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Abstract. Let H, be the (2d+  1)-dimensional Heisenberg group 
and (,4,),,, be a continuous convolution sernigroup of probability 
measures on H,. Let moreover p, be f d .  A probability measure v is 
said to belong to the domain of attraction oip,  if there exists a sequence 
(Q,,)~ of automorphisms of H, such that b,, p, weakly. Wc prove 
some simple necessary wd sufficient conditions on v for the existence 
of such automorphisms if (p,),30 has no Gaussian component. Fur- 
thermore, the domain of normal attraction of a Gaussian measure on 
H, is considered. 

1. Introduction. Let Ha be the (2dfl)-dimensional Heisenberg group. 
Suppose that p and v are probability distributions on H,  and that p is full, i.e., 
not concentrated on a proper closed connected subgroup of H,. We say that 
v belongs to the domain of attraction of y if there exists a sequence of 
automorphisms (a,), c Aut(Hd) such that 

(*I on vn nz P ,  

where v" denotes the n-th convolution power of v and the convergence is the 
weak convergence. We say that p is stable if there exists a continuous 
convolution sernigroup (yt),>, of probability measures on H, with p, = p and 
a continuous one-parameter group (23,, , c Aut (Ha)  such that z, p, = ,us, for all 
s, t > 0. It is a result of [20] that y is stable if and only if p has a non-empty 
domain of attraction. 

We are interested therefore in obtaining necessary and sufficient con- 
ditions for v to belong to the domain of attraction of a full measure p. In [26] 
we have investigated the case of %domains of attraction where the norming 
automorphisms z, are only allowed to belong to the group 9 c Aut(G) of 
dilations and G is an arbitrary stratified Lie group. This is due to the fact that 
we do not know enough about the structure of the automorphisms of an 
arbitrary stratified Lie group. If G = H,, the structure of an automorphism 
TE Aut (Hd) and also of a one-parameter group (z,),,, c Aut (H,) is well known 
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(see [I]). Roughly speaking, every automorphism z of H, is the composition of 
a kind of block-diagonal automorphism t,bF,, with an inner automorphism of 
Hd, where 

s > O and F is a symplectic mapping of R2! We define 6@ as the closed 
subgroup of Aut (Hd) of automorphisms without an inner part and consider 
only W-stable continuous convolution semigroups and W-domains of attrac- 
tion, where the one-parameter group (T,),,~ and the norming autornorphisms 
a, are only aIlowed to belong to L%. 

In the classical situation on R or Rd, several descriptions of domains of 
attraction are known; see, e.g., [2], [13]-[16], [18], [9]j [10], [7], and [24]. 
Especially, Meerschaert [15] proved on Rd necessary and sufficient conditions 
on a measure v belonging to the domain of attraction of a full nonnormal 
measure p, and Jurek 191 has described the domain of normal attraction of 
such a measure. If p is a full Gaussian measure on Rd, Jurek has shown that 
v belongs to the domain of normal attraction of p if and only if v has a finite 
second moment and Lhe same covariance matrix as p. 

This paper is organised as follows: In Section 2 we introduce the structure 
of the Heisenberg group H ,  and repeat some important notions about 
semigroups. In Section 3 we recall the definition of fullness of a measure and of 
various domains of attraction. In view of the convergence criteria for discrete 
semigroups in Section 3 of [26] (see also [22]) we need to pass over from (*) to 
a functional limit, i.e., the convergence of the discrete semigroups (a, ~ [ " ' 3 , ~ ,  to 
a continuous convolution semigroup fpt),,, with p, = p. Due to a result of 
Nobel ([20], Theorem 6) for full measures the limit convolution semigroup is 
stable, and therefore uniquely determined by p,; hence such a transition is 
possible. 

In Section 4 we will investigate the automorphisms and one-parameter 
groups of automorphisms of H,. We define a pseudo-inner product on Hd and 
an automorphism norm for automorphisms in 9# which behave Iike the usual 
inner product and the operator norm on Rd. Furthermore, we show that there 
are some very important connections between stable convoIution semigroups 
on N, and on 2 Hd/[Hd, H d ] ,  resp. R E [H,, H,]. 

In Section 5 we will state and prove the main results of this paper: 
A description of the domain of (normal) attraction of a full measure p without 
Gaussian component. The domain of normal attraction of a full Gaussian 
measure is also concerned. With the use of our pseudo-inner product we will 
give a necessary condition on v belonging to the domain of normal attraction 
of such a measure. Unfortunately, this condition is only sufficient if we make 
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the further assumption of the existence of the second homogeneous moment 
of v. In contrast to the above-mentioned vector space case on Rd, the existence 
of the second homogeneous moment of v is not necessary on E l ,  as shown in an 
explicit example. We think this example is very surprising. 

