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ON THE ROLE QF C63NTAMCNATIQ_)N LEVEL 
AND THE LEAST FAVOURABLE BEHAVIOBTEt 

OF GROSS-ERROR SENSITIVITY 

Abstract. The notion of contamination level is introduced and its 
characterization for any pair of distribution functions is given. 
A possibility of reformulation of some basic problems of the robust 
statistics based on this notion is discussed. Finally, tho behaviour of 
the grosserror sensitivity under the least favourable distribution is 
studied and the result is illustrated by a numerical example. 

Introduction. The problems connected with the optimality of robust 
procedure have been studied by many authors (see, e.g., [33). Presumably one 
of the best known studies is that one given by Hampel et al. 141, based on the 
influence function. In fact, the problems have been already formulated in 
Huber's pioneering paper [5]. In the present paper we shall show that the 
constraint under which Huber gave his famous minimax solution may be 
reformulated by means of the notion of contamination level. We shall also 
demonstrate that the bounds imposed on the gross-error sensitivity in the 
well-known Hampel's extremal problem is a one-to-one function of the 
contamination level (under general conditions). This implies that the notion of 
contamination level appears to be one of the basic notions or, in other words, 
the notion of contamination level may be used as the fimdamental one for 
robust statistics. 

The gross-error sensitivity introduced by Hampel in [3] is one of basic 
characteristics of the robust procedures. This characteristic has been in detail 
studied in 141. One thing which is not explicitly emphasized in [4] is the fact 
that the results yielded by the approach via the influence function are given 
under the central model. In difference, Huber's minimax solution is given under 
the least favourable distribution. It occurred from the practical experiences that 
the data are usually better fitted by a model with heavy tails, like the Student 
one with a small number of degrees of freedom (for a large, exhaustive and very 
nice discussion see [4]). In such a case, Huber's approach may better reflect the 
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real situation. GeneralIy, we can say that in the case where the data are 
distributed according to a distribution which is (rather) near to the central 
model the approach via the influence function may give acceptable ap- 
proximations for the behaviour of the robust procedures. It is true that we may 
already select as the central model a distribution with heavy tails, however in 
this case the corresponding formulas may be more complicated and we may get 
into some, not only computational, troubles. In other cases, where we prefer 
a simple central model although the data may be distributed according to 
a (complicated, unknown) distribution which may differ from it, it may be 
better to consider Huber's approach and to study the behaviour of the statistics 

. . under the least favourable distribution. 
Moreover, a large attention which was devoted to the procedures with 

high breakdown point indicates that in some cases our idea about the character 
of randomness may be so vague that we should rely on the results describing 
the behaviour of the robust procedure under the least favourable distribution. 
Then it may appear that the behaviour of some characteristics of the robust 
procedure is different from their behaviour in the neighbourhood of the central 
model. We will demonstrate this phenomenon by the example of the behaviour 
of the gross-error sensitivity. 

To make the paper easy understandable even for a reader which is not in 
an everyday touch with the robust statistics we will repeat in the next section 
some basic notions. The reader familiar with them may freely skip this part of 
the paper. 

Notation and preliminaries. Let N denote the set of all positive integers. 
33 is assumed to be the Bore1 a-algebra of the subsets of the real line R, and 
9 the set of all one-dimensional distribution functions. Huber's result [5] was 
derived under the following condition : 

CONDITION A. Assume that F , E ~  has a density f,(t) with a convex 
support. Moreover, let f, be twice continuously differentiable with -log f, (t) 
strictly convex on the support of f , ( t ) .  ra 

Without any loss of generality let us suppose that sup {t E R; f; (t) > 0) 
= 0. For any EE[O, 11 define the contamination model of data 

Now, let the random variables XI, X , ,  . . ., X ,  be independent and 
identically distributed according to a distribution function G* (t - A ) ,  A E R. 
(G* may be any distribution from P,, (E) for some fix E E [O, 11.) Let be the 
M-estimator of A given as a solution of the equation (for a moment let us 
assume that there is a solution) 
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(Indeed, we have at least G (t)  = (1 - 1 )  F (t)  -t 1 - G (t).) If, however, there is 
EE [0,  1 )  for which (9) holds, then for any positive e* E(E, I] we have also 

1 
G (t)  = (1 - E * )  F (t)  + E* H* (t) for H* ( t )  = - {(E* - E )  F ( t)  -t EH) . 

E * 
Hence, we need the following definition. 

