7 of H, is the composition of
a kind of block-diagonal automorphism . with an inner automorphism of
H,, where

0
sF :
l!’F,s = 0 >
0...0 +s5?

s>0 and F is a symplectic mapping of R?!., We define # as the closed
subgroup of Aut(H,) of automorphisms without an inner part and consider
only %-stable continuous convolution semigroups and %-domains of attrac-
tion, where the one-parameter group (t,);» and the norming automorphisms
o, are only allowed to belong to 4.

In the classical situation on R or RY, several descriptions of domains of
attraction are known; see, e.g., [2], [13]-[16], [18], [9], [10], [7], and [24].
Especially, Meerschaert [15] proved on R? necessary and sufficient conditions
on a measure v belonging to the domain of attraction of a full nonnormal
measure y, and Jurek [9] has described the domain of normal attraction of
such a measure. If x is a full Gaussian measure on RY Jurek has shown that
v belongs to the domain of normal attraction of y if and only if v has a finite
second moment and the same covariance matrix as .

This paper is organised as follows: In Section 2 we introduce the structure
of the Heisenberg group H, and repeat some important notions about
semigroups. In Section 3 we recall the definition of fullness of a measure and of
various domains of attraction. In view of the convergence criteria for discrete
semigroups in Section 3 of [26] (see also [22]) we need to pass over from (x) to
a functional limit, i.e., the convergence of the discrete semigroups (¢, V™), to
a continuous convolution semigroup (4,),», With g, = u. Due to a result of
Nobel ([20], Theorem 6) for full measures the limit convolution semigroup is
stable, and therefore uniquely determined by y,; hence such a transition is
possible.

In Section 4 we will investigate the automorphisms and one-parameter
groups of automorphisms of H,;. We define a pseudo-inner product on H, and
an automorphism norm for automorphisms in # which behave like the usual
inner product and the operator norm on R?. Furthermore, we show that there
are some very important connections between stable convolution semigroups
on H, and on R*~H,/[H,, H,], resp. R=[H,, H,].

In Section 5 we will state and prove the main results of this paper:
A description of the domain of (normal) attraction of a full measure x without
Gaussian component. The domain of normal attraction of a full Gaussian
measure is also concerned. With the use of our pseudo-inner product we will
give a necessary condition on v belonging to the domain of normal attraction
of such a measure. Unfortunately, this condition is only sufficient if we make
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the further assumption of the existence of the second homogeneous moment
of v. In contrast to the above-mentioned vector space case on R the existence
of the second homogeneous moment of v is not necessary on H, as shown in an
explicit example. We think this example is very surprising.

2. Notation and preliminaries. Let  (p, q) denote the usual Fuclidean
inner product on R? and let

o((p. 9. @, ) =Y @, )=V (2, P)
be the usual symplectic form on R?, Let
b, CRIXR'xR,
furnished with the bracket product

[P, 4. 0), @, 4, )1 E(0, 0, 5((p, 9), (> 7)),

be a realisation of the Heisenberg Lie algebra. Then (h,, [-,-]) is a step 2
stratified Lie algebra. Using the Campbell-Hausdorff formula, we define on
R?%*! the multiplication

1) xoyEx+y+i[x, y], x,yeR¥*L
Then (R**1, o) is called the (2d + 1)-dimensional Heisenberg group, denoted by
H,, which is a stratified Lie group of step 2. We set
H; < H,\{e},
where e denotes the neutral element of H,. With this definition, the exponential
mapping exp: b, — H, is just the identity. Let
(X, Zeri=1,...,2d+1}
be the natural basis of §;. Then the functions
&t Hy— R, gf(x)défxi

define a system of global coordinates on H, with &;(exp X ) = 9, ;, where J, ; is
the Kronecker symbol.

Let
o P;: H;>R* Pi(p,q, 0¥, 9),

P,: H,>R, P,(p,q, 0%,

denote the projections on the steps of I),. Thereby P, is a group homomorphism
from H, onto (the vector space) R?9, whereas in general we have
P,(xo0y) # P,(x)+ P, (y). In the following we use the notation x = (x, x')e H,,
where P,(x) =x and P,(x) =x". For t >0 we denote by §,; H,— H, the
dilation given by

8, x & 6,(x, x) ¥ (tx, 2 %),
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and for xeH, we define
def

el = (1% 13+ D2
Then |-|: H;— R, is a homogeneous norm on H,, i.e., a continuous mapping
with |6, x| = t|x], |x’1| ='|x| and |x| = 0<>x = e. It is well known that any two
homogeneous norms |-|,, |-|, on H, are equivalent, that is there exist constants
C,, C, > 0 such that

Cilxl; < x|, £ C,lx|;, for all xeH,.