2. Notatiom 'and preliminaries. Let $ lp, q) denote the usual Euclidean 
inner product on Rd and let 

a ((P, q) 5 ( P I >  q0) kf Il, b , - $ ( 4 ,  P') 

be the usual symplectic form on RZd. Let 

furnished with the bracket product 

be a realisation of the Heisenberg Lie algebra. Then (b,, [.,.]) is a step 2 
stratified Lie algebra. Using the Campbell-Hausdorff formula, we define on 
RZd+ the multiplication 

Then (RZd+', 0) is called the (2d + 1)-dimensional Heisenberg group, denoted by 
M,, which is a stratified Lie group of step 2. We set 

where e denotes the neutral element of H d .  With this definition, the exponential 
mapping exp: JJ, -+ H ,  is just the identity. Let 

def { X i = e i :  i =  1, ..., 2 d + l )  

be the natural basis of t),. Then the functions 
def i : H , R ,  t i ( x ) = x i  

define a system of global coordinates on Hd with ti (exp Xj) = 6i , j ,  where J i S j  is 
the Kronecker symbol. 

Let 

(2) 
PI: fJd + R Z d ,  P i  ( P ,  q ,  t F f  b, q) ,  

P,: H , + R ,  P,(p, q ,  t ) E f t ,  

denote the projections on the steps of b,. Thereby P ,  is a group homomorphism 
from H ,  onto (the vector space) RZd7 whereas in general we have 
P z ( x o  y)  # P ,  (x )+  P, (y). In the following we use the notation x  = (2, x') € H a ,  
where PI ( x )  = 2 and P, ( x )  = x'. For t  > 0 we denote by 8,: H, + H ,  the 
dilation given by 

def def 
a t X  = at(%,  X I )  = (tX, t2  XI), 
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and for X E H . ~  we define 

1x1 kf ( 1 1  x 1 1  2 + l ~ ~ 1 ) ~ l ~  

Then I I: W, + R+ is a homogeneous norm on PI , ,  i.e., a continuous mapping 
with 16,xl = tlxl, lxpll =./xi and 1x1 = 0-x = e. It is well known that any two 
homogeneous norms I - I,, ] - 1, on H, are equivalent, that is there exist constants 
C,, C, > 0 such that 

C, Ix], < lxlz < Cz 1x1, for all XEH*. 

By Cb(Wd) we denote the space of bounded continuous complex-valued 
functions on H,, equipped with the supremum norm 1 1  -11,. Let Mb, (Hd) be the 
set of bounded positive Radon measures on PI, ,  and M 1 ( A , )  the set of 
probability measures on H, which, furnished with the convolution product and 
the weak topology u (M1 (El,), Cb (H,)), is a topological semigroup. The point 
measure in X E H ~  is denoted by E,. We use the notation 

{p , f}kCj  fdp for p~Mb+(tf , )  and.f€Cb(H,). 
Md 

Denote by AfH,") the class of all 0-finite Radon measures on Ha" which are 
finite on sets bounded away from the neutral element a. Let aB denote the 
topological boundary of a set B c R,. For v,, v E A? (W:) we will write v, nz v 
if and only if v, (3) *yrn v (B) for all Bore1 sets B bounded away from the neutral 
element such that v(2B) = 0. We will call this convergence the convergence in 

(HdX 1. 
Let g ( H , )  be the space of all C"-functions with compact support on H,, 

and let supp f denote the support of a function5 In our situation b(Hd), the 
space of regular functions on H,, is the space of all bounded Cm-functions 
on H,. We regard every element X E lj, as a (left invariant) differential operator 
on H,: for f ~ g ( W , )  we define 

A family (J,)~,, c M' (H,) is said to be a continuous convolution semigroup 
(abbreviated by c.c.s.) if 

, U ~ L , O H = ~ ~ + ~  for all s ,  t 3 0  and limp,=&,. 
rlo 

Its generating distribution A is defined by 

for all f E D (A) '!2 { f E Cb (Hd) 1 (A, f) exists). We have &(Eld) c D (A)  and 
A admits on &(El,) the unique decomposition (the Ltuy-Khinchin formula) 
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where p,  , . . . , pzd+ are real numbers, ( u ~ , ~ ) ~  i ,jszd+ is a real symmetric 
. , 

positive semidefinite matrix, vf is a LCvy measure on H,, i.e., a positive a-finite 
Radon measure on H i ,  with 

and {c,, . . . , [,,+,) is a system of local coordinates of the first kind in 9(Hd) 
adapted to the basis (XI, . . ., X , , + , ) .  It follows from 4.1.9 Lemma in [ S ]  that 
we can suppose without loss of generality that &(x) = xi for all X E { X E H ~ :  
1x1 < 1)  and i = 1,  . . . , 2d+ 1. Since every c.c.s. (pJt3 on H, is uniquely 
determined by the restriction of its generating distribution A on t (H,) ,  we shall 
write A = [ (pJ ,  q]. It is well known that a c.c.s. whose generating 
distribution takes the form A = [ (p , ) ,  01 is called a Gaussian semigroup. 
We will call a c.c.s. with generating distribution A = [:lpi) ,  0, q ]  a c.c.s. without 
Gaussian component. 