DEFINITION 1. For any pair of distribution functions G and F, the 
contamination level of G with respect to F will be given by the value 

EG.F = inf { E :  G (t)  = (I - E )  F ( t )  + EN ( t ) ,  fi It) d.f.) 

EXAMPLE 1. By considering a mixture of two normal laws 

a straightforward computation gives E,,, = (1 -cr-l) E for s > 1 while E,,, = E 

for a < 1. 

LEMMA 1 (Characterization of E , , ) .  Let G and F be distribution functions 
and v a a-$nits measure such that G < v as well as F < v and put 

9 = (g*( t ) , f* ( t ) ;  v {g*(t) P g(t)) = 01 v ( f C ( t )  +f (t))  = 0). 
Then 

E ~ , ~  = inf sup f * ( t )  - 9' (0 
$3 {t:P[t) >o> f * (t) 

Proof.  Let E,,, < 1. Then, by Definition 1, for any E E ( E ~ , , ,  11 there is 
h,(t)  so that 

which yields (f (t)  - g ( t))  f - l (t)  < E (for any E E (cGSp, 11 and t E {z: f (2) > 0)). 
Hence 

Since 

the inequality suplt,ictl,o~ { f (t)  -g (t)) f - (t)  < E~~ holds also for E,,, = 1. 
Assume that 

SUP (f (t)  -g It)) f - (t) < EG,F. 
tt:f (0 ' 01 

Then there is 6 > 0 such that: (i) & , , - a  > 0, and (ii) for all t E {z: f (2)  > 0) 
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Since the last inequality holds also for t$(z: f (z )  > O), the function 

h ( f )  = EEG,F - 8)- {g  It) - C1 - ( eG ,F-  41 S(t)) 

is a density and we have 

which contradicts the definition of E,,,. 

Remark  1. Since E,,, is given uniquely (by Definition I), it is dear that 
the characterization does not depend on v. I 

Remark 2. It is clear that the set 9 had to be included in Lemma 1 
because changing f ( t )  (to be positive) and g (t) (to be zero) at one point t such 
that v({t)) = 0, we obtain E,,, = 1 for any pair G, F .  FA 

Remark  3. Arguing as at the end of the proof of Lemma 1 we may show 
that there is h,,,,,,(t) such that 

Integrating we obtain 

I 

so that the infimum from Definition 1 is attained. 

LEMMA 2. Let Condition A be fulfdled. Then 

max E ~ , ~ ~  = E~,,~,, = E. 
e @ ' ~ , , ( e )  

P r o  of. It is clear from Definition 1 that 

So it is sufficient to show that E ~ ~ , ~ ~  = E. We are going to use Lemma I with 
v = i (Lebesgue measure). 

Let t E [to ( E ) ,  t (E)]. Then 

and the proof follows. e 

COROLLARY 1 .  The contamination model 9,,(~) (see ( 1 ) )  coincides with 
the set 

P r o  of. The previous lemma proves that PFa ( E )  c VFo (E).  The opposite 
inclusion follows from Definition 1 and Remark 3. rn 



Gross-error sensitivity. Corollary 1 brought the result which has been 
promised in the Introduction that Huber's result may be equivalently for- 
mulated using the notion of contamination level. Let us keep it in mind $ what 
follows. 

In 1968 Hampel [3] introduced the notion of gross-error sensitivity and 
studied the extremal problem of finding the +-function which generates the 
M-estimator with the minimal variance in the family of all M-estimators with 
the gross-error sensitivity bounded by a given limit. Let us briefly remind 
necessary notions and then. the results. 

DEFINITION 2. For a convex subset Fl of 9 let TIP): PI 4 F be a real 
functional and A ,  the distribution function putting the mass 1 at the point t E R. 
The influence functioa IF ( t ,  T, F) of the functional T at the distribution F E Fl 
is given by 

~ ( ( 1 -  t )  F + TA$ - T ( F )  
lim 

at those points t at which the limit exists. 

EXAMPLE 2. Let F,,, (v) be the double exponential distribution and Tmcd (F) 
the median. Keep in mind that for any F E @ such that there is a point rn E R 
such that F (m) = 3 we have T,,, (F) = m. Let t > 0. Then we have 

( 1 - z ) F , , , ( z ) + t d , ( z ) > ~  for any z a t .  