By C®(H,) we denote the space of bounded continuous complex-valued
functions on H, equipped with the supremum norm | || .. Let M?% (H,) be the
set of bounded positive Radon measures on H,, and M'(H,) the set of
probability measures on H,; which, furnished with the convolution product and
the weak topology a'(M 1 (H 2> CP(H,)), is a topological semigroup. The point
measure in xeH; is denoted by &,. We use the notation

(wfY< [ fdp  for pe M (H,) and feC*(H,).
Hg

Denote by #(Hj) the class of all g-finite Radon measures on H; which are
finite on sets bounded away from the neutral element e. Let 6B denote the
topological boundary of a set B < H,. For v,, ve .# (Hy) we will write v, =2
if and only if v, (B) —— v(B) for all Borel sets B bounded away from the neutral
element such that v(6B) = 0. We will call this convergence the convergence in
M (HY).

Let Z(H,) be the space of all C*-functions with compact support on H,,
and let supp f denote the support of a function f. In our situation &(H,), the
space of regular functions on H,, is the space of all bounded C®-functions
on H,. We regard every element X €}, as a (left invariant) differential operator
on H,: for fe2(H, we define

(Xf) ()& lim—i— (f (x exp (¢X)) —1 ().
t—0

A family (1), , = M* (H,) is said to be a continuous convolution semigroup
(abbreviated by c.c.s.) if

pugkp, = p,, for all s,t >0 and limy, =e,.

t}0
Its generating distribution A is defined by
defd+
A, f>=—| <L f)=Ilim— (<ut,f> —f(e))
dt t=0. th

for all feD(A)< {feC’(H,)|<{A,[) exists}. We have &(H,) < D(A) and
A admits on &(H,) the unique decomposition (the Lévy—Khinchin formula)
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@) <A4.f>= Z pi(X; f)(e)+ Z ai,j(Xinf)(e)
i=1 ij=1

2d+1

+,,§x [f(x)—f(e)— __Zl L)X ) (@)] dn(x),

where p;, ..., pyg41 are real numbers, (a;;)1<ij<za+1 18 @ real symmetric
positive semidefinite matrix, 5 is a Lévy measure on H,, i.e., a positive o-finite
Radon measure on Hj, with

24+1

[ min(1, Y xf)dn(x)< oo,

H; i=1
and {{,, ..., {,4+1} 18 a system of local coordinates of the first kind in 2(H,)
adapted to the basis {X, ..., X,;,,}. It follows from 4.1.9 Lemma in [5] that
we can suppose without loss of generality that {;(x) = x, for all xe{xeH,:
x| <1} and i=1,...,2d+1. Since every c.cs. (4)z0 on H, is uniquely
determined by the restriction of its generating distribution A on £(H ), we shall
write A =[(p), (a;), n] It is well known that a c.c.s. whose generating
distribution takes the form A = [(p,), (a; ), 0] is called a Gaussian semigroup.
We will call a c.c.s. with generating distribution 4 = [(p,), 0, ] a c.c.s. without
Gaussian component.

3. Full measures and #-domains of attraction. In view of the charac-
terization theorems of [26], Section 3, we have to require a weak form of
.a functional limit theorem, ie., the convergence of the discrete convolution
semigroups o, v'"! —2 i, (for all ¢ > 0), to obtain necessary conditions on v and
the sequence (¢,), In 6, V" — u;. As in [26], Section 4, we need the notion of
fullness of a measure and a convergence of types theorem to pass from
o,V =2y to a functional limit. Due to [1], [19] and [4] we have

DEeFINITION 3.1. A measure pe M'(H,) is called full if P,(u) is not
concentrated on a proper subspace of R4

With this definition ‘the following convergence of types theorem holds:

PropoSITION 3.2 ([11, [4]). Let u,, u, Ac M*'(H,) and o,eAut(H,) be
a sequence of automorphisms. Suppose that p, =2 MU and o, 1, 2 A If poand
A are full, then the set {o,|ne N} is relatively compact in Aut(H,) and for every
accumulation point ¢ we have ou = A.

Let now % < Aut(H,) be a closed subgroup of automorphisms and
(t);>0 < & be a continuous one-parameter group of automorphisms. We will
specify 4 in Section 4. Now we recall some specializations of known definitions
on domains of attraction and stability of c.cs. on H,.