3. Full measures and a-domains of attraction. In view of the charac- 
terization theorems of [26],  Section 3, we have to require a weak form of 
a functional limit theorem, i.e., the convergzsce of the discrete convolution 
semigroups cn v[nqn;CO pt (for all t > 0), to obtain necessary conditions on v and 
the sequence (gJn In o,, V" , -  p l .  AS in [26], Section 4, we need the notion of 
fullness of a measure and a convergence of types theorem to pass from 
U , V " , ~ ~ ~ ,  to a func t iona l  limit. Due to [ I ] ,  [I91 and [4]  we have 

DEFINITION 3.1. A measure p€M1(Hd) is called full if Pl(p) is not 
concentrated on a proper subspace of RZd. 

With this definition the following convergence of types theorem holds: 

PROPOSITION 3.2 ( [ I  1, [4]). Let p,, p ,  1 E (H,) and an E Aut (H,) be 
a sequence of automorphisms. Suppose that pn n>m p and LT, pn ,yCO 1. If ,u and 
i are full, then the set { G , ~ ~ E N )  is relatively compact in Aut (H,) and for every 
accumulation point a we have np = R. 

Let now W c Aut(H,) be a closed subgroup of automorphisms and 
(z,),,, c be a continuous one-parameter group of automorphisms. We will 
specify &? in Section 4. Now we recall some specializations of known definitions 
on domains of attraction and stability of C.C.S. on H, .  

DEFINITION 3.3. A c.c.s. (p,),>* c M1(W,) is called &-stable if there exists 
a continuous one-parameter group (z,),,, c &? such that z,p, = pst for all 

I 

s ,  t > 0. 



DEFINITION 3.4. Let p, v E M I  (Hd) .  Then v is said to belong to the 3-domain 
of attraction of p, denoted by v E DOA, (p), if there exists a sequence (cT,),, c 9 
such that 

on vn - p. 
n-cm 

If p is embeddable in a (z,),, ,-stable c.c.s. (pr),% c M 1  (G)  (i.e., p1 = p), we say 
that v belongs to the domain of normal attraction of p = p,, and write 
v f DONA (P,  (T,), > o), if 

' 1 i n  V" ,= p 
holds. 

Taking into consideration that in general we do not know if a c.c.s. (p,),, , 
on Hd is uniquely determined by p = p r ,  we have to distinguish between 
attraction to a semigroup and attraction to a single measure. Therefore we 
have 

DEFINITION 3.5, Let c M 1  (Ifd)  be a c.c.s. Then v E M1 (HJ is said to 
belong to the $domain of attraction of (P , ) , ~  o, denoted by v E DOA, ( ( P , ) , ~  o), if 
there exists a sequence (cr,), c .@ such that 

,.J ,,[ntl - p for all t 0. 
n+m 

If additionally the c.c.s. (pt)t>o is   stable, we say that V E M '  (NJ is in the 
domain of normal attraction of (p,),> o, and write v E (TJ,, 0), if 

~ l , n  vIntl nz ~r for all t > 0. 

Clearly, we have 

DQAa ( W t  3 0 )  C DOA, OLl) 

and 

To prove necessary conditions about measures v in the domain of attraction of 
p, we need (in view of the characterization theorems of 1261, Section 3) the 
opposite inclusions, is., the p ass  ag e from a, v" nz p1 to a fun c t i on  a 1 
l imi t  on v["'] n - m  pt for a l l  t > 0. In fact, we have: 

PROPOSITION 3.6 (see [20], Theorem 6). Let be a c.c.s. If p, is full, we 
haue 

DQA, 011) = DOA, (,)I 2 0)- 

In the case of normal attraction we have without further assumptions: 

PROPOSITION 3.7 (see [12], Proposition 4). Let (TJ,, , c Aut (H,) and (pJt 
be a (~,),~~-stabEe c.c.s. Then we have 
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4. Automorpslisms of the Heisenberg grolap. In this section we define 
a special subgroup W r Aut(Pi3 of automorphsms of H ,  and obtain some 
very useful relations between stable C.C.S. on H ,  and their images under the 
projections P1 and P ,  on R2d, resp. R. 

Furthermore, we introduce the notion of a pseudo-inner product on H ,  
and an automorphism norm for automorphisms in a which behave like the 
usual inner product and the operator norm on Rd. Recall from (2) the definition 
of the projections P ,  and P,. 

DEFINITION 4.1. For X, y €Wd let us define by 

the pseudo-inner product on H,, where Jl (i, v) = c::, x ,y i  is the usual inner 
product on RZd. 

The notion of pseudo-inner product is justified by 

LEMMA 4.2. We have (x, x) = 1xI2, ( 6 ,  x, y) = {x, S, y> = t (x, y ) ,  
I<x, Y>I < 1x1-lyl for all x, y e H d  and t > 0. 