On the other hand, 

( 1 - z ) F e x p ( z ) < *  for z G 0 .  

So to establish T,,,((l - z )Fe , ,+~A, )  we obviously need to find a point 
n a ~ ( 0 ,  t )  such that ( l - z )FeX,(m)  = 9.  Using Taylor's expansion one easily 
verifies that rn is given as a solution of the equation 

and (10) then yields 

i -1 for t < 0 ,  

I t  T e d  F )  = 0 for t = 0, 
1 f o r t > O . a  

DEFINITION 3. The gross-ewor sensitivity of the functional T  at the 
distribution F E ~ ~  is given by 

where the supremum is taken over all the points at which the influence function 
exists. B 
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EXAMPLE 3. It follows from Example 2 that y* ITmed, Fexp) = 1. Similarly, 
we may find that yX(Tmed, @) = @ in the standard normal law or 
ye(Tmed, F , j  = 2 in the logistic distribution (see [4], Example 2.5.4). a 

In what follows we shall write y* ($, F) for the gross-error sensitivity of the 
M-estimator generated by the function $. 

We shall consider the following two results given in [4]. 

ASSERTION 2 (Hampel [4]). Let B be an open convex subset o f R  and {Fo),aB 
a family of distribution functions with strictly positive densities f,(x) which are 
assumed to  be absoIutely continuous. Let us put 

and fix some 8, E O.  We shall write briefly F ,  f and s ( t )  instead of F,, , f,, and 
s ( t ,  F,,), respectively. Let 1 s (t) dF ( t )  = 0 and the Fisher information J ,  = 

1 s2 (t) dF ( t )  E (0, m). Finally, let b > 0 be a constant. Then there is a real number 
a such that 

(12) $b (t) = max { - b,  min {s  ( t )  - a ,  b ) }  
satisfies 

1 +, (t)  dF (t) = 0 and d = j t,bb ( t )  s ( t)  dF ( t )  > 0,  

and +, minimizes 

among all mappings that satisfy 

and 

Any other solution of this extremal problem coincides with a non-zero multiple of 
$, aln~ost everywhere with respect to F. 

For the proof see [4], Theorem 2.4.1. H 

Remark  4. Let us observe that $, coincides with $, for b = k ( ~ )  and 
F = F,. Having forgotten, for a while, that $, was found as a solution of the 
location problem, we know also from the Huber result that if Condition A is 
fulfilled for the distribution function I;,, then in the set of all distribution 
functions having the contamination level r,,,, not greater than E there is 
a distribution function F, (with E ~ ~ , ~ ~  = E )  such that for b = k ( ~ )  we have 
$b = $,, where k ( E )  and $, are given by (6) and (5), respectively. The $-function 
which is the solution of Huber's problem coincides with the +-function which 
is the solution of Hampel's problem. (Hampel has introduced for these 



estimators the name the optimal B-robust estimators (see [4], 2.4b).) Sometimes 
this coincidence is explained by the fact that 3- and Vrobustness, in this case, 
also coincide and that Vrobustness takes into account the change of variance, 
and hence it is related to Huber's approach. However, the arguments are not 
completely correct, because although in both cases the constraint was the same 
(namely, as we have demonstrated, un upper bound on the contamination 
level), the models under which the results were obtained were different. In one 
case the central model, in the other the least favourable one. It may be also of 
interest that for b 4 0 we obtain as a limit case of t,bb just $med. Obviously, as 
we have seen in Example 2, we may obtain $,,, also as the influence function 
of the maximum likelihood estimator of location for the double exponential 
distribution. As we shall see later on, if Condition A is fulfilled, k ( ~ )  is 
a decreasing continuous function, 

k (8): CO, 1) + (0, SUPIS (t, F)I). 
t 

This means that b + 0 corresponds to E + 1, so that the function $,,,, according 
to the former "definition", is obtained as the limit case for E + 1, i.e., for the 
situation when the portion of the contamination tends to 100%. Since sometimes, 
e.g., when we study the robust procedures with high breakdown point, we argue 
that the contamination higher than 50% is senseless, the interpretation of $,,d as 
the influence function of the maximum likelihood estimator of location for the 
double exponential distribution seems to be more satisfactory. 