DEFINITION 3.3. A c.cs. (u):>0 = M*(H,) is called #-stable if there exists
a continuous one-parameter group (t,),»0 < # such that 7z u, = u, for all
5,t>0. :
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DeFINITION 3.4. Let u, ve M* (H,). Then v is said to belong to the #-domain
of attraction of p, denoted by ve DOA, (u), if there exists a sequence (0,), = #
such that

g, V" — U.

n— o

If 1 is embeddable in a (z,)» o-stable c.cs. ()0 = M*(G) (ie. 1y = ), We say
that v belongs to the domain of normal attraction of p = yu,, and write
veDONA (g, (t))>0), if

Tl/" Vv n—o0 H

holds.

Taking into consideration that in general we do not know if a c.c.s. (i,);5 0
on H, is uniquely determined by u = u,, we have to distinguish between
attraction to a semigroup and attraction to a single measure. Therefore we
have

DEFINITION 3.5. Let (1,),>0 < M (H,) be a c.c.s. Then ve M (H) is said to
belong to the B-domain of attraction of (11,);> o, denoted by ve DOA 4((1,); o), if
there exists a sequence (g,), = # such that :

g, " —p, for all £>0.

If additionally the c.cs. (i) o is (z,);> o-stable, we say that ve M (H)) is in the
domain of normal attraction of (4,);»0, and write ve DONA ((i);> 0, (T,)r>0), if

TyV™ =2, for all > 0.
Clearly, we have
DOAg((1)i>0) = DOA,(ny)
and
DONA (&) 0, (T)> o) = DONA (1, (7);>0)-

To prove necessary conditions about measures v in the domain of attraction of
U, we need (in view of the characterization theorems of [26], Section 3) the
opposite inclusions, ie., the passage from o¢,v" S My tooa functional
limit o,v" — p, for all t>0. In fact, we have

PROPOSITION 3.6 (see [20] Theorem 6). Let (1), be a c.c.s. If Uy is full, we
have

DOA@ (1) = DOAg ((#:):zo)-
In the case of normal attraction we have without further assumptions:

PropOSITION 3.7 (see [12], Proposition 4). Let (t,),>0 = Aut (H,) and (14,):> ¢
be a (1,),»0-stable c.c.s. Then we have

DONA (.ul ° (Tt)t> O) = DONA ((/J't)t =0 (Tt)t> 0) ‘




Domains of attraction on Heisenberg groups 333

4. Automorphisms of the Heisenberg group. In this section we define
a special subgroup # < Aut(H,) of automorphisms of H, and obtain some
very useful relations between stable c.c.s. on H, and their images under the
projections P, and P, on R?% resp. R.

Furthermore, we introduce the notion of a pseudo-inner product on H,
and an automorphism norm for automorphisms in 4 which behave like the
usual inner product and the operator norm on R Recall from (2) the definition
of the projections P, and P,.

DEerINITION 4.1. For x, yeH, let us define by

4) x> EY (X, 9)+ /1Y

the pseudo-inner product on H,, where (%, y) = Z? . X;¥; is the usual inner
product on R?.

The notion of pseudo-inner product is justified by

LEMMA 42. We have <{x,x) =|x|?, {8,x,yD> =<{x, ,y> =t{x, ¥,
[<x, y>| < |x|-|y| for all x, yeH, and t>0.

Proof. The first two assertions are obvious. One needs to show the last
assertion only for [x] = |y = 1. We have

IKx, »)| < Z x?yE+/IX' Yl < %Z(xz+yl)+lx|+|yl)

= Hx+hD) = 1. =

Following [1], (1.2) Proposition, every automorphism t € Aut (H,) has the
unique decomposition

(5) T = inn (v)oo;0d,,
where inn(v) denotes for ve R*! the inner automorphism
inn (0) ()= (%, ¥’ + 0 (v, X)) = (v, 0)oxo(v, 0) .

Let Sp(R*) be the set of all symplectic mappings on R?? (with respect to
the symplectic form ¢), and Sp (R?%) be the set of all skew-symplectic mappings.
We set

S (R*%) = Sp (R*) U Sp (R>)
and for FeS(R*) we define

- J(Fx, x) if FeSp(R*9,
%y (x) = {(Fi, —x) if FeSp(R*)

for xe H,. In the following we will only use automorphisms t without an inner
part, i.e, v =0 in (5). We use the abbreviated notation

Y, o008,

12 —~ PAMS 14.2
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and define
(6) BE {Yr,, | FeS(R™), 5 > 0}

to be the closed subgroup of admissible automorphisms. From the definition
we get

(7) 5:0 lpF,s = WF,SO 5:

for all y,,e%# and t>0; hence the automorphisms in % commute with
dilations. Let sp (R?%) denote the Lie algebra of Sp (R??) and for M esp (R??) let
spec (M) be the set of all complex eigenvalues of M counted by multiplicity. It
follows from [1], (2.6) Corollary, that the contracting one-parameter subgroups
in # are given by

®) O Y,

where m > 0 and M esp(R?*!) with Re A > —m for all Aespec(M). The pair
(M, m) will be called the exponent of the one-parameter group (o, (1))>o-
From the definition of the projections P, and P, and the automorphisms in
% we obtain the following very useful identities:

9) Pioyp, = (sF)oP;, P,oYp,= +5? P,.