Proof.  The first two assertions are obvious. One needs to show the last 
assertion only for 1x1 = lyl = 1. We have 

Following [I], (1.2) Proposition, every automorphism z E Aut (N,) has the 
unique decomposition 

where inn(v) denotes for u€RZd the inner automorphism 
def - inn(z)(x)= ( x ,  x r + g ( u ,  2 )  = (v, O)oxo(u, 0)-'. 

Let Sp(RZd) be the set of all symplectic mappings on RZd (with respect to 
the symplectic form a), and $ (RZd) be the set of all skew-symplectic mappings. 
We set 

S (RZd) Ef Sp (RZd) u @ (RZd) 

and for F E S (RZd) we define 

( F Z ,  x') if F E Sp (llzd), 
N P  (4 = (FZ, - x') if F E $ (RZd) 

for XEH,. In the following we will only use autornorphisms z without an inner 
part, i.e., v = 0 in (5). We use the abbreviated notation 

12 - PAMS 14.2 
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and define 

to be the closed subgroup of admissible automorphisms. From the definition 
we get 

for all $,, E ahd t > 0; hence the automorphisms in 33 commute with 
dilations. Let sp (R2d) denote the Lie algebra of Sp (R2d) and for M E  sp (RZd) let 
spec(M) be the set of all complex eigenvalues of M counted by multiplicity. It 
follows from [I], (2.6) Corollary, that the contracting one-parameter subgroups 
in 93 are given by 

(8) 
def 

* ~ , r n  ( t )  = $ t ~ , t m 3  

where rn > 0 and M E  sp (RZd) with Re ,I> - m for all A E spec (M) .  The pair 
( M ,  m) will be cdled the exponent of the one-parameter group ((a, 

From the definition of the projections P ,  and P, and the 
43 we obtain the following very useful identities: 

R e  m a r k  4.3. An easy computation shows that in general the identities (9) 
are not valid if one replaces $,, by an arbitrary automorphism with inner part. 

- For linear mappings T on a normed vector space the operator norm 1 1  T 1 1  
is very useful. We will now define an analogous quantity for automorphisrns in 
a and we will show that some of the usual estimates are valid for our 
automorphism norm. Since the set 

is compact and Izod, xl = t 17x1 for a11 z E g ,  t > 0 and x E H,, the definition 

(10) 
def 1~x1 lzl = sup- = sup lzxl 

x + O  1x1 XEE 

makes sense for all z E a. We will call Izl'the automorphism norm of z E B. This 
notion is justified by 

LEMMA 4.4. For z,, z,, z E a, x E Hd and r > 0 we have: 
(a) 12x1 < Izl = 1x1, I T ,  7,l d I.c,l. lz,l, 1421 = 1~6~1 = r 14, 14 = r. 
(b) Let (z,), c B be a sequence of automorphisrns. Then the following 

assertions are equivalent: 
(I) znxn2,, e for all X E H ~ ,  i.e. (z,), is contracting; 
(2) l2,l nz 0, 
Proof.  (a) follows directly from the definition. 
(b) (1) - (2). Since every z, is continuous, for an arbitrary X,EE there 
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exists an open neighbourhood BXo c ,Z such that .t,x nz e uniformly for all 
x E B,,. Using the compactness o f  C we conclude that z, x nz e uniformly on E,  
and hence lz,ln=0. 

(2)  * (1). This follows from Lemma 4.4 (a). 

Recall from Definition 3.1 that we call a measure p E MI (W,) full if P ,  (p) is  
not concentrated on a proper subspace o f  RZd. We will now prove some useful 
relations between c.c.s, on Hd and their projections under P I  and P ,  on 
PI (H,) = R~~ and on P,(H,) = R. 

PROPOSITON 4.5. Let (j+)t3, c M 1  (H,) be a c.c.s. and (LT,,, (t))t, c LZY he 
a continuous one-parameter group of azktomorphisms. We have: 

(i) I f p ,  is fu l l ,  then P ,  ( f i t )  is full on i.e., not concentrated on a proper 
subspace of R2d. 

(ii) ( p J r  is (o,,, (t)),, ,-stable, then (pi , is (tm+ M ) t ,  ,-stable. 
(iii) Let be a (a,,,(t)),, o-stable c.c.s. without Gaussian component 

and generating distribution A = [(ai), 0,  q]. Then: 
(a) The generating distribution P, (A), defined by (PI (A) ,  f )  ( A ,  f OF,) 

for f ~ g ( W ~ ~ ) ,  generates the (tm'M)t,o-stable C.C.S. (PI (pr))t30 on RZd without 
Gaussian component. The LCvy measure of (PI is given by 

for f € 9 ( R Z d )  with 04suppf: We denote this Ltvy measure by Pl (q). 
(b) The generating distribution P, (A), defined by ( P ,  (A) ,  f )  = ( A ,  f oP,) 

for f E 9 ( R ) ,  generates a (t2m),,o-stabEe c.c.s. on R without Gaussian 
component. The Ltvy measure of is given by 

for f~ g ( R )  with 0 4 supp f. We denote this L&vy measure by P2 (q). 
(iv) Let (p,),> be a (o,,, (t)),, o-stabIe Gaussian semigroup with generating 

distribution A. Then 
(a) (PI (p,))t3 is a (tm + M),, o-stabEe Gaussian semigroup on R2d with 

generating distribution P, (A). 
(b) P ,  (A)  is the generating distribution of a (t2"),, ,-stable Gaussian 

semigroup (A,)r3o on R. 