Remark  5. Let us put 

(the notation reflects the fact that for E = 0 we obtain the Fisher information J,). 
Therefore, as ( 1 3 )  represents the variance V($,  F) (see (3)), Harnpel's result says 
that $, minimizes the variance among all the M-estimators having bounded the 
gross-error sensitivity by k (&)/Jp (E). Observe again that the variances are 
computed with respect to the central model in P,(E) (see (1)). rn 

ASSERTION 3 (Rousseeuw [6]). Let the assumptions of Assertion 2 be fulJilled. 
Moreover, let f be symmetric. Then the mapping b + y* ($,, F )  is a strictly 
increasing continuous bijection from (0, sup, 1s (t)l) onto ($,.,, F), y* (s (t), f)). 

For the proof see [6] or [4], Lemma 2.5.1. 

Let us give now an assertion that allows us to connect the Rousseeuw result 
with the contamination level. 

ASSERTION 4. Let Condition A be fuljilled. Then 

For the proof see [9], Lemma 1. 
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Remark  6. As follows from Assertions 3 and 4 under Condition A the 
mapping E 4 y* ($,, F,) is a strictly decreasing function of E. Observe however 
that the behaviour of the gross-error sensitivity of I), has been studied in 
Assertion 3 again under the central model F,. 

R e  rn a r  k 7. Assertion 4 enables us to see that Hampel7s extremal problem as 
well as Rousseeuw7s result about monotonicity of the gross-error sensitivity can 
be reformulated by using the notion of contamination level. This reformulation 
may offer for some readers a better understanding and more natural description 
of the problems because in applications one may have some feelings about the 
contamination level of data but probably (only) a vague idea how much the 
gross-error sensitivity should be limited for such a contamination level. 

Intensive studies of the procedures with the high breakdown point clearly 
prove that there are situations when the contamination level of data is not near 
zero. And these situations are presumably much more frequent than it is 
commonly recognized and accepted (for a nice discussion see 141, 1 . 2 ~  and 1.2d7 
and also [2] and [l]). Then the results derived by the infinitesimal approach may 
be (however not necessarily) of limited use. This directly inspires the following 
questions: What is the behauiour ofthe robust procedures and their characteristics, 
e.g., the behatriour of the gross-error sensitivity of rl/, under the least favourable 
distribution F,? Is it still monotone as under the central model Fo? 

As we shall see later the answer is negative. But then we ask probably 
immediately: For what values of the contamination level is the gross-error 
sensitivity y* ($,, F,) already increasing? The answer to both the questions will 
be given in Lemma 4. We need however at first to prove an assertion and 
a lemma. 

ASSERTION 5 .  Let Condition A be fuljlled. DeBne for anyfix z < 0 and t > 0 
a function rz ( t )  as follows: 

Z 

Then r , ( t )  is continuously digerelatiable and strictly decreasing. 

P r o  of. A straightforward computation gives 

Now, the requirement of the strict convexity of -log fo ( t )  implies 

f o  It) f6' ( t )  - Lf6 (tll < 0 

for t in the support off,, and the proof follows. FS 
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In what follows let us write rk(t) for dr,(t)/dt. 

LEMMA 3. Under Condition A for any y ,  , y 2  such that 0 < y, < y ,  < 1 and 
- Q < to (y ,) < t ,  (y ,) < oo there are positive and finite constants A4, (y,, y,) 
and M ,  (y,, y,) such that for any pair E ~ ,  E,, fi E ,  < E~ < y,, we have 

(I8) (I < MI (~17 Y~){~O(EZI- lo [ ~ l ) + ~ l ( ~ l ) - ~ l  (%)I 6 E2-E1 

G M,(Y,, ~ 2 ) { t O ( & Z ) - t O ( ~ l ) + t l ( ~ l ) - t l ( ~ Z ) I .  

Proof .  From Assertion 4 it follows that t,(~,] < to(&,] and t ,  (E,) < t,(s,). 
Taking into account also (6), we conclude that 

Making use of (6) once again we obtain 

(20) 0 < ( l - ~ , ) - l - ( l - c J - ~  = f,(t)dt- S f o  (to (621) +fo (t 1 ( ~ 2 ) )  

k (€2) 

, Observing that r:(t) does not depend on z (see (17)) and using (7) and (19) we 
may rewrite (20) in the form 

f0(&1) fl{&2) 

Putting r = [to (Y 11, to (Y ,)I u Ctl (Y ,I7 ti (y ,)I, let us define 

Mf(yl,y,)=-supr:(t) and M$(y,,y,)=-infr:(t). 
~ E T  t ~ r  

Since ri (t) is continuous and r is compact, Mf (y,, y,) as well as M $  (y,, y,) is 
positive and finite, and we obtain 

0 < MT(yi, ~ z l { t o ( ~ z ) - t o ( ~ i ) + t i ( ~ i ) - t i ( ~ z ) )  

Since 0 < (1 - y ,), < (1 -E,) (1 - E,) < (1 - y ,)', we have verified (18). 