Remark 4.3. An easy computation shows that in general the identities (9)
are not valid if one replaces /. ; by an arbitrary automorphism with inner part.

. For linear mappings T on a normed vector space the operator norm || T'||
is very useful. We will now define an analogous quantity for automorphisms in
# and we will show that some of the usual estimates are valid for our
automorphism norm. Since the set

s xeH,: x| =1}
is compact and [t0d,x| = t|tx| for all ze 4, t >0 and xeH,, the definition

(10) o] & supM = sup |zx|
x#0 |x xeX
makes sense for all te #. We will call ]rl"“"the automorphism norm of te %. This

notion is justified by

LemMmA 44. For t,,1,,7€%, xeH,; and r > 0 we have:

@) lox| < el Ixl, |vq wal S lvgl-leals 16,71 =[26,l = rlel, 16, =r.

(b) Let (), = % be a sequence of automorphisms. Then the following
assertions are equivalent:

(1) 7,x —>e for all xeH,, ie. (1), is contracting;

@) [t,] == 0.

Proof. (a) follows directly from the definition.
(b) (1)=(2). Since every 7, is continuous, for an arbitrary x,eZX there
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exists an open neighbourhood B, = X such that 7,x —e uniformly for all
x e B, . Using the compactness of Z we conclude that T, X —+ e uniformly on X,
and hence 7.l =2 0.

(2)=(1). This follows from Lemma 4.4 (a). =

Recall from Definition 3.1 that we call a measure pe M* (H,) full if P, () is
not concentrated on a proper subspace of R4, We will now prove some useful
relations between c.c.s. on H; and their projections under P, and P, on
P,(H)=R?® and on P,(H)=R

PROPOSITON 4.5. Let (i);0 = M*(H,) be a c.c.s. and (0,,(D))i>0 = B be
a continuous one-parameter group of automorphisms. We have:

@) If u, is full, then P, (u,) is full on R*%, i.e., not concentrated on a proper
subspace of R*".

(i) (U)iz0 iS (Orgm(®))>o-stable, then (Py(u))zo is (" ™) o-stable.

(iii) Let (tt)>0 be a (04 m(®))i>o-stable c.c.s. without Gaussian component
and generating distribution A = [(a;), 0, n]. Then:

(a) The generating distribution P, (A), defined by (P, (A),f)> = “eA, foP>
for fe 2 (R?%), generates the (tm+M),>0 stable c.c.s. (Py ()0 on R* without
Gaussian component. The Lévy measure of (P, (#))> o is given by

fr § foP,dn
H;

for fe D(R*?) with 0¢supp f. We denote this Lévy measure by P, ().

(b) The generating distribution P, (A), defined by {P,(A), f) = {4, foP,)
for fe D(R), generates a (t*™),»qo-stable c.cs. (A)>o on R without Gaussian
component. The Lévy measure of (A,)s0 is given by

f j' foP,dn
H;

for fe 2(R) with O¢supp f. We denote this Lévy measure by P,(n).

(iv) Let ()0 be a (0 m(2)):>o-stable Gaussian semigroup with generating
distribution A. Then

@) (Py())zo0 is a (™M), q-stable Gaussian semigroup on R** with
generating distribution P, (A).

(b) P,(A) is the generating distribution of a (t*™)o-stable Gaussian
semigroup (A);»¢ on R.

Proof. (i) is Definition 3.1. (ii) follows from (8) and (9).