Pro o f .  (i) is Definition 3.1. (ii) follows from ( 8 )  and (9). 
(3) (a) Using (S), (9) and cr,,,(t)(A) = t A  for all t > 0 we conclude that 

P l (A)  is the generating distribution o f  a (tmfM),,o-stable C.C.S. without 
Gaussian component. For all regular functions f E B (RZd)  we have 



and hence P l ( A )  is the generating distribution of (P,(pt)),a,. The Levy 
measure of ( P ,  (,u~)),~, is given by 

for f E cb (RZd) with 0 6 supp f. 
(b) The proof of (b) and (iv) is similar. 

R e m a r k  4.6. (a) Note that in Proposition 4.5 (iii), (iv) the equality 
PI  (A)  = 0 or P2 (A)  = 0 is possible. 

(b) It follows from the definition of the group law of H, that in general 

i.e., (P, (pt))t30 is not a convolution semigroup. Hence one cannot speak of the 
Levy measure of the family (P, (ps)),,o. Note that for f~ &(R) we have 

5. &?-domains of attraction. In this section we will obtain necessary and 
sufficient conditions for attraction to a B-stable c.c.s. Our results extend those 
of Meerschaert [l5] and Jurek 191 on Rd, who characterize the domains of 
attraction in terms of convergence towards the LBvy measure of the C.C.S. In 
contrast to [26] we will not prove the assertion directly on H,, but we will use 
Proposition 4.5 and the known results on RZd, resp. R, in our proof. Therefore 
we will call our method of proof the projection method. Furthermore, we use the 
convergence criteria for discrete semigroups stated and proved in [26]. 

Our first result is the description of the @-domain of attraction of 
a &?-stable full c.c.s, without Gaussian component. 

THEOREM 5.1. Let (p,),30 c M 1 ( H d )  be a full (a,,,(t)),,,-stable c.c.s. 
without Gaussian component and generating distribution A = [(a,), 0, q ] .  For 
v E M1 (H,) the condition 

(i) v E DQAa (PI) 

implies 
(ii) there exists a sequence (z,), c &9 with l z , l , z  0 and 

If additionally v and p, are symmetric, we have (ii) (i). 
Proof .  In view of Proposition 3.6 we can apply Theorem 3.1 of [26]. 
(i) * (ii). Because of Theorem 3.1 (2) (c) in [26] we have only to show that 

Iz,[,=+O hoIds. From Proposition 1 of [20] we conclude that z,vn*m F,. Since 
I 

p1 is full, v must be full, and hence (z,), is contracting; therefore Lemma 4.4 (b) 
yields the assertion. 
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(ii) +- (i). Let p, , v be symmetric and zn = $Pn,Sn E L%# with  IT,,^ 0. From 
the definition of IT,! we easily obtain 

(1 1) I l s n F , I I n ~ O  and s n n z O .  

Using (9) it follows from n(z,  v) nz q that 

An application of Proposition 4.5 yields that PI (A)  is the generating dis- 
tribution of a full (tm+M),, o-stable symmetric C.C.S. (PI  without Gaus- 
sian component and Levy measure PI (q )  on RZd.  With the use of the Theorem 
of [I51 it follows from (11) and (12) that 

even (s, F,) P ,  ( v ) " , ~  P1 (p,), because (ptX30 is symmetric. It is well known 
that this is equivalent to 

(s, Fa) (p1 (v))'~] az PI (pt)  for all r > O. 

Using Theorem 3.1 of [26] we conclude that 

lirn lim sup n $ x? d ((s, P,) o P ,  (v)) (2) = 0 
E I O  n+m ~ ~ Z Z < B  

for i = 1, . . . ,2d. Because of 

we obtain 

(13) Iim lim sup n 1 ci (x)' d (z, v) ( x )  = 0 
€10 n-+m I x l < ~  

for i = 1, . . . , 2d. In view of Theorem 3.1 in [26] it remains to show (13) for 
i = 2d + 1. For a > 0  let 8,: R + R ,  0, (x) ax, denote the homothetical 
transformation on R. From (9) and n(z, v ) , ~  q we obtain 

By Proposition 4.5 we see that P z ( A )  is the generating distribution of 
a (t2m),,o-stable C.C.S. without Gaussian component on R and Levy 
measure P,(q) .  Since (p,),30 is symmetric, it follows that (L,) ,20 is symmetric. 
Now the case that (A,),,, is a point measure, i.e., P,(q)  = 0, is possible, so we 
need to consider two cases. 