Remark  8. It is clear that to cope with the situation when to (y,) = - co 
or t, (y,) = oo requires a different formulation of the assertion of Lemma 3 
since (18) may be evidently senseless. Let us assume that t, (y,) = co. If 
t, (E,) < CO, the situation is not substantially different from that one considered 
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in Lemma 3, since we have to select only some y' E ( y ,  , E,] such that t, (y') < oo. 
So we should assume that also ti ( E , )  = a. Since in what follows (see the proof 
of Lemma 4 below) we will need to apply Lemma 3 in the case where 

+ 0, it is also senseless to assume that t, ( E , )  < a. For the case where 
tl (yl) = t1 ( E , )  = t i  (4 = CQ we easiIy find that in the fraction on the 
right-hand side of (6) the term fo( t ,  (E)) will be missing. On the other hand, 
a simple analysis of the proof of Assertion 5 shows that Ir:(t)l i s  bounded. (An 
opposite possibility implies that for c + O (and, consequently, t ,  (E) 4 a) the 
right-hand side d (6) increases above any bound while the left-hand side 
converges to 1.) So we can prove the assertion of Lemma 3 in a modified form 
(without ti ( E ~ )  and t ,  ( E J ;  observe that the second term of the right-hand side 
of (21) disappears in this case). In order not to obscure further considerations 
we shall restrict ourselves to the cases where max (It, (y , ) l ,  It, iy,)l) < a. 

LEMMA 4. Let Condition A befulJilled. Moreover, let the Fisher information 
J (F , )  be in (0, m). Then the gross-error sensitiaity is 

Y*(*,, F,) = (It'-&)-l-r*C*,, F,) .+ 

and it is strictly decreasing on (0, E,] and srrictly increasing on [E,, I), where E~ is 
giuen b y  the equality 

Proof.  If Condition A hoIds, -fA(t)lf,(t) is strictly increasing, and hence 
we may define an inverse function t: R -+ R so that for any E E ( O ,  1) 

ti (E) = ti(- 'Ii k (&I) 

(see (7)). This directly implies that 

dti (4 -- - (- I ) ~  f: (ti (&I) dk (€1 a& fl (ti (4) f D  (ti (&I) - [ f6 (ti (&))I ' - -7' 
Now, using a well-known formula for the influence function of the location 
M-estimator (for general t,h and general F) 

(see, e.g., [4], 2.3.81, substituting for $, and F, the respective expressions from 
(5) and (8), and making use of (11) we obtain 

Notice that from (23) and Assertion 3 it follows that 

lirn sup y* ($,, FJ = oo , 
€+ 1 



since y* ($,,,, F) > 0 (however, it is not possible to learn from Assertion 3 and 
(23) anything about the monotonicity of y* ($,, P,)). Integrating by parts in (16) 
we obtain 

J F  (4 = 1 $:: (0 .f (0 dt 

(which leads to another well-known expression for 

see 141, 2.3.12) and using (5) and (8) we arrive at 

Now, making use of the continuity of the integrand and using Lemma 3, we 
find that (for i = 0, 1) 

and hence 

- [fA ('0 (&))I ' -fl (to (4) fo (to (4) dto (e) 
f o  (to (8))  de 

dk (8) 
= {fo (to (4) +fO ( t l (4) )  

(see (22)). Let us now consider 

log y * ($,, Fe) = log k (E) - log J,, (e) -log (1 - E).  