(iii) (a) Using (8), (9) and o,,,,(t)(4) = tA for all t > 0 we conclude that
P,(A) is the generating distribution of a (t"*™),,,-stable c.cs. without
Gaussian component. For all regular functions fe & (R*!) we have

(Pi(A). f) =<4, f0P1>—11m e~ ﬁesf0P1>—hm Py (1) =80, 1

th th
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and hence P,(A) is the generating distribution of (P, (x))s0. The Lévy
measure of (Pl(,u,t)),z0 is given by

fim © =Py, [ = fio - ;s foPy) = <n. foPy)
rJ,O 110
for fe C*(R*%) with Oésupp f.
(b) The proof of (b) and (iv) is similar. =&

Remark 4.6. (a) Note that in Proposition 4.5 (iii), (iv) the equahty
P, (4) =0 or P,(4) =0 is possible.
(b) It follows from the definition of the group law of H, that in general

Py (u)* Py (ug) # Py, * pg),

ie., (P, (1)) 0 is not a convolution semigroup. Hence one cannot speak of the
Lévy measure of the family (P,(1,)):>0. Note that for fe £(R) we have

d* d*
25 P2 Hli=o = 7 <A Hli=o-

5. #-domains of attraction. In this section we will obtain necessary and
sufficient conditions for attraction to a #-stable c.c.s. Our results extend those
of Meerschaert [15] and Jurek [9] on RY who characterize the domains of
attraction in terms of convergence towards the Lévy measure of the c.c.s. In
contrast to [26] we will not prove the assertion directly on H,, but we will use
Proposition 4.5 and the known results on R??, resp. R, in our proof. Therefore
we will call our method of proof the projection method. Furthermore, we use the
convergence criteria for discrete semigroups stated and proved in [26].

Our first result is the description of the %-domain of attraction of
a %-stable full c.cs. without Gaussian component.

THEOREM 5.1. Let (u)»0 < M'(H,) be a full (o4, (D):>o-stable c.c.s.
without Gaussian component and generating distribution A = [(a;), 0, #]. For
ve M (H,) the condition

() veDOA (uy)
implies

(ii} there exists a sequence (t,), = # with |t,| 520 and

n(t,v)52n in HAH]).
If additionally v and p, are symmetric, we have (ii) = (i).

Proof. In view of Proposition 3.6 we can apply Theorem 3.1 of [26].

(i) = (ii). Because of Theorem 3.1 (2) (c) in [26] we have only to show that
7.l /52 0 holds. From Proposition 1 of [20] we conclude that 7, v —> ¢,. Since
I is full v must be full, and hence (z,), is contracting; therefore Lemma 4.4 (b)
yields the assertion.
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(ii) = (i). Let u;, v be symmetric and t, = Y, €# with |t,| — 0. From
the definition of |t,| we easily obtain '

(11) Is,F, =0 and s, — 0.

Using (9) it follows from n(r,v) =27 that

(12) n((s,F)oPy () =2 P1()  in #(R*\{0}).

An application of Proposition 4.5 yields that P, (A) is the generating dis-
tribution of a full (t*™),, o-stable symmetric c.c.s. (P, (4)):>0 without Gaus-
sian component and Lévy measure P, () on R*%. With the use of the Theorem
of [15] it follows from (11) and (12) that

P, (vyeDOA (P1 (Iv‘l)):

even (s, F,) P, (v)' — P, (u,), because (u,);>o is symmetric. It is well known

n—ro

that this is equivalent to
(s, F) (P, o)™ == P, (1) for all t>0.

Using Theorem 3.1 of [26] we conclude that
limlimsupn | x?d((s,F,)oP, (+)(%) =0

el0 n—eo %||2<e

for i=1,...,2d. Because of

| G0rdEn@ < § (s A)oP )

jx|<e x| <e

we obtain

(13) limlimsupn | & (x)*d(z,v)(x)=0

el0 n—ow x| <e
fori=1,...,2d. In view of Theorem 3.1 in [26] it remains to show (13) for
i=2d+1. For a>0 let 0,: R—R, Ha(x)d=efax, denote the homothetical

transformation on R. From (9) and n(z,v) — 1 we obtain

B—> 00

(14) n(0zP, () 52 Po(n) in A(R\{0}).

By Proposition 4.5 we see that P,(A) is the generating distribution of
a (t*™),»o-stable c.cs. (4)»o without Gaussian component on R and Lévy
measure P, (1). Since (14,),;> is symmetric, it follows that (4,),»0 is symmetric.
Now the case that (4,),», is a point measure, i.e., P,(n) = 0, is possible, so we
need to consider two cases.