F i r s t  c a qe. P2 (q )  = 0. Then we have n (0, P ,  (v)) n -  0 in A(R\(O)). 
Hence 

(1 5 )  lim lim sup n j x" d (0,; P ,  (v)) (x') = 0. 
ELO n + m  I x ' l ' ~  
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Second case. P, (q) # 0. Then (?b,),30 is a full c.c.s. on R without 
Gaussian component. With the use of Theorem 2 in [I41 or the Theorem in 
[I51 we infer from (14) that P ,  (v)  E DOA(A,), even OS2 P ,  (v)" n= ,Il, since 
(A,),3o and v are symmetric. Using Theorem 3.1 of [26] we conclude that (IS) 
holds. Because of 

j x%+ 1 d (z, v) (x) < n xzd+ d (z, v) (x) < n x" d (0,: P, (v)) (x'), 
[XI<e I x 2 d + l l < ~ ~  I x ' ~  < 6  

we get (13) for i = 2 d +  1 from (15). This completes the proof. BI 

As in 1261 we can prove as a corollary to Theorem 5.1 a description of the 
domain of normal attraction of a full (a,,,(t)),,o-stable C.C.S. (p,),,, without 
Gaussian component. Hence we need a desintegration formula of the Levy 
measure of (pt),30 and, consequently, a compact cross-section C c H,X such 
that the mapping 

$: R S x C + b l , " ,  ( t , u ) w i ~ ~ , , , ( t ) u ,  

is a homeomorphism. In contrast to Lemma 5.6 of [26], in general we cannot 
realize ,Z as the unit sphere with respect to the usual homogeneous norm I . I, 
but only with respect to a special homogeneous norm 1 .  I i  which will depend on 
the exponent (M, rn). 

First we need some information about the exponent ( M ,  m) of the 
one-parameter group of a full (D,,, (t)),,,-stable C.C.S. without Gaussian 
component. 

PROPOSIT~ON 5.2. Let (p,),,, c M1 (H,) be a full (a,,m(t)),,o-stabEe c.c.s. 
without Gaussian component. Then necessarily m > $ and Re A > - m + 4 for all 
A E spec (M). 

P r o  o f. According to Theorem 1 of [I] we have m 2 $ and Re I 2 - rn + $ 
for all 1 E spec (M) and mI,,+ A4 E GL ( R ~ , ) ,  where I,, denotes the identity in 
GL (Itzd). Let us first suppose that m = $ Because of M E  sp (RZd) it follows that 

trace ( M )  C A = 0. 
d~spec(M) 

Consequently, rnin,,,,,~,, Re A d 0 and maxd,,p,,(lw, Re 1 2 0. As m = i, we get 
Re 1 2 0 for all jl E spec (M), and hence Re 1 = 0 for all I E spec fM). In view of 
Proposition 4.5, (PI (pJL,, is a full (tm+"),,,-stable c.c.s. on RZd without 
Gaussian component, and then m + Re I = is a contradiction to [28]. Let us 
now suppose rn > 3 and Re 1, = - m + for some I E spec (M). This is again 
a contradiction to [28]. 

The desintegration formula is given by: 

PROWSITION 5.3. Let (pJr c M 1  (Hd) be a full (a,,, (t)),, o-stable c.c.s. 
without Gaussian component and Ltvy measure q. Then there exists a horno- 
geneous norm I - l i  = 1. li,(M,m, on H, and a finite Bore1 measure x on 
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E ~ { X E H ~ ;  [xli = 1) such that: 

for all Borel subsets B c H,". 
Proof.  We use some of the ideas of Jurek [Ill. For X E H ~  we define 

It follows from Proposition 5.2 and [6] ,  g. 136, that there exists a constant 
K > 0 such that [cr,,, ( t )  x( 6 K 1x1 t1I2 for a11 x E H ,  and t > 0. Hence lxli is well 
defined. An easy computation shows that ( . I i  is a homogeneous norm on R,, so 
it is equivalent to I . I .  Furthermore, the mapping 

is one-to-one, onto and continuous. By an argument analogous to that in the 
proof of Corollary 2 in [I13 it follows that $ is a homeomorphism. Now one 
can derive (16) as in the proof of Lemma 5.6 in [26]. 

Remark  5.4. With the use of the desintegration formula (16) one easily 
gets: 

~ ] ( a { o ~ , ~ ( t ) u I u ~ B ,  t 2 a)) = 0-~(38)  = 0 

for all Borel subsets B c ,Z and all a > 0. 
As a corollary to Theorem 5.1, by using Proposition 5.3 now we can prove 

the following description of the domain of normal attraction. 