Its derivative is equal to 

Using the fact that the integrability of the function f;(t) fo (t)& (t) implies 

lim fd' 0) f o  Wlf6 (t) = 0, 
Itl ' 03 

we find that z(&) is strictly monotone on (0, 1) and 

lim z (E) = - cc and lim z (e) = + oo . 
€-LO+ & + I -  

This means that logy* ($,, F,) is strictly convex, and the proof follows. H 
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The next exhibit gathers some results which may help to create an idea of 
the gross-error sensitivity of the Huber estimator under various contamination 
levels. The contamination levels are given in the first row, in the second one the 
gross-error sensitivities of $, (see (5)) with respect to the central model F ,  = @ 
(normal distribution) are presented, and in the third one the values of the 
gross-error sensitivity of $, with respect to the least favourable distribution F ,  
(see (8) and Lernma 4) are given. To explain values in the fourth row let us 
remind that the "tunning" constant equal to 1.5, which is sometimes recom- 
mended for the Huber estimator (see, e.g., [4]), corresponds to the con- 
tamination level 3.8%, i.e., E ,  = 0.038. For the function the suprema 

Y s*Up = sup Y * I$,, , G) ,  where 9: = 9, (e) ,  
Ge92 

have been found for E'S as given in the first row of the exhibit and put in the last 
row. 

Exhibit 1 

Remark  9. It is clear from Exhibit 1 that even in the case where we 
(considerably) underestimate the contamination level the increase of the 
gross-error sensitivity of B-robust estimators will not be dramatic. The values 
in the third row of Exhibit 1 also "confirm" the assertion of the previous 
lemma. The precise value of E, (see Lemma 4) for this setup is 0.1084. On the 
other hand, the values in the last row show that the gross-error sensitivity of 
the usually used Huber's estimator, i.e., the estimator generated by (with 
"tunning" constant equal to 1.5), is increasing with increasing level of 
contamination. So its behaviour is quite different from that one which we can 
adversely expect on the base of Assertion 3. 

Conclusions. We have shown that a natural feeling that some number of 
atypical observations may represent a contamination of data may be math- 

8 

* @) 
y*($,, F,) 
y ( )  

0.350 
1.33 
2.05 
2.66 

0.375 
1.32 
2.12 
2.77 

0.400 
1.32 
2.19 
2.88 

0.425 
1.31 
2.28 
3.01 

0.500 
1.29 
2.59 
3.46 

0.450 
1.30 
2.37 
3.14 

0.475 
1.30 
2.47 
3.29 
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ematically reflected as the contamination level. This notion may then serve as 
a basis for the formulation of the well-known problems in the robust statistics. 

We have also shown that when the contamination level overcomes 10.84% 
(to which the "tunning" constant k ( ~ )  = 1.1 for the Huber function corre- 
sponds) the gross-error sensitivity y* ($,, FE) becomes increasing. This means 
that a further decrease d the "tunning" constant will imply the increase of the 
gross-error sensitivity. 

On the other hand, the changes of the gross-error sensitivity (as demon- 
strated in Exhibit 1) as well as of the asymptotic efficiency (see Exhibit 2 below) 
are so small that the proper selection of the "tunning" constant for the given data 
is not evidently the problem of the (dramatic) loss of the efficiency or of a (serious) 
increase of the gross-error sensitivity, but much more the problem of estimation 
of such a model which is acceptable for practical purposes. One easily finds that 
with changing "tunaing" constant we obtain for the given data various estimates 
which may be considerably different from each other (see [lo] or [Ill). So we 
have to solve the problem of selection of one estimate from the whole set of esti- 
mates which were calculated for the same data, for the same model (i.e., for the 
same set of regressors) and all of them should be "near to the true model" because 
of the asymptotic consistency. One of the possibilities is - instead of choosing 
one of these models - to combine them into a new estimate. The possibility was 
studied in [a]. Another possibility how to cope with the problem may be to corn- 
pare the (kernel) estimates of density of the residuals for (two) distinct subsamples 
of data, and select the one for which the density estimates are similar each to other 
"as much as possible" (e.g., in the sense of the Hellinger distance, see [lo]). 

In the next exhibit we use the following notation: 
var($,, @) - the asymptotic variance, with respect to the central model 

F ,  = @ (normal distribution), of the location estimator generated by the 
function $,; 

var($,, F,) - the asymptotic variance, with respect to the least favourable 
model F,, of the location estimator generated by the function $,; 

var,,,($,,) - the supremum of the asymptotic variances var($,,, G) over 
(G E 9m(&)1 ;  

efficiency ($,, $,,) - the eficiency of the location estimator generated by 
the function $,, with respect to the optimal location estimator, i.e. 

Exhibit  2 
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E 

var ($0 @) 

var ($0 F.1 
y a s u p  (dfzl) 

e e c y  
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