First case. P,(n)=0. Then we have n(0:P,(v) 520 in .#(R\{0}).
Hence

(15) limlimsupn | x?d(0;zP,()(x)=0.

el0 n—w x| <e
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Second case. P,(n) #0. Then (1), is a full ccs. on R without
Gaussian component. With the use of Theorem 2 in [14] or the Theorem in
[15] we infer from (14) that P,(v)e DOA(4,), even 0,z P, (v)" =2 4,, since
(A4)»0 and v are symmetric. Using Theorem 3.1 of [26] we conclude that (15)
holds. Because of

n _f X34+1d (T V)(x) <n j x3411d(z,V)(x) < n I xfzd(gsﬁpz (v))(x’),

x| <e |%2d+1]|<€2 x| <e
we get (13) for i =2d+1 from (15). This completes the proof. =

As'in [26] we can prove as a corollary to Theorem 5.1 a description of the
domain of normal attraction of a full (o, (£)):>o-stable c.c.s. (i,);>0 without
Gaussian component. Hence we need a desintegration formula of the Lévy
measure of (u,),>0 and, consequently, a compact cross-section ~ = H; such
that the mapping

‘/l: Rtxz_)H;a (ta u)HGM,m(t)u:

is a homeomorphism. In contrast to Lemma 5.6 of [26], in general we cannot
realize X as the unit sphere with respect to the usual homogeneous norm |-|,
but only with respect to a special homogeneous norm |-|; which will depend on
the exponent (M, m). _

First we need some information about the exponent (M, m) of the
one-parameter group of a full (g, (t))>o-stable c.cs. without Gaussian
component. '

PROPOSITION 5.2. Let ()0 = M*(H,) be a full (64,(2))>o-stable c.c.s.
without Gaussian component. Then necessarily m > % and Re A > —m+14 for all
Aespec(M).

Proof. According to Theorem 1 of [1] we have m > 1 and Rei > —m+13
for all Aespec(M) and ml,,+ M e GL (R*?), where I,, denotes the identity in
GL (R?9). Let us first suppose that m = 1. Because of M esp (R?) it follows that

trace(M)< Y A=0.
Aespec(M)
Consequently, min;p..n Re 4 < 0 and max;pe.cary ReA > 0. As m = 3, we get
Re A = 0 for all Aespec(M), and hence Re A = 0 for all Aespec(M). In view of
Proposition 4.5, (P, (#))so is a full (™M), -stable ccs. on R* without
Gaussian component, and then m+Re A = % is a contradiction to [28]. Let us
now suppose m >+ and Red = —m+% for some Aespec(M). This is again
a contradiction to [28]. &

The desintegration formula is given by:

PROPOSITION 5.3. Let (i),50 = M*(H,) be a full (0,,,(1)):>o-stable c.cs.
without Gaussian component and Lévy measure 1. Then there exists a homo-
geneous norm ||, =|'|;4m on H; and a finite Borel measure y on
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> {xeHy; |x|; = 1} such that:
(16) n(B) = ££ 1p(0m(®)u)t ™2 dtdy (u)

for all Borel subsets B< H; .
Proof We use some of the ideas of Jurek [11]. For xe H; we define

of ¢ dt
bl = ] |, (%1
0

It follows from Proposition 5.2 and [6], p. 136, that there exists a constant
K > 0 such that |y, (t) x| < K [x|¢'/? for all xe H; and ¢ > 0. Hence |x[; is well
defined. An easy computation shows that ||, is a homogeneous norm on H,, so
it is equivalent to |-|. Furthermore, the mapping

Y RE x2 > HN\{0}, (t,w—oy,0u,

is one-to-one, onto and continuous. By an argument analogous to that in the
proof of Corollary 2 in [11] it follows that  is a homeomorphism. Now one
can derive (16) as in the proof of Lemma 5.6 in [26]. =

Remark 5.4. With the use of the desintegration formula (16) one easily
gets: B

N0 {6ymOulueB, t>a})=0<y(0B) =
for all Borel subsets B X and all a > 0.

As a corollary to Theorem 5.1, by using Proposition 5.3 now we can prove
the following description of the domain of normal attraction.

COROLLARY 5.5. Let (i), = M*(H,) be a full (04, ("))>o-Stable c.c.s.
-without Gaussian component and let its Lévy measure 1 be decomposed as in (16).
For a measure ve M* (H,) the condition

(i) veDONA (uy, (037, (D)i>0)
implies

(ii) lirn,_.ﬂO tv {O'M,,,(s)ulueB s =t} = x(B) for all Borel sets B c X with

x(0B) =
If add:t:onally v and p, are symmetric, we also have (i) = (i).