COROLLARY 5.5. Let I'J.J,>, c M1 (H,) be a full (cJ,,, (t)),, o-stabIe c.c.s. 
without Gaussian component and let its LCvy measure q be decomposed as in (16). 
For a measure v E M1 (H,) the condition 

(i) V DONA (PI ,  (o,,, (t)),> 0) 

implies 
(ii) lim,,, tv {a,,, (s) u]u E B ,  s >, t )  = x (8) for all BoreE sets B c C with 

x(dB) = 0. 
if additionally v and pCl, are symmetric, we also have (ii) * (i). 
Proof.  The proof is identical to the proof of Corollary 5.11 in [26] if one 

replaces the dilation 6, by o,,,(t). Observe also Remark 5.4. .a 

Remark  5.6. Of course, the exponent ( M ,  m) of a full (o,,,(t)),, o-stable 
c.c.s. is not uniquely determined. But our definition of the domain of 
normal attraction does not depend on the choice of the exponent (M, m) as 
seen by the following general argument: 

Let G be a simply-connected nilpotent Lie group, ( T ~ ) , , ~  c Aut(G) 
a continuous one-parameter group, and ( ,u , )~>~ be a full (z,),,,-stable C.C.S. 
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Suppose that there exists another one-parameter group ( u ~ ) ~ , ~  c Aut(G) such 
that (p,)t2, is also (st),,,-stable. Then by a simple computation we infer that 

where is the invariance group of p,. Since p, is full, it follows from [20], 
2.3, that SIP,) is compact. For v E DONA (p,, (T,), ,,) we conclude that 

by the compactness of 9 ( p , ) .  Hence v E DONA (p,, (a,),, ,). 
Now we will investigate the domain of normal attraction of a full 

(a,,, (t)),, ,-stable Gaussian semigroup (,u,),~ ,. First we show as in Proposi- 
tion 5.2 that in this case the exponent ( M ,  m) has a special structure and it will 
follow that only certain Gaussian semigroups on H ,  are &stable. 

PROPOSITION 5.7. Let (pi), c Mi (H,) he a fuEI (cT,,, (t)),, ,-stable Gaus- 
sian semigroup. Then the exponent (M, m) necessarily satisfies rn = $ and 
Red = 0 for all h E spec (M). 

Proof .  As in the proof of Proposition 5.2 we have rn 3 4 and 
Re ll 2 - m +$ for all ,I E spec (M) .  From Proposition 4.5 we conclude that 
(PI (p,)),,, is a full (tm+M),,,-stable Gaussian semigroup on RZd. Theorem 4 of 
[28] gives Re 1" = - m + $ for all R E  spec (M). Since trace ( M )  = 0, we get m = 4, 
and hence Re R = 0 for all I E spec (M). EA 

In view of the LCvy-Khinchin formula (3) the generating distribution A of 
an arbitrary Gaussian semigroup (pt)t>o c M1 (Hd) takes the form 

where pi (i = 1, . . . , 2d + 1) are real numbers and is a real symmetric 
positive semidefinite matrix. If f,ut),> , is fuII and (LT,,, (t)),, *-stable, we 
conclude from the equality ~,,,(t) A = tA for all t > 0 and Proposition 5.7 that 

where a E R and C kf (@,Jl i,j62r is a real symmetric positive semidefinite 
matrix. It follows easily from Proposition 4.5 that C is the covariance matrix of 
the full (tmf M)t,o-stable Gaussian semigroup ( P I  ( J A ~ ) ) , ~ ~  on RZd. SO we infer 
from Theorem 5.1 in [27] that CA4 = MC and C is positive definite. Therefore 
we have shown: 

PROPOSITION 5.8. Let (,u,)~>, c (Hd) be a full (c~,,,(t)),,,-stable Gaus- 
sian semigroup. Then its generating distribution A is of the form (17) with a real 
symmetric positive definite matrix C = (ai,j)lsi,j6zd which satisfies MC = CM. 
We will call C the covariance matrix of the c.c.s. (JA,),,,. 
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We are now in a position to prove a particular nice description of the 
domain of normal attraction of a full a-stable Gaussian measure on H We 

d.' 
will use our projection method, i.e., Proposition 4.5, and the pseudo-inner 
product (4) on H, .  Our result is in part analogous to a theorem of Jurek (see 
[lo], Theorem 4.1) on R ~ .  

THEOREM 5.9. Let I ' J A , ) , ~ ~  c M'(H~) be a full (n,,,(t)),,o-stahle Gaussian 
smigroup with cotrariance matrix C (cf. Proposition 5.8). Then for v ~  M1 (Hd) 
the condition 

(i) v E DONA (P 1 (g M, nt (t))r z- o) 
implies 

(ii) ( ( C j ,  01, (j, 0)) = j,, (x, ( j ,  0))2 dv Ix) for a11 9 E Rqd. a 

If moreover p, and v are symmetric and additionally v has afinite second 
homogeneous moment, i.e., SHdlxlZ dv (x) < m, we also have {ii) s (i). 

Proof.  (i) -(ii). According to Propositions 4.5 and 5.8 we have 

and P ,  (p,) is a full (tm'M),,o-stable Gaussian measure on R2d with covariance 
matrix C. Hence from Theorem 4.1 of [10] it follows that 

$ICY, Y) = 1 $ (x, y)' dP1 (v) (X) for all j? E RZd. 
R2d 

since j R 2 d  $ (2, j)' dP1 (v) (2) = SHd (x, 6,  o ) ) ~  dv (x) for y E Pd, the defini- 
tion (4) yields the assertion. 

(ii) - ti). Let pl and v  be symmetric and I,, 1x1' dv ( x )  < co. Theorem 5.9 (ii) 
is equivalent to 

J ~ , x ~ d v ( x ) = a , , ~  for all i , j = l ,  ..., 2 d .  
E d  

Hence the well-known central limit theorem on W, (see [23], [21] and [26], 
Remark 3.5 (4)) implies 

Since (pJtB is a full ( C T ~ , ~  (t)),, o-stable Gaussian semigroup on H,, it follows 
from (17) that (p.L3t30 is also (6,,J7),,o-stable. Of course, we have 

By the convergence of types theorem (Proposition 3.2) we see that 
{g,,, (]/a) JJn I n E N )  is relatively compact in Aut (H,) , hence in B, and all limit 
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points z fulfil ~ p ,  = p1 , i.e., z E l ( p l ) .  Finally, ( 1  8) and 

yield the assertion. This completes the proof. rn 

Theorem 5.9 is weaker than the corresponding result of Jurek ([lO], 
Theorem 4.1) on Rd because we need to require the existence of the second 
homogeneous moment of v to obtain a sufficient condition, In contrast to the 
vector space case on Rd, in general the existence of the second homogeneous 
moment for measures v in the domain of normal attraction of a full %stable 
Gaussian measure is not necessary. This is shown in the following example. 

EXAMPLE 5.10. Let (pJ t  ,, c M 1  ( H I )  be the full Gaussian semigroup on H l  
with generating distribution A = Xf + X:. Then (pt)*, , is (6,,,)r, ,-stable. We 
will write the coordinates of H, in the form x = ( x , ,  x,, t )  E H, with 
P l ( x )  = ( x , ,  x,) and P , ( x )  = t .  Now Iet V E M ' ( H , )  be the measure with 
density 

e log It1 + 1 
(XI, X2, t)w-expC-i(xf +d)l 4x t2 (log ltl)"(l"~'l "1 

with respect to the Haar measure dx on R,. Then we have 

v f D Q N A ( p , ,  (61,JZ)tZ0) but J 1x1' dvZ(x) = GC , 
HI 

i.e., v has no finite second homogeneous moment. 
(a) Since p, and v are symmetric, we can use Corollary 3.4 of C26-j. Hence 

'1 / , / ;vn nz 
is equivalent to 

(9 n J ~ ; 2 d ( 6 , , ~ ~ v ) ( x ) ~ ~ ~  1 for i = 1, 2, 
1x1 < E 

(ii) n S x , x ~ ~ ( ~ , , ~ ~ v ) ( x ) ~ ~  0 for iy  j = l 7  2,  i +J ,  
1x1 < E  

(iii) 

liv) 

n j x i t d ( 6 1 , J ; ; v ) ( x ) n 0  for i = l , 2 ,  
1x1 < E  

n j t2 d (dl,,; v)  (4 <= 0 7  

1x1 

for all E > 0. 
By an easy computation we obtain (i) and (ii). One takes into con- 

sideration that 
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(iii) follows by a simple symmetry argument. Using the definition (19) of 
the density of v we get 

neZ 

1x1 < E  e 

After a substitution and integration by parts we obtain 
X 

h ( n ) ~ { L = O ( z )  log t log x a s x - m .  

e 

Another integration by parts gives 
X 

logt+l  X 

[ m d t =  -- 
+ e - l i ( x )  = o(&) as x -+ m; 

log x 
e 

therefore we obtain (iv). 
From the relation 

it follows that 

(20) n(8,iJ;v) (x; 1x1 2 EJ S nv ll(xl, ~2111 2 y 
Using the well-known properties of Gaussian measures on R2 we conclude that 
the first term on the right-hand side of (20) converges against zero. For the 
second term we obtain 

m 

l o g t + l  4e ..{.; t >$} = en dt = + 0, 
t2  (log t)' log (n~' /4 )  "'" 

ne2/4 

and hence (v) is valid. 
(p) We have 

j Ix12dv(*) = 1 ll(x1, x , ) l12dv(d+ j l t l d v ( d .  
A1 R 1 H1 

Trivially, the first term on the right-hand side is finite, but for the second term 
we compute 

I t )  dv ( x )  = e j;;;):dt=N, - 

Hi e 

i.e., v has no second homogeneous moment. 



Concluding remarks. In [25] we have shown that a measure v in the 
domain of attraction of a full stabIe C.C.S. on N, has certain moments. More 
precisely, let (p,), a ,  c M1 (B,) be a full (cr,,, (t)),, ,-stable C.C.S. and define 

6, %! rnax ((m + Re I I A: E spec ( M ) }  v {m)). 

Then a measure v in the W-domain of attraction of p,  has all homogeneous 
moments of order less than 1/;5,. This result is analogous to that of [XI. Details 
will appear elsewhere. 
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