Proof. The proof is identical to the proof of Corollary 5.11 in [26] if one
replaces the dilation 6, by g, ,(f). Observe also Remark 5.4. =

Remark 5.6. Of course, the exponent (M, m) of a full (0, ()):>o-stable
c.cs. ()>0 18 not uniquely determined. But our definition .of the domain of
normal attraction does not depend on the choice of the exponent (M, m) as
seen by the following general argument:

Let G be a simply-connected nilpotent Lie group, (‘r,),>0 < Aut (G)
a continuous one-parameter group, and (), be a full (7,)>0- -stablé c.c.s.
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Suppose that there exists another one-parameter group (,),»o < Aut(G) such
that (u,),;» o is also (g,),>o-stable. Then by a simple computation we infer that

{0, Tuphis0 © Fly) & {teBlp, = i},

where £ (u,) is the invariance group of y,. Since y, is full, it follows from [20],
2.3, that .#(u,) is compact. For ve DONA (g,, (z,);>0) We conclude that

Gim Vi= (alfn Tn) Ti/n V"m Uy
by the compactness of (u;). Hence ve DONA (uy, (6,);>0)-

Now we will investigate the domain of normal attraction of a full
(0ag.m (t))> o-stable Gaussian semigroup (,), 0. First we show as in Proposi-
tion 5.2 that in this case the exponent (M, m) has a special structure and it will
follow that only certain Gaussian semigroups on H, are #-stable.

PROPOSITION 5.7. Let ()0 = M' (H,) be a full (0, (2));>o-stable Gaus-
sian semigroup. Then the exponent (M, m) necessarily satisfies m =1 and
Re i =0 for all Aespec(M).

1

Proof. As in the proof of Proposition 52 we have m >3 and
Red > —m+7% for all Aespec(M). From Proposition 4.5 we conclude that
(Py(1)):> 0 18 a full (™ ™), ,-stable Gaussian semigroup on R?%. Theorem 4 of
[28] gives Re A = —m+1% for all Aespec(M). Since trace(M) = 0, we get m = %,
and hence Red =0 for all Aespec(M). m

In view of the Lévy-—Khinchin formula (3) the generating distribution 4 of

an arbitrary Gaussian semigroup (u,).,»0 = M'(H,) takes the form

2d+1 ' 2d+1

A=Y pX+ Y 4;X; X,

i=1 =1
where p; (i=1, ..., 2d+1) are real numbers and (4;;) is a real symmetric
positive semidefinite matrix. If (1),50 is full and (o, (?)):>o-stable, we
conclude from the equality o, ,,(t) A = tA for all t > 0 and Proposition 5.7 that

2d
(17 ' A=aXy+ Y 0, XX,
i,j=1

where acR and C¥ (@: )1<i,j<24 15 @ real symmetric positive semidefinite
matrix. It follows easily from Proposition 4.5 that C is the covariance matrix of
the full (:™*™),, ;-stable Gaussian semigroup (P, (4,)):>0 on R*. So we infer
from Theorem 5.1 in [27] that CM = MC and C is positive definite. Therefore
we have shown:

PROPOSITION 5.8. Let ()0 < M*(H,) be a full (0,;,,(t))>o-Stable Gaus-
sian semigroup. Then its generating distribution A is of the form (17) with a real
symmetric positive definite matrix C = (a; ;)1 <i,j<24 Which satisfies MC = CM.
We will call C the covariance matrix of the c.c.s. (f)>o-
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We are now in a position to prove a particular nice description of the
domain of normal attraction of a full #-stable Gaussian measure on H;. We
will use our projection method, ie., Proposition 4.5, and the pseudo-inner
product (4) on H,. Our result is in part analogous to a theorem of Jurek (see
[10], Theorem 4.1) on R“

THEOREM 5.9. Let (1)r»0 < M*(H,) be a full (0,,(t)):>o-stable Gaussian
semigroup with covariance matrix C (cf. Proposition 5.8). Then for ve M* (H,)
the condition
(i) veDONA (i3, (631, @)
implies :

() <(C7,0), 7, 0 = fu,<x, (7, 0)>*dv(x) for all yeR*. |
If moreover i, and v are symmetric and additionally v has a finite second
homogeneous moment, i.e., {g |x|*dv(x) < 0o, we also have (ii) = (i).

Proof. (i)= (ii). According to Propositions 4.5 and 5.8 we have
P,(vye DONA (P1 (1y), (@™ M), O)a

and P, (u,) is a full (¢"*¥),,, -stable Gaussian measure on R*? with covariance
matrix C. Hence from Theorem 4.1 of [10] it follows that

¥ (Cy, 9) = Ldr(f, 7)2dP,(v)(%) for all jeR?".

Since [gaa¥f (X, §)* dP; (v) (%) = {5, <x, (7, 0>?dv (x) for all ye R, the defini-
tion (4) yields the assertion.

(ii) = (i). Let p, and v be symmetric and {, {x|* dv(x) < co. Theorem 5.9 (ii)
is equivalent to

jx jdv(x)=a,; forall i,j=1,...,2d.

Hence the well-known central limit theorem on H, (see [23], [21] and [26],
Remark 3.5 (4)) implies

(18) 51/«/2"”{:55”1'

Since (,)>0 is a full (o, (1)):>o-stable Gaussian semigroup on H,, it follows
from (17) that (g),>0 is also (d, , JJr>o-stable. Of course, we have

HiE DONA (.ul’ (51{JE)!> 0) and Ky e DONA (}.’11, (O-M,m (t))t>0)’
SO '
O it mpi and oy, (/M pl o py.

By the convergence of types theorem (Proposition 3.2) we see that
{6m,m(1/n) S ~|ne N} is relatively compact in Aut(H,), hence in %, and all limit
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points t fulfil 74, = u,, ie, te#(4,). Finally, (18) and
Oy m(i/mV' = (aM’m(I/n) 5ﬁ) 51/J;v"
yield the assertion. This completes the proof. =

Theorem 59 is weaker than the corresponding result of Jurek ([10],
Theorem 4.1) on R? because we need to require the existence of the second
homogeneous moment of v to obtain a sufficient condition. In contrast to the
vector space case on RY, in general the existence of the second homogeneous
moment for measures v in the domain of normal attraction of a full #-stable
Gaussian measure is not necessary. This is shown in the following example.

ExamPLE 5.10. Let (1), o = M* (H,) be the full Gaussian semigroup on H,

with generating distribution 4 = X{+ X3. Then (i), 0 is (9, ih>o-stable. We

will write the coordinates of H,; in the form x = (x,, x,,t)eH,; with
P,(x) = (x4, x,) and P,(x) =1t Now let ve M*(H,) be the measure with
density

loglt|+1

£ CL(y24 42
(19) (x1$ ) t)‘_)d-ﬂ: exp[ 2(x1 +x2)] t2 (log |t|)2 {lt| = €}

)

with respect to the Haar measure dx on H,. Then we have
ve DONA (u, (51/J;),>0) but | [x]*dv(x) = o,
. Hl
ie, v has no finite second homogeneous moment. :
(o) Since p, and v are symmetric, we can use Corollary 3.4 of [26]. Hence

- n 3
61/~/Ev n—-’oo_ﬂ1
is equivalent to

@ nI lf xfd(élld;v)(x);_:;l' ‘flor i=1,2,

(i) nlx["<8x1:xjd(51/J;v)(x)m0 for i,j=1,2,i ;e;

(i) n | xtd@, ()0 fori=1,2,
xi<e

(iv) | l’ : n| l_f 1:2d((‘ill\/;v)(x);?0 0,

\%) | n(&lwgv){x:lxl;a}nrogo

for all ¢ > 0.
By an easy computation we obtain (i) and (ii). One takes into con-

sideration that
ry logt+1
tlogt)  t*(logt)®




Domains of attraction on Heisenberg groups 343

(iii) follows by a simple symmetry argument. Using the definition (19) of
the density of v we get

e [logt+1
n f 2d0,, < | o2

7] Togo?

x| <e e

After a substitution and integration by parts we obtain

dt X
)& | = = ,
i(x) logt 0 (log x) as x — o0

e .

Another integration by parts gives

x

logt+1 x ) x )
j‘mdt— _@‘Fe—h(X)—O(l—oa) as x — 00,

e

therefore we obtain (iv).
From the relation

. 2
{xeH; x| > \/Hﬁ} < {erl; Geqs x )l 2= @}U {XEHl; |t > ?j—}
it follows that
2
(20) n(,, ;v {x; x| = &} <nv {x; 10cy, x)| = %ﬁ—s}-&-m {x; It = %}

Using the well-known properties of Gaussian measures on R? we conclude that
the first term on the right-hand side of (20) converges against zero. For the
second term we obtain

@

ne? logt+1 de
= —r= dt = 0,
w {x’ = } en j Zlog2” ~ log (ne/d) >

ne2/4
and hence (v) is valid.
(B) We have 7
FIxPav(x) = [ llGxy, x )l dv(x)+ | Itldv ().
Hy Hy H,

. Trivially, the first term on the right-hand side is finite, but for the second term
we compute ’

logt+1
f'tl dV(X) = EJWdt = 0,

Hy e
ie, v has no second homogeneous moment.
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Concluding remarks. In [25] we have shown that a measure v in the
domain of attraction of a full stable c.c.s. on H, has certain moments. More
precisely, let (u),0 = M'(H,) be a full (o, (t))>o-stable cc.s. and define

8o < max ({m+Re 4| L& spec (M)} U {m}).

Then a measure v in the #-domain of attraction of u, has all horhogencous
moments of order less than 1/d,. This result is analogous to that of [8]. Details
will appear elsewhere.